Science China Technological Sciences

, Volume 61, Issue 12, pp 1779–1787 | Cite as

Thermodynamic assessment of solar-aided carbon dioxide conversion into fuels via Tin oxides

  • Hao Li
  • Lei Wang
  • MingKai FuEmail author
  • Xin LiEmail author


The conversion of CO2 to liquid hydrocarbon fuels using solar energy is gaining attraction as a means to deal with climate change and energy depletion, and assessment for related thermochemical cycles has attracted great interests in recent years. Here, we perform the thermodynamical analysis on solar-aided CO2 conversion reactions based on Tin oxides. The equilibrium compositions, production purity and CO2 conversion are obtained. Also, the variations of conversion efficiency with respect to temperature, normal beam solar insolation, mean flux concentration ratio, initial CO2 to SnO ratio and heat recuperation percentage are revealed. Our results indicate the initial CO2 to SnO ratio, χini, has an evident impact on conversion efficiency and χini=0.5, T=700 K and χini=1, T=950 K, are favourable for solid C and gaseous CO production, respectively. The calculated maximum cycle efficiency with direct work production is 0.340 at T=950 K and χini=1, demonstrating the high conversion efficiency of the proposed system.


thermodynamic analysis solar-aided CO2 conversion Tin oxides initial CO2 to SnO ratio 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Olah G A, Goeppert A, Prakash G K S. Chemical recycling of carbon dioxide to methanol and dimethyl ether: From greenhouse gas to renewable, environmentally carbon neutral fuels and synthetic hydrocarbons. J Org Chem, 2009, 74: 487–498CrossRefGoogle Scholar
  2. 2.
    Hansen J, Sato M, Ruedy R, et al. Global temperature change. Proc Natl Acad Sci USA, 2006, 103: 14288–14293CrossRefGoogle Scholar
  3. 3.
    Jing F, Cao J, Liu X, et al. Theoretical study on mechanism and kinetics of reaction of O(3P) with propane. Chin J Chem Phys, 2016, 29: 430–436CrossRefGoogle Scholar
  4. 4.
    Scheffe J R, Steinfeld A. Oxygen exchange materials for solar thermochemical splitting of H2O and CO2: A review. Mater Today, 2014, 17: 341–348CrossRefGoogle Scholar
  5. 5.
    Chueh W C, Falter C, Abbott M, et al. High-flux solar-driven thermochemical dissociation of CO2 and H2O using nonstoichiometric ceria. Science, 2010, 330: 1797–1801CrossRefGoogle Scholar
  6. 6.
    Demont A, Abanades S. High redox activity of Sr-substituted lanthanum manganite perovskites for two-step thermochemical dissociation of CO2. RSC Adv, 2014, 4: 54885–54891CrossRefGoogle Scholar
  7. 7.
    Schreier M, Curvat L, Giordano F, et al. Efficient photosynthesis of carbon monoxide from CO2 using perovskite photovoltaics. Nat Commun, 2015, 6: 7326CrossRefGoogle Scholar
  8. 8.
    Sugano Y, Ono A, Kitagawa R, et al. Crucial role of sustainable liquid junction potential for solar-to-carbon monoxide conversion by a photovoltaic photoelectrochemical system. RSC Adv, 2015, 5: 54246–54252CrossRefGoogle Scholar
  9. 9.
    Wei J, Ge Q, Yao R, et al. Directly converting CO2 into a gasoline fuel. Nat Commun, 2017, 8: 15174CrossRefGoogle Scholar
  10. 10.
    Concepcion J J, House R L, Papanikolas J M, et al. Chemical approaches to artificial photosynthesis. Proc Natl Acad Sci USA, 2012, 109: 15560–15564CrossRefGoogle Scholar
  11. 11.
    Lin F, Rothensteiner M, Alxneit I, et al. First demonstration of direct hydrocarbon fuel production from water and carbon dioxide by solar-driven thermochemical cycles using rhodium-ceria. Energy Environ Sci, 2016, 9: 2400–2409CrossRefGoogle Scholar
  12. 12.
    Wenzel M, Aditya Dharanipragada N V R, Galvita V V, et al. CO production from CO2 via reverse water-gas shift reaction performed in a chemical looping mode: Kinetics on modified iron oxide. J CO2 Utilization, 2017, 17: 60–68CrossRefGoogle Scholar
  13. 13.
    Galvez M E, Loutzenhiser P G, Hischier I, et al. CO2 splitting via two-step solar thermochemical cycles with Zn/ZnO and FeO/Fe3O4 redox reactions: Thermodynamic analysis. Energy Fuels, 2008, 22: 3544–3550CrossRefGoogle Scholar
  14. 14.
    Loutzenhiser P G, Galvez M E, Hischier I, et al. CO2 splitting via two-step solar thermochemical cycles with Zn/ZnO and FeO/Fe3O4 redox reactions II: Kinetic analysis. Energy Fuels, 2009, 23: 2832–2839CrossRefGoogle Scholar
  15. 15.
    Gálvez M E, Jacot R, Scheffe J, et al. Physico-chemical changes in Ca, Sr and Al-doped La-Mn-O perovskites upon thermochemical splitting of CO2 via redox cycling. Phys Chem Chem Phys, 2015, 17: 6629–6634CrossRefGoogle Scholar
  16. 16.
    Marxer D, Furler P, Takacs M, et al. Solar thermochemical splitting of CO2 into separate streams of CO and O2 with high selectivity, stability, conversion, and efficiency. Energy Environ Sci, 2017, 10: 1142–1149CrossRefGoogle Scholar
  17. 17.
    Abanades S, Villafan-Vidales H I. CO2 and H2O conversion to solar fuels via two-step solar thermochemical looping using iron oxide redox pair. Chem Eng J, 2011, 175: 368–375CrossRefGoogle Scholar
  18. 18.
    Lorentzou S, Karagiannakis G, Pagkoura C, et al. Thermochemical CO2 and CO2/H2O splitting over NiFe2O4 for solar fuels synthesis. Energy Procedia, 2014, 49: 1999–2008CrossRefGoogle Scholar
  19. 19.
    Bulfin B, Lange M, de Oliveira L, et al. Solar thermochemical hydrogen production using ceria zirconia solid solutions: Efficiency analysis. Int J Hydrogen Energy, 2016, 41: 19320–19328CrossRefGoogle Scholar
  20. 20.
    Bulfin B, Vieten J, Agrafiotis C, et al. Applications and limitations of two step metal oxide thermochemical redox cycles: A review. J Mater Chem A, 2017, 5: 18951–18966CrossRefGoogle Scholar
  21. 21.
    Abanades S, Charvin P, Lemont F, et al. Novel two-step SnO2/SnO water-splitting cycle for solar thermochemical production of hydrogen. Int J Hydrogen Energy, 2008, 33: 6021–6030CrossRefGoogle Scholar
  22. 22.
    Abanades S. CO2 and H2O reduction by solar thermochemical looping using SnO2/SnO redox reactions: Thermogravimetric analysis. Int J Hydrogen Energy, 2012, 37: 8223–8231CrossRefGoogle Scholar
  23. 23.
    Charvin P, Abanades S, Lemont F, et al. Experimental study of SnO2/SnO/Sn thermochemical systems for solar production of hydrogen. AIChE J, 2008, 54: 2759–2767CrossRefGoogle Scholar
  24. 24.
    Chambon M, Abanades S, Flamant G. Kinetic investigation of hydrogen generation from hydrolysis of SnO and Zn solar nanopowders. Int J Hydrogen Energy, 2009, 34: 5326–5336CrossRefGoogle Scholar
  25. 25.
    Chambon M, Abanades S, Flamant G. Solar thermal reduction of ZnO and SnO2: Characterization of the recombination reaction with O2. Chem Eng Sci, 2010, 65: 3671–3680CrossRefGoogle Scholar
  26. 26.
    Levêque G, Abanades S. Design and operation of a solar-driven thermogravimeter for high temperature kinetic analysis of solid-gas thermochemical reactions in controlled atmosphere. Sol Energy, 2014, 105: 225–235CrossRefGoogle Scholar
  27. 27.
    Chambon M, Abanades S, Flamant G. Thermal dissociation of compressed ZnO and SnO2 powders in a moving-front solar thermochemical reactor. AIChE J, 2011, 57: 2264–2273CrossRefGoogle Scholar
  28. 28.
    Bhosale R R, Kumar A, Sutar P. Thermodynamic analysis of solar driven SnO2/SnO based thermochemical water splitting cycle. Energy Convers Manage, 2017, 135: 226–235CrossRefGoogle Scholar
  29. 29.
    Zheng Z J, Xu Y, He Y L. Thermal analysis of a solar parabolic trough receiver tube with porous insert optimized by coupling genetic algorithm and CFD. Sci China Technol Sci, 2016, 59: 1475–1485CrossRefGoogle Scholar
  30. 30.
    Hou H J, Wang M J, Yang Y P, et al. Performance analysis of a solar-aided power generation (SAPG) plant using specific consumption theory. Sci China Technol Sci, 2016, 59: 322–329CrossRefGoogle Scholar
  31. 31.
    Steinfeld A, Larson C, Palumbo R, et al. Thermodynamic analysis of the co-production of zinc and synthesis gas using solar process heat. Energy, 1996, 21: 205–222CrossRefGoogle Scholar
  32. 32.
    Loutzenhiser P G, Steinfeld A. Solar syngas production from CO2 and H2O in a two-step thermochemical cycle via Zn/ZnO redox reactions: Thermodynamic cycle analysis. Int J Hydrogen Energy, 2011, 36: 12141–12147CrossRefGoogle Scholar
  33. 33.
    Antti R. HSC Chemistry for Windows. Pori, Finland: Outokumpu Research Oy, 2006Google Scholar
  34. 34.
    Abanades S, Chambon M. CO2 dissociation and upgrading from two-step solar thermochemical processes based on ZnO/Zn and SnO2/SnO redox pairs. Energy Fuels, 2010, 24: 6667–6674CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Electrical EngineeringChinese Academy of SciencesBeijingChina
  2. 2.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations