Science China Technological Sciences

, Volume 61, Issue 12, pp 1907–1914 | Cite as

A threshold effect of coupling delays on intra-layer synchronization in duplex networks

  • LongKun Tang
  • JunAn Lu
  • JinHu LüEmail author


This paper investigates the impact of inter-layer coupling functions and intra-layer coupling delays on intra-layer synchronization regions and sychronizability. It is found that the inter-layer coupling functions have great influence on intra-layer synchronization regions, as well as on the intra-layer synchronizability. In particular, there exists an inter-layer coupling function such that the inter-layer coupling strength neither improves nor weakens the intra-layer synchronizability. Furthermore, no matter which one of three inter-layer coupling functions is chosen, a small intra-layer delay always keeps the intra-layer synchronized regions almost unchanged, implying that the small delay neither enhances nor suppresses the intra-layer synchronizability. At the same time the delay greatly frustrates the synchronizability in each layer when it is greater than some threshold. Our results may have potential applications for interconnected technological networks where communication delays are inevitably present.


multiplex network master stability function intra-layer synchronization synchronized region time delay 


  1. 1.
    Watts D J, Strogatz S H. Collective dynamics of "small–world" networks. Nature, 1998, 393: 440–442CrossRefzbMATHGoogle Scholar
  2. 2.
    Barahona M, Pecora L M. Synchronization in small–world systems. Phys Rev Lett, 2002, 89: 054101CrossRefGoogle Scholar
  3. 3.
    Newman M E J. The structure and function of complex networks. SIAMRev, 2003, 45: 167–256MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Lü J H, Yu X H, Chen G R, et al. Characterizing the synchronizability of small–world dynamical networks. IEEE Trans Circuits Syst I, 2004, 51: 787–796MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Lü J H, Chen G R. A time–varying complex dynamical network model and its controlled synchronization criteria. IEEE Trans Automat Contr, 2005,50: 841–846MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Belykh I, de Lange E, Hasler M. Synchronization of bursting neurons: What matters in the network topology. Phys Rev Lett, 2005, 94: 188101CrossRefGoogle Scholar
  7. 7.
    Zhou J, Lu J A, Lü J H. Adaptive synchronization of an uncertain complex dynamical network. IEEE Trans Automat Contr, 2006, 51: 652–656MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Boccaletti S, Latora V, Moreno Y, et al. Complex networks: Structure and dynamics. Phys Rep, 2006, 424: 175–308MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Wu C W. Synchronization in Complex Network of Nonlinear Dynamical System. Singapore: World Scientific, 2007. 51–123Google Scholar
  10. 10.
    Lu J A, Liu H, Chen J. Synchronization in Complex Dynamical Networks. Beijing: Higher Eduaction Press, 2016Google Scholar
  11. 11.
    Arenas A, Diaz–Guilera A, Kurths J, et al. Synchronization in complex networks. Phys Rep, 2008, 469: 93–153MathSciNetCrossRefGoogle Scholar
  12. 12.
    Donetti L, Hurtado P I, Munoz M A. Entangled networks, synchronization, and optimal network topology. Phys Rev Lett, 2005, 95: 188701CrossRefGoogle Scholar
  13. 13.
    Pecora L M, Sorrentino F, Hagerstrom A M, et al. Cluster synchronization and isolated desynchronization in complex networks with symmetries. Nat Commun, 2014, 5: 4079CrossRefGoogle Scholar
  14. 14.
    Tang L K, Lu J A, Chen G R. Synchronizability of small–world networks generated from ring networks with equal–distance edge additions. Chaos, 2012, 22: 023121MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Fan H W, Wang Y F, Chen M J, et al. Chaos synchronization with dual–channel time–delayed couplings. Sci China Technol Sci, 2016, 59: 428–435CrossRefGoogle Scholar
  16. 16.
    Fan D G, Wang Q Y. Synchronization and bursting transition of the coupled Hindmarsh–Rose systems with asymmetrical time–delays. Sci China Technol Sci, 2017, 60: 1019–1031CrossRefGoogle Scholar
  17. 17.
    Guo Z Y, Yang S F, Wang J. Global synchronization of memristive neural networks subject to random disturbances via distributed pinning control. Neural Networks, 2016, 84: 67–79CrossRefGoogle Scholar
  18. 18.
    Guo Z Y, Yang S F, Wang J. Global exponential synchronization of multiple memristive neural networks with time delay via nonlinear coupling. IEEE Trans Neural Netw Learning Syst, 2015, 26: 1300–1311MathSciNetCrossRefGoogle Scholar
  19. 19.
    Guo Z Y, Yang S F, Wang J. Global synchronization of stochastically disturbed memristive neurodynamics via discontinuous control laws. IEEE/CAA J Autom Sin, 2016, 3: 121–131MathSciNetCrossRefGoogle Scholar
  20. 20.
    Wang D, Huang L, Tang L. Synchronization criteria for discontinuous neural networks with mixed delays via functional differential inclusions. IEEE Trans Neural Netw Learning Syst, 2018, 29: 1809–1821MathSciNetCrossRefGoogle Scholar
  21. 21.
    Brummitt C D, D’Souza R M, Leicht E A. PNAS Plus: Suppressing cascades of load in interdependent networks. Proc Natl Acad Sci USA, 2012, 109: E680–E689CrossRefGoogle Scholar
  22. 22.
    Boccaletti S, Bianconi G, Criado R, et al. The structure and dynamics of multilayer networks. Phys Rep, 2014, 544: 1–122MathSciNetCrossRefGoogle Scholar
  23. 23.
    Liu H, Zhang R F, Liu J N, et al. Time synchronization in communication networks based on the Beidou foundation enhancement system. Sci China Technol Sci, 2016, 59: 9–15CrossRefGoogle Scholar
  24. 24.
    Tang L K, Wu X Q, Lü J H, et al. Master stability functions for complete, intra–layer and inter–layer synchronization in multiplex networks. 2017, arXiv: 1611.09110Google Scholar
  25. 25.
    Kivela M, Arenas A, Barthelemy M, et al. Multilayer networks. J Complex Networks, 2014, 2: 203–271CrossRefGoogle Scholar
  26. 26.
    D’Agostino G, Scala A. Networks of Networks: The last Frontier of Complexity. Berlin: Springer, 2014CrossRefGoogle Scholar
  27. 27.
    Gómez S, Díaz–Guilera A, Gómez–Gardenes J, et al. Diffusion dynamics on multiplex networks. Phys Rev Lett, 2013, 110: 028701CrossRefGoogle Scholar
  28. 28.
    Radicchi F, Arenas A. Abrupt transition in the structural formation of interconnected networks. Nat Phys, 2013, 9: 717–720CrossRefGoogle Scholar
  29. 29.
    De Domenico M, Sole–Ribalta A, Gomez S, et al. Navigability of interconnected networks under random failures. Proc Natl Acad Sci USA, 2014, 111: 8351–8356MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Valles–Català T, Massucci F A, Guimerà R, et al. Multilayer stochastic block models reveal the multilayer structure of complex networks. Phys Rev X, 2016,6: 011036Google Scholar
  31. 31.
    Sole–Ribalta A, De Domenico M, Kouvaris N E, et al. Spectral properties of the Laplacian of multiplex networks. Phys Rev E, 2013, 88: 032807CrossRefGoogle Scholar
  32. 32.
    Aguirre J, Sevilla–Escoboza R, Gutierrez R, et al. Synchronization of interconnected networks: The role of connector nodes. Phys Rev Lett, 2014, 112: 248701CrossRefGoogle Scholar
  33. 33.
    Xu M, Zhou J, Lu J, et al. Synchronizability of two–layer networks. Eur Phys J B, 2015, 88: 240CrossRefGoogle Scholar
  34. 34.
    Li Y, Wu X, Lu J, et al. Synchronizability of Duplex networks. IEEE Trans Circuits Syst II, 2016, 63: 206–210CrossRefGoogle Scholar
  35. 35.
    Chen S K, Yu S M, Lü J H, et al. Design and FPGA–based realization of a chaotic secure video communication system. IEEE Trans Circuits Syst Video Technol, 2018, 28: 2359–2371CrossRefGoogle Scholar
  36. 36.
    Lu R, Yu W, Lü J, et al. Synchronization on complex networks of networks. IEEE Trans Neural Netw Learning Syst, 2014, 25: 2110–2118CrossRefGoogle Scholar
  37. 37.
    Liu K X, Chen Y, Duan Z S, et al. Cooperative output regulation of LTI plant via distributed observers with local measurement. IEEE Trans Cybern. 2018, 48: 2181–2191CrossRefGoogle Scholar
  38. 38.
    Gambuzza L V, Frasca M, Gómez–Gardenes J. Intra–layer synchronization in multiplex networks, EPL, 2015, 110: 20010CrossRefGoogle Scholar
  39. 39.
    Jalan S, Singh A. Cluster synchronization in multiplex networks. EPL, 2016, 113: 30002CrossRefGoogle Scholar
  40. 40.
    He W, Chen G, Han Q L, et al. Multiagent systems on multilayer networks: Synchronization analysis and network design. IEEE Trans Syst Man Cybern Syst, 2017, 47: 1655–1667CrossRefGoogle Scholar
  41. 41.
    Pecora L M, Carroll T L. Master stability functions for synchronized coupled systems. Phys Rev Lett, 1998, 80: 2109–2112CrossRefGoogle Scholar
  42. 42.
    Tang L, Lu J A, Lü J, et al. Bifurcation analysis of synchronized regions in complex dynamical networks. Int J Bifurcation Chaos, 2012, 22: 1250282MathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    Tang L, Lu J A, Lü J, et al. Bifurcation Analysis of synchronized regions in complex dynamical networks with coupling delay. Int J Bifurcation Chaos, 2014, 24: 1450011MathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    Tang L, Wu X, Lü J, et al. Bifurcation behaviors of synchronized regions in logistic map networks with coupling delay. Chaos, 2015, 25: 033101MathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    Belykh V N, Belykh I V, Hasler M. Connection graph stability method for synchronized coupled chaotic systems. Physica D–Nonlinear Phenomena, 2004, 195: 159–187MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Science in China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Fujian Province University Key Laboratory of Computation Science, School of Mathematical SciencesHuaqiao UniversityQuanzhouChina
  2. 2.Department of Mathematics & StatisticsGeorgia State UniversityAtlantaUSA
  3. 3.School of Mathematics and StatisticsWuhan UniversityWuhanChina
  4. 4.School of Automation Science and Electrical Engineering, State Key Laboratory of Software Development Environment, and Beijing Advanced Innovation Center for Big Data and Brain ComputingBeihang UniversityBeijingChina

Personalised recommendations