Science China Technological Sciences

, Volume 61, Issue 12, pp 1866–1871 | Cite as

Measurements of convection electric field in the inner magnetosphere

  • Xin Lv
  • WenLong LiuEmail author


In this paper, we study the characteristic of large-scale convection electric field in the inner magnetosphere, using magnetospheric multiscale (MMS) observations between L=5 and L=8 over the period from September 1, 2015 to October 31, 2016, covering almost all magnetic local time (MLT). Observations show that the DC convection electric field generally has small variations in this region. We investigate whether the convection electric field is correlated with geomagnetic indices and solar wind parameters. It is found that, among the studied parameters, solar wind electric field, z component of interplanetary magnetic field, AE and Kp indices show good correlations with the averaged convection electric field. The results in this paper provide valuable information for understanding the role of electric field on the dynamics of the inner magnetosphere.


convection electric field inner magnetosphere 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the National Natural Science Foundation of China (Grant Nos. 41574154 and 41431071). We thank the FIELDS instrument team of MMS mission for making data available. We thank Dr. Yuri Khotyaintsev for helpful discussion. The solar parameters and geomagnetic indices are obtained from the OMNI database (


  1. 1.
    Fu H S, Tu J, Song P, et al. The nightside-to-dayside evolution of the inner magnetosphere: Imager for Magnetopause-to-Aurora Global Exploration Radio Plasma Imager observations. J Geophys Res, 2010, 115: A04213Google Scholar
  2. 2.
    Thaller S A, Wygant J R, Dai L, et al. Van Allen Probes investigation of the large-scale duskward electric field and its role in ring current formation and plasmasphere erosion in the 1 June 2013 storm. J Geophys Res Space Phys, 2015, 120: 4531–4543CrossRefGoogle Scholar
  3. 3.
    Liu X, Liu W, Cao J B, et al. Dynamic plasmapause model based on THEMIS measurements. J Geophys Res Space Phys, 2015, 120: 543–556Google Scholar
  4. 4.
    Liu X, Liu W L. A new plasmapause location model based on THEMIS observations. Sci China Earth Sci, 2014, 57: 2552–2557CrossRefGoogle Scholar
  5. 5.
    Liu W, Tu W, Li X, et al. On the calculation of electric diffusion coefficient of radiation belt electrons with in situ electric field measurements by THEMIS. Geophys Res Lett, 2016, 43: 1023–1030CrossRefGoogle Scholar
  6. 6.
    Cao J B, Ding W Z, Reme H, et al. The statistical studies of the inner boundary of plasma sheet. Ann Geophys, 2011, 29: 289–298CrossRefGoogle Scholar
  7. 7.
    Fu H S, Cao J B, Yang B, et al. Electron loss and acceleration during storm time: The contribution of wave-particle interaction, radial diffusion, and transport processes. J Geophys Res, 2011, 116: A10210Google Scholar
  8. 8.
    Califf S, Li X, Blum L, et al. THEMIS measurements of quasi-static electric fields in the inner magnetosphere. J Geophys Res Space Phys, 2014, 119: 9939–9951CrossRefGoogle Scholar
  9. 9.
    Weimer D R. Models of high-latitude electric potentials derived with a least error fit of spherical harmonic coefficients. J Geophys Res, 1995, 100: 19595–19607CrossRefGoogle Scholar
  10. 10.
    Cao J B, Zhang D, Reme H, et al. Preliminary empirical model of inner boundary of ion plasma sheet. Adv Space Res, 2015, 56: 1194–1199CrossRefGoogle Scholar
  11. 11.
    Wei Y, Pu Z, Hong M, et al. Westward ionospheric electric field perturbations on the dayside associated with substorm processes. J Geophys Res, 2009, 114: A12209Google Scholar
  12. 12.
    Wei Y, Pu Z, Hong M, et al. Long-lasting goodshielding at the equatorial ionosphere. J Geophys Res, 2010, 115: A12256Google Scholar
  13. 13.
    Wei Y, Wan W, Pu Z, et al. The transition to overshielding after sharp and gradual interplanetary magnetic field northward turning. J Geophys Res, 2011, 116: A01211CrossRefGoogle Scholar
  14. 14.
    Kistler L M, Ipavich F M, Hamilton D C, et al. Energy spectra of the major ion species in the ring current during geomagnetic storms. J Geophys Res, 1989, 94: 3579–3599CrossRefGoogle Scholar
  15. 15.
    Jordanova V K, Boonsiriseth A, Thorne R M, et al. Ring current asymmetry from global simulations using a high-resolution electric field model. J Geophys Res, 2003, 108: 1443CrossRefGoogle Scholar
  16. 16.
    Ma Y D, Cao J B, Zhou G, et al. Multipoint analysis of the rapid convection event. Chin J Geophys, 2007, 1148: 189–199Google Scholar
  17. 17.
    Ding W Z, Cao J B, Zeng L, et al. Simulation studies of plasma sheet ion boundary. Chin J Geophys, 2010, 53: 1505–1514Google Scholar
  18. 18.
    Zhang D, Cao J B, Wei X H, et al. New technique to calculate electron Alfvén layer and its application in interpreting geosynchronous access of PS energetic electrons. J Geophys Res Space Phys, 2015, 120: 1675–1683CrossRefGoogle Scholar
  19. 19.
    Liu W L, Li X, Sarris T, et al. Observation and modeling of the injection observed by THEMIS and LANL satellites during the 23 March 2007 substorm event. J Geophys Res, 2009, 114: A00C18CrossRefGoogle Scholar
  20. 20.
    Wolf R A. Ionosphere-magnetosphere coupling. Space Sci Rev, 1975, 17: 537–562CrossRefGoogle Scholar
  21. 21.
    Yu Y, Jordanova V K, Ridley A J, et al. Effects of electric field methods on modeling the midlatitude ionospheric electrodynamics and inner magnetosphere dynamics. J Geophys Res Space Phys, 2017, 122: 5321–5338CrossRefGoogle Scholar
  22. 22.
    Volland H. A semiempirical model of large-scale magnetospheric electric fields. J Geophys Res, 1973, 78: 171–180CrossRefGoogle Scholar
  23. 23.
    Stern D P. Large-scale electric fields in the Earth’s magnetosphere. Rev Geophys, 1977, 15: 156–194CrossRefGoogle Scholar
  24. 24.
    Rowland D E, Wygant J R. Dependence of the large-scale, inner magnetospheric electric field on geomagnetic activity. J Geophys Res, 1998, 103: 14959–14964CrossRefGoogle Scholar
  25. 25.
    Baumjohann W, Haerendel G. Magnetospheric convection observed between 0600 and 2100 LT: Solar wind and IMF dependence. J Geophys Res, 1985, 90: 6370–6378CrossRefGoogle Scholar
  26. 26.
    Baumjohann W, Haerendel G, Melzner F. Magnetospheric convection observed between 0600 and 2100 LT: Variations with Kp. J Geophys Res, 1985, 90: 393–398CrossRefGoogle Scholar
  27. 27.
    Burch J L, Moore T E, Torbert R B, et al. Magnetospheric multiscale overview and science objectives. Space Sci Rev, 2016, 199: 5–21CrossRefGoogle Scholar
  28. 28.
    Shue J H, Song P, Russell C T, et al. Magnetopause location under extreme solar wind conditions. J Geophys Res, 1998, 103: 17691–17700CrossRefGoogle Scholar
  29. 29.
    Torbert R B, Russell C T, Magnes W, et al. The FIELDS instrument suite on MMS: Scientific objectives, measurements, and data products. Space Sci Rev, 2016, 199: 105–135CrossRefGoogle Scholar
  30. 30.
    Ergun R E, Tucker S, Westfall J, et al. The axial double probe and fields signal processing for the MMS mission. Space Sci Rev, 2016, 199: 167–188CrossRefGoogle Scholar
  31. 31.
    Lindqvist P A, Olsson G, Torbert R B, et al. The spin-plane double probe electric field instrument for MMS. Space Sci Rev, 2016, 199: 137–165CrossRefGoogle Scholar
  32. 32.
    Fu H S, Tu J, Cao J B, et al. IMAGE and DMSP observations of a density trough inside the plasmasphere. J Geophys Res, 2010, 115: A07227Google Scholar
  33. 33.
    Fu H S, Khotyaintsev Y V, Vaivads A, et al. Electric structure of dipolarization front at sub-proton scale. Geophys Res Lett, 2012, 39: L06105CrossRefGoogle Scholar
  34. 34.
    Lv L Q, Pu Z Y, Xie L. Multiple magnetic topologies in flux transfer events: THEMIS measurements. Sci China Tech Sci, 2016, 59: 1283–1293CrossRefGoogle Scholar
  35. 35.
    Goldstein J, Sandel B R, Hairston M R, et al. Control of plasmaspheric dynamics by both convection and sub-auroral polarization stream. Geophys Res Lett, 2003, 30: 2243Google Scholar
  36. 36.
    Li C F, Zou H, Zong Q G, et al. An analysis of the correlation between the fluxes of high-energy electrons and low-middle-energy electrons in the magnetosphere. Sci China Tech Sci, 2016, 59: 1130–1136CrossRefGoogle Scholar
  37. 37.
    Yu Y, Jordanova V, Zou S, et al. Modeling subauroral polarization streams during the 17 March 2013 storm. J Geophys Res Space Phys, 2015, 120: 1738–1750CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Space and EnvironmentBeihang UniversityBeijingChina

Personalised recommendations