Advertisement

Science China Technological Sciences

, Volume 61, Issue 12, pp 1889–1900 | Cite as

Modelling three dimensional dynamic problems using the four-node tetrahedral element with continuous nodal stress

  • GuoHua Zhang
  • YongTao YangEmail author
Article
  • 15 Downloads

Abstract

A partition of unity (PU) based four-node tetrahedral element with continuous nodal stress (Tetr4-CNS) was recently proposed for static analysis of three-dimensional solids. By simply using the same mesh as the classical four-node tetrahedral (Tetr4) element, high order global approximation function in the Tetr4-CNS element can be easily constructed without extra nodes or nodal DOFs. In this paper, the Tetr4-CNS element is further applied in the analysis of three dimensional dynamic problems. A series of free vibration and forced vibration problems are solved using the Tetr4-CNS element. The numerical results show that, for regular meshes, accuracy obtained using the Tetr4-CNS element is superior to that obtained using the Tetr4 and eight-node hexahedral (Hexa8) elements. For distorted meshes, the Tetr4-CNS element has better mesh-distortion tolerance than both the Tetr4 and Hexa8 elements.

Keywords

partition of unity tetrahedral element Tetr4-CNS mesh distortion dynamic problems 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11431_2018_9305_MOESM1_ESM.docx (373 kb)
Supplementary material, approximately 373 KB.

References

  1. 1.
    Zienkiewicz O C, Taylor R L. The Finite Element Method. 5th ed. Oxford: Butterworth-Heinemann, 2000zbMATHGoogle Scholar
  2. 2.
    Yang Y T, Zheng H, Sivaselvan M V. A rigorous and unified mass lumping scheme for higher-order elements. Comput Methods Appl Mech Eng, 2017, 319: 491–514MathSciNetCrossRefGoogle Scholar
  3. 3.
    He Z C, Li G Y, Zhong Z H, et al. An edge-based smoothed tetrahedron finite element method (ES-T-FEM) for 3D static and dynamic problems. Comput Mech, 2013, 52: 221–236MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Liu G R. Meshfree Methods: Moving Beyond the Finite Element Method. 2nd ed. Boca Raton: CRC Press, 2009CrossRefGoogle Scholar
  5. 5.
    Nguyen M N, Bui T Q, Truong T T, et al. Enhanced nodal gradient 3D consecutive-interpolation tetrahedral element (CTH4) for heat transfer analysis. Int J Heat Mass Transfer, 2016, 103: 14–27CrossRefGoogle Scholar
  6. 6.
    Liu G R, Nguyen-Thoi T. Smoothed Finite Element Methods. Boca Raton: CRC Press, 2010CrossRefGoogle Scholar
  7. 7.
    Nguyen-Thoi T, Liu G R, Vu-Do H C, et al. A face-based smoothed finite element method (FS-FEM) for visco-elastoplastic analyses of 3D solids using tetrahedral mesh. Comput Methods Appl Mech Eng, 2009, 198: 3479–3498CrossRefzbMATHGoogle Scholar
  8. 8.
    Areias P, Rabczuk T, Dias-da-Costa D. Element-wise fracture algorithm based on rotation of edges. Eng Fract Mech, 2013, 110: 113–137CrossRefGoogle Scholar
  9. 9.
    Areias P, Rabczuk T, Camanho P P. Initially rigid cohesive laws and fracture based on edge rotations. Comput Mech, 2013, 52: 931–947CrossRefzbMATHGoogle Scholar
  10. 10.
    Zhuang X Y, Augarde C. Aspects of the use of orthogonal basis functions in the element-free Galerkin method. Int J Numer Meth Eng, 2009, 81: 366–380MathSciNetzbMATHGoogle Scholar
  11. 11.
    Zhuang X, Augarde C E, Mathisen K M. Fracture modeling using meshless methods and level sets in 3D: Framework and modeling. Int J Numer Meth Eng, 2012, 92: 969–998MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Rabczuk T, Belytschko T, Xiao S P. Stable particle methods based on Lagrangian kernels. Comput Methods Appl Mech Eng, 2004, 193: 1035–1063MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Liu G R, Gu Y T. A point interpolation method for two-dimensional solids. Int J Numer Meth Eng, 2001, 50: 937–951CrossRefzbMATHGoogle Scholar
  14. 14.
    Rabczuk T, Areias P M A, Belytschko T. A meshfree thin shell method for non-linear dynamic fracture. Int J Numer Meth Eng, 2007, 72: 524–548MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Rabczuk T, Belytschko T. Cracking particles: A simplified meshfree method for arbitrary evolving cracks. Int J Numer Meth Eng, 2004, 61: 2316–2343CrossRefzbMATHGoogle Scholar
  16. 16.
    Zheng C, Wu S C, Tang X H, et al. A novel twice-interpolation finite element method for solid mechanics problems. Acta Mech Sin, 2010, 26: 265–278MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Amiri F, Anitescu C, Arroyo M, et al. XLME interpolants, a seamless bridge between XFEM and enriched meshless methods. Comput Mech, 2014, 53: 45–57MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Strouboulis T, Babuška I, Copps K. The design and analysis of the generalized finite element method. Comput Methods Appl Mech Eng, 2000, 181: 43–69MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Yang Y T, Tang X H, Zheng H, et al. Three-dimensional fracture propagation with numerical manifold method. Eng Anal Bound Elem, 2016, 72: 65–77MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Yang Y T, Zheng H. Direct approach to treatment of contact in numerical manifold method. Int J Geomech, 2017, 17: E4016012CrossRefGoogle Scholar
  21. 21.
    Cai Y C, Zhuang X Y, Zhu H H. A generalized and efficient method for finite cover generation in the numerical manifold method. Int J Comput Method, 2013, 10: 1350028MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Yang Y T, Xu D D, Zheng H. Evaluation on stress intensity factor of crack under dynamic load using numerical manifold method (in Chinese). Chin J Theoret Appl Mech, 2014, 46: 730–738Google Scholar
  23. 23.
    Zheng H, Xu D D. New strategies for some issues of numerical manifold method in simulation of crack propagation. Int J Numer Meth Eng, 2014, 97: 986–1010MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Zheng H, Yang Y T. On generation of lumped mass matrices in partition of unity based methods. Int J Numer Meth Eng, 2017, 112: 1040–1069MathSciNetCrossRefGoogle Scholar
  25. 25.
    Yang Y T, Xu D D, Sun G H, et al. Modeling complex crack problems using the three-node triangular element fitted to numerical manifold method with continuous nodal stress. Sci China Tech Sci, 2017, 60: 1537–1547CrossRefGoogle Scholar
  26. 26.
    Yang Y T, Tang X H, Zheng H, et al. Hydraulic fracturing modeling using the enriched numerical manifold method. Appl Math Model, 2018, 53: 462–486CrossRefGoogle Scholar
  27. 27.
    Yang Y T, Guo H, Fu X, et al. Boundary settings for the seismic dynamic response analysis of rock masses using the numerical manifold method. Int J Numer Anal Methods Geomech, 2018, 42: 1095–1122CrossRefGoogle Scholar
  28. 28.
    Yang Y T, Sun G H, Zheng H, et al. A four-node quadrilateral element fitted to numerical manifold method with continuous nodal stress for crack analysis. Comput Struct, 2016, 177: 69–82CrossRefGoogle Scholar
  29. 29.
    Wu Z J, Fan L F. The numerical manifold method for elastic wave propagation in rock with time-dependent absorbing boundary conditions. Eng Anal Bound Elem, 2014, 46: 41–50MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Fan L F, Yi X W, Ma G W. Numerical manifold method (NMM) simulation of stress wave propagation through fractured rock. Int J Appl Mech, 2013, 05: 1350022CrossRefGoogle Scholar
  31. 31.
    Wu Z J, Wong L N Y. Frictional crack initiation and propagation analysis using the numerical manifold method. Comput Geotech, 2012, 39: 38–53CrossRefGoogle Scholar
  32. 32.
    Wu Z J, Wong L N Y. Elastic-plastic cracking analysis for brittleductile rocks using manifold method. Int J Fract, 2013, 180: 71–91CrossRefGoogle Scholar
  33. 33.
    Wu Z J, Wong L N Y. Modeling cracking behavior of rock mass containing inclusions using the enriched numerical manifold method. Eng Geol, 2013, 162: 1–13CrossRefGoogle Scholar
  34. 34.
    Yang Y T, Xu D D, Zheng H. Explicit discontinuous deformation analysis method with lumped mass matrix for highly discrete block system. Intern J Geomech, 2018, 18: 04018098CrossRefGoogle Scholar
  35. 35.
    Wu Z J, Wong L N Y, Fan L F. Dynamic study on fracture problems in viscoelastic sedimentary rocks using the numerical manifold method. Rock Mech Rock Eng, 2013, 46: 1415–1427CrossRefGoogle Scholar
  36. 36.
    Nguyen V P, Anitescu C, Bordas S P A, et al. Isogeometric analysis: An overview and computer implementation aspects. Math Comput Simul, 2015, 117: 89–116MathSciNetCrossRefGoogle Scholar
  37. 37.
    Anitescu C, Jia Y, Zhang Y J, et al. An isogeometric collocation method using superconvergent points. Comput Methods Appl Mech Eng, 2015, 284: 1073–1097MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Yang Y T, Tang X H, Zheng H. A three-node triangular element with continuous nodal stress. Comput Struct, 2014, 141: 46–58CrossRefGoogle Scholar
  39. 39.
    Babuška I, Melenk J M. The partition of unity method. Int J Numer Meth Eng, 1997, 40: 727–758MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Yang Y T, Xu D D, Zheng H. Application of the three-node triangular element with continuous nodal stress for free vibration analysis. Comput Struct, 2016, 169: 69–80CrossRefGoogle Scholar
  41. 41.
    Yang Y T, Zheng H. A three-node triangular element fitted to numerical manifold method with continuous nodal stress for crack analysis. Eng Fract Mech, 2016, 162: 51–75CrossRefGoogle Scholar
  42. 42.
    Yang Y T, Sun G H, Zheng H. A four-node tetrahedral element with continuous nodal stress. Comput Struct, 2017, 191: 180–192CrossRefGoogle Scholar
  43. 43.
    Ooi E T, Rajendran S, Yeo J H, et al. A mesh distortion tolerant 8-node solid element based on the partition of unity method with interelement compatibility and completeness properties. Finite Elem Anal Des, 2007, 43: 771–787CrossRefGoogle Scholar
  44. 44.
    Xu J P, Rajendran S. A partition-of-unity based ‘FE-Meshfree’ QUAD4 element with radial-polynomial basis functions for static analyses. Comput Methods Appl Mech Eng, 2011, 200: 3309–3323CrossRefzbMATHGoogle Scholar
  45. 45.
    Liu G R, Gu Y T. A local radial point interpolation method (LRPIM) for free vibration analyses of 2-d solids. J Sound Vib, 2001, 246: 29–46CrossRefGoogle Scholar
  46. 46.
    Liu G R, Nguyen-Thoi T, Lam K Y. An edge-based smoothed finite element method (ES-FEM) for static, free and forced vibration analyses of solids. J Sound Vib, 2009, 320: 1100–1130CrossRefGoogle Scholar
  47. 47.
    Castellazzi G. On the performances of parametric finite elements when geometry distortions occur. Finite Elem Anal Des, 2011, 47: 1306–1314CrossRefGoogle Scholar
  48. 48.
    Lee N S, Bathe K J. Effects of element distortions on the performance of isoparametric elements. Int J Numer Meth Eng, 1993, 36: 3553–3576CrossRefzbMATHGoogle Scholar
  49. 49.
    Tang X H, Zheng C, Wu S C, et al. A novel four-node quadrilateral element with continuous nodal stress. Appl Math Mech-Engl Ed, 2009, 30: 1519–1532MathSciNetCrossRefzbMATHGoogle Scholar
  50. 50.
    Parlett B N. The Symmetric Eigenvalue Problem. Upper Saddle River: Prentice-Hall, 1980zbMATHGoogle Scholar
  51. 51.
    Zheng C, Tang X H, Zhang J H, et al. A novel mesh-free poly-cell Galerkin method. Acta Mech Sin, 2009, 25: 517–527CrossRefzbMATHGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil MechanicsChinese Academy of SciencesWuhanChina

Personalised recommendations