Advertisement

Science China Technological Sciences

, Volume 62, Issue 1, pp 80–86 | Cite as

Tandem pumping architecture enabled high power random fiber laser with near-diffraction-limited beam quality

  • JiangMing XuEmail author
  • Jun Ye
  • Pu ZhouEmail author
  • JinYong Leng
  • Hu Xiao
  • HangWei Zhang
  • Jian Wu
  • JinBao Chen
Article
  • 42 Downloads

Abstract

In this contribution, we present the tandem pumping avenue leveraged performance scaling of random fiber laser to record 3 kW level with inherent temporal stability and near-diffraction-limited beam quality. The high power system employs a four-stage master oscillator power amplifier chain. The master oscillator is a half-opened cavity structured random distributed feedback fiber laser centered at 1080 nm and pumped by incoherent amplified spontaneous emission source. Narrowband random laser seed is selected by employing a spectral filtering module with a maximum output power of 1.08 W, full width at half maximum linewidth of 0.47 nm and spectral optical-signal-to-noise ratio of about 42 dB. As to the main amplification stage, for given 104 W pre-amplified random laser seed and 3.61 kW pump laser, an ultimate output power of 3.03 kW can be obtained, corresponding to an optical-to-optical conversion efficiency of 81.05%. Nearly single-transverse-mode amplified random laser can be achieved even at full power level for inherent high thermal modal instability threshold enabled by tandem pumping and inducing bending loss for high-order transverse-mode. Further performance scaling of this high power random laser system, such as power boosting, operation wavelength tuning and linewidth alteration, is the next goal.

Keywords

random fiber laser distributed feedback power scalability tandem pumping 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Turitsyn S K, Babin S A, El-Taher A E, et al. Random distributed feedback fibre laser. Nat Photon, 2010, 4: 231–235CrossRefGoogle Scholar
  2. 2.
    Redding B, Choma M A, Cao H. Speckle-free laser imaging using random laser illumination. Nat Photon, 2012, 6: 355–359CrossRefGoogle Scholar
  3. 3.
    Turitsyn S K, Babin S A, Churkin D V, et al. Random distributed feedback fibre lasers. Phys Rep, 2014, 542: 133–193CrossRefGoogle Scholar
  4. 4.
    Churkin D V, Sugavanam S, Vatnik I D, et al. Recent advances in fundamentals and applications of random fiber lasers. Adv Opt Photon, 2015, 7: 516–569CrossRefGoogle Scholar
  5. 5.
    Du X, Zhang H, Xiao H, et al. High-power random distributed feedback fiber laser: From science to application. Ann Der Physik, 2016, 528: 649–662CrossRefGoogle Scholar
  6. 6.
    Huang C, Dong X, Zhang N, et al. Multiwavelength brillouin-erbium random fiber laser incorporating a chirped fiber bragg grating. IEEE J Sel Top Quantum Electron, 2014, 20: 294–298CrossRefGoogle Scholar
  7. 7.
    Saleh S, Cholan N A, Sulaiman A H, et al. Stable multiwavelength erbium-doped random fiber laser. IEEE J Sel Top Quantum Electron, 2018, 24: 1–6CrossRefGoogle Scholar
  8. 8.
    Babin S A, El-Taher A E, Harper P, et al. Tunable random fiber laser. Phys Rev A, 2011, 84: 4903–4911CrossRefGoogle Scholar
  9. 9.
    Pang M, Bao X, Chen L. Observation of narrow linewidth spikes in the coherent Brillouin random fiber laser. Opt Lett, 2013, 38: 1866–1868CrossRefGoogle Scholar
  10. 10.
    Zhang L, Jiang H, Yang X, et al. Nearly-octave wavelength tuning of a continuous wave fiber laser. Sci Rep, 2017, 7: 42611CrossRefGoogle Scholar
  11. 11.
    Bravo M, Fernandez-Vallejo M, Lopez-Amo M. Internal modulation of a random fiber laser. Opt Lett, 2013, 38: 1542–1544CrossRefGoogle Scholar
  12. 12.
    Yao B C, Rao Y J, Wang Z N, et al. Graphene based widely-tunable and singly-polarized pulse generation with random fiber lasers. Sci Rep, 2015, 5: 18526CrossRefGoogle Scholar
  13. 13.
    Xu J, Ye J, Liu W, et al. Passively spatiotemporal gain-modulationinduced stable pulsing operation of a random fiber laser. Photon Res, 2017, 5: 598–603CrossRefGoogle Scholar
  14. 14.
    Wang Z N, Rao Y J, Wu H, et al. Long-distance fiber-optic pointsensing systems based on random fiber lasers. Opt Express, 2012, 20: 17695–17700CrossRefGoogle Scholar
  15. 15.
    Zhang H, Zhou P, Xiao H, et al. Efficient Raman fiber laser based on random Rayleigh distributed feedback with record high power. Laser Phys Lett, 2014, 11: 075104CrossRefGoogle Scholar
  16. 16.
    Zhang H, Zhou P, Wang X, et al. Hundred-watt-level high power random distributed feedback Raman fiber laser at 1150 nm and its application in mid-infrared laser generation. Opt Express, 2015, 23: 17138–17144CrossRefGoogle Scholar
  17. 17.
    Xu J, Lou Z, Ye J, et al. Incoherently pumped high-power linearlypolarized single-mode random fiber laser: Experimental investigations and theoretical prospects. Opt Express, 2017, 25: 5609–5617CrossRefGoogle Scholar
  18. 18.
    Zhang H, Huang L, Zhou P, et al. More than 400 W random fiber laser with excellent beam quality. Opt Lett, 2017, 42: 3347–3350CrossRefGoogle Scholar
  19. 19.
    Zhou P, Huang L, Xu J M, et al. High power linearly polarized fiber laser: Generation, manipulation and application. Sci China Tech Sci, 2017, 60: 1784–1800CrossRefGoogle Scholar
  20. 20.
    Zhang L, Dong J, Feng Y. High-power and high-order random raman fiber lasers. IEEE J Sel Top Quantum Electron, 2018, 24: 1–6Google Scholar
  21. 21.
    Liu W, Ma P, Lv H, et al. General analysis of SRS-limited high-power fiber lasers and design strategy. Opt Express, 2016, 24: 26715–26721CrossRefGoogle Scholar
  22. 22.
    Du X, Zhang H, Ma P, et al. Kilowatt-level fiber amplifier with spectral-broadening-free property, seeded by a random fiber laser. Opt Lett, 2015, 40: 5311–5314CrossRefGoogle Scholar
  23. 23.
    Xu J, Huang L, Jiang M, et al. Near-diffraction-limited linearly polarized narrow-linewidth random fiber laser with record kilowatt output. Photon Res, 2017, 5: 350–354CrossRefGoogle Scholar
  24. 24.
    Li Y, Li T, Peng W, et al. Narrow spectrum kilowatt-level mopa seeded by Yb-doped random fiber laser. IEEE Photon Tech Lett, 2017, 29: 1844–1847CrossRefGoogle Scholar
  25. 25.
    Huang L, Xu J, Ye J, et al. Power scaling of linearly polarized random fiber laser. IEEE J Sel Top Quantum Electron, 2018, 24: 1–8Google Scholar
  26. 26.
    Li T L, Zha C W, Peng W J, et al. 2 kW narrow spectrum amplified random fiber laser. Chin J Laser, 2017, 44: 0415003CrossRefGoogle Scholar
  27. 27.
    Chen X L, Zheng Y, Li X, et al. 10.6 GHz linewidth maintained random fiber laser seed source. Chin J Laser, 2017, 44: 0701005CrossRefGoogle Scholar
  28. 28.
    Eidam T, Wirth C, Jauregui C, et al. Experimental observations of the threshold-like onset of mode instabilities in high power fiber amplifiers. Opt Express, 2011, 19: 13218–13224CrossRefGoogle Scholar
  29. 29.
    Jauregui C, Eidam T, Otto H J, et al. Physical origin of mode instabilities in high-power fiber laser systems. Opt Express, 2012, 20: 12912CrossRefGoogle Scholar
  30. 30.
    Smith A V, Smith J J. Increasing mode instability thresholds of fiber amplifiers by gain saturation. Opt Express, 2013, 21: 15168CrossRefGoogle Scholar
  31. 31.
    Tao R, Ma P, Wang X, et al. Mitigating of modal instabilities in linearly-polarized fiber amplifiers by shifting pump wavelength. J Opt, 2015, 17: 045504CrossRefGoogle Scholar
  32. 32.
    Tao R, Ma P, Wang X, et al. Study of wavelength dependence of mode instability based on a semi-analytical model. IEEE J Quantum Electron, 2015, 51: 1600106Google Scholar
  33. 33.
    Jauregui C, Otto H J, Breitkopf S, et al. Optimizing high-power Ybdoped fiber amplifier systems in the presence of transverse mode instabilities. Opt Express, 2016, 24: 7879–7892CrossRefGoogle Scholar
  34. 34.
    Zervas M N. Transverse mode instability analysis in fiber amplifier. In: Proceedings of SPIE Fiber Lasers XIV: Technology and Systems. San Francisco: SPIE, 2017Google Scholar
  35. 35.
    Xiao H, Zhou P, Wang X, et al. Experimental investigation on 1018-nm high-power ytterbium-doped fiber amplifier. IEEE Photon Tech Lett, 2012, 24: 1088–1090CrossRefGoogle Scholar
  36. 36.
    Chang Y M, Yao T, Jeong H, et al. 3% thermal load measured in tandem-pumped ytterbium-doped fiber amplifier. In: Proceedings of IEEE Conference on Lasers and Electro-Optics (CLEO). San Jose: IEEE, 2014Google Scholar
  37. 37.
    Jebali M A, Maran J N, LaRochelle S. 264 W output power at 1585 nm in Er-Yb codoped fiber laser using in-band pumping. Opt Lett, 2014, 39: 3974–3977CrossRefGoogle Scholar
  38. 38.
    Zervas M N, Codemard C A. High power fiber lasers: A review. IEEE J Sel Top Quantum Electron, 2014, 20: 219–241CrossRefGoogle Scholar
  39. 39.
    Xiao H, Leng J, Zhang H, et al. High-power 1018 nm ytterbiumdoped fiber laser and its application in tandem pump. Appl Opt, 2015, 54: 8166–8169CrossRefGoogle Scholar
  40. 40.
    Zhou P, Xiao H, Leng J, et al. High-power fiber lasers based on tandem pumping. J Opt Soc Am B, 2017, 34: A29–A36CrossRefGoogle Scholar
  41. 41.
    Li J, Ueda K I, Musha M, et al. Residual pump light as a probe of selfpulsing instability in an ytterbium-doped fiber laser. Opt Lett, 2006, 31: 1450–1452CrossRefGoogle Scholar
  42. 42.
    Upadhyaya B N, Kuruvilla A, Chakravarty U, et al. Effect of laser linewidth and fiber length on self-pulsing dynamics and output stabilization of single-mode Yb-doped double-clad fiber laser. Appl Opt, 2010, 49: 2316–2325CrossRefGoogle Scholar
  43. 43.
    Nuño J, Alcon-Camas M, Ania-Castañón J D. RIN transfer in random distributed feedback fiber lasers. Opt Express, 2012, 20: 27376–27381CrossRefGoogle Scholar
  44. 44.
    Lou Z, Xu J, Huang L, et al. Linearly-polarized random distributed feedback Raman fiber laser with record power. Laser Phys Lett, 2017, 14: 055102CrossRefGoogle Scholar
  45. 45.
    Wang P, Sahu J K, Clarkson W A. Power scaling of ytterbium-doped fiber superfluorescent sources. IEEE J Sel Top Quantum Electron, 2007, 13: 580–587CrossRefGoogle Scholar
  46. 46.
    Xu J, Huang L, Leng J, et al. 1.01 kW superfluorescent source in allfiberized MOPA configuration. Opt Express, 2015, 23: 5485–5490CrossRefGoogle Scholar
  47. 47.
    Wang W, Leng J, Gao Y, et al. Influence of temporal characteristics on the power scalability of the fiber amplifier. Laser Phys, 2015, 25: 035101CrossRefGoogle Scholar
  48. 48.
    Zhang W L, Rao Y J, Zhu J M, et al. Low threshold 2nd-order random lasing of a fiber laser with a half-opened cavity. Opt Express, 2012, 20: 14400–14405CrossRefGoogle Scholar
  49. 49.
    Wang Z, Wu H, Fan M, et al. High power random fiber laser with short cavity length: Theoretical and experimental investigations. IEEE J Sel Top Quantum Electron, 2015, 21: 10–15CrossRefGoogle Scholar
  50. 50.
    Park K D, Min B, Kim P, et al. Dynamics of cascaded Brillouin-Rayleigh scattering in a distributed fiber Raman amplifier. Opt Lett, 2002, 27: 155–157CrossRefGoogle Scholar
  51. 51.
    Xu J, Zhou P, Leng J, et al. Powerful linearly-polarized high-order random fiber laser pumped by broadband amplified spontaneous emission source. Sci Rep, 2016, 6: 35213CrossRefGoogle Scholar
  52. 52.
    Brilliant N A, Lagonik K. Thermal effects in a dual-clad ytterbium fiber laser. Opt Lett, 2001, 26: 1669–1671CrossRefGoogle Scholar
  53. 53.
    Zhou P, Wang X, Xiao H, et al. Review on recent progress on Ybdoped fiber laser in a variety of oscillation spectral ranges. Laser Phys, 2012, 22: 823–831CrossRefGoogle Scholar
  54. 54.
    Liu W, Kuang W, Huang L, et al. Modeling of the spectral properties of CW Yb-doped fiber amplifier and experimental validation. Laser Phys Lett, 2015, 12: 045104CrossRefGoogle Scholar
  55. 55.
    Tao R, Su R, Ma P, et al. Suppressing mode instabilities by optimizing the fiber coiling methods. Laser Phys Lett, 2017, 14: 025101CrossRefGoogle Scholar
  56. 56.
    Huang L, Kong L, Leng J, et al. Impact of high-order-mode loss on high-power fiber amplifiers. J Opt Soc Am B, 2016, 33: 1030–1037CrossRefGoogle Scholar
  57. 57.
    Kong L, Leng J, Zhou P, et al. Thermally induced mode loss evolution in the coiled ytterbium doped large mode area fiber. Opt Express, 2017, 25: 23437–23450CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Optoelectronic Science and EngineeringNational University of Defense TechnologyChangshaChina

Personalised recommendations