Science China Technological Sciences

, Volume 61, Issue 10, pp 1512–1527 | Cite as

Advances in dielectric elastomer actuation technology

  • NianFeng WangEmail author
  • ChaoYu Cui
  • Hao Guo
  • BiCheng Chen
  • XianMin Zhang


Dielectric elastomer actuators (DEAs) have attracted much interest over the past decades due to the inherent flexibility, large strain, high efficiency, high energy density, and fast response of the material, which are known as one of the most promising candidates for artificial muscle. In this paper, we first introduce the actuation principle and electromechanical modeling approaches of dielectric elastomers (DEs). Then, the performance of different DEs material and existing compliant electrodes that are widely utilized for DEAs are presented. We also highlight the compatibility of DEs, which is suitable for a variety of actuator designs and applications. Lastly, we summarize the challenges and future development in terms of electromechanical modeling, improvement of materials including compliant electrodes and dielectric elastomer, designs and applications of novel dielectric elastomer actuators.


dielectric elastomer electromechanical modeling compliant electrodes actuator 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Menciassi A, Gorini S, Pernorio G, et al. A SMA actuated artificial earthworm. In: IEEE International Conference on Robotics and Automation. New Orleans, LA: IEEE, 2004Google Scholar
  2. 2.
    Laschi C, Cianchetti M, Mazzolai B, et al. Soft robot arm inspired by the octopus. Adv Robot, 2012, 26: 709–727Google Scholar
  3. 3.
    Tolley M T, Shepherd R F, Mosadegh B, et al. A resilient, untethered soft robot. Soft Robot, 2014, 1: 213–223Google Scholar
  4. 4.
    Zhou X, Majidi C, O’Reilly O M. Soft hands: An analysis of some gripping mechanisms in soft robot design. Int J Solids Struct, 2015, 64-65: 155–165Google Scholar
  5. 5.
    Seok S, Onal C D, Cho K J, et al. Meshworm: A peristaltic soft robot with antagonistic nickel titanium coil actuators. IEEE/ASME Trans Mechatron, 2013, 18: 1485–1497Google Scholar
  6. 6.
    Pei Q, Rosenthal M, Pelrine R, et al. Multifunctional electroelastomer roll arctuators and their application for biomimetic walking robots. In: Smart Structures and Materials. International Society for Optics and Photonics, 2003. 281–290Google Scholar
  7. 7.
    Shintake J, Rosset S, Schubert B, et al. Versatile soft grippers with intrinsic electroadhesion based on multifunctional polymer actuators. Adv Mater, 2016, 28: 231–238Google Scholar
  8. 8.
    Li T, Li G, Liang Y, et al. Fast-moving soft electronic fish. Sci Adv, 2017, 3: e1602045Google Scholar
  9. 9.
    Zhao J, Niu J, McCoul D, et al. A rotary joint for a flapping wing actuated by dielectric elastomers: Design and experiment. Meccanica, 2015, 50: 2815–2824Google Scholar
  10. 10.
    Qian J. Mechanics of dielectric elastomers: materials, structures, and devices. J Zhe Univ Sci-A, 2016, 17: 1–21Google Scholar
  11. 11.
    Rosset S, O’Brien B M, Gisby T, et al. Self-sensing dielectric elastomer actuators in closed-loop operation. Smart Mater Struct, 2013, 22: 104018Google Scholar
  12. 12.
    Xu D, Michel S, McKay T, et al. Sensing frequency design for capacitance feedback of dielectric elastomers. Sensors Actuators A-Phys, 2015, 232: 195–201Google Scholar
  13. 13.
    Roentgen W. About the changes in shape and volume of dielectrics caused by electricity. In: Wiedemann G, Ed. Annual Physics and Chemistry Series, Section III. Weinheim: John Wiley & Sons, Inc., 1880. 771–786Google Scholar
  14. 14.
    Pelrine R E, Kornbluh R D, Joseph J P. Electrostriction of polymer dielectrics with compliant electrodes as a means of actuation. Sens Actuators A-Phys, 1998, 64: 77–85Google Scholar
  15. 15.
    Bar-Cohen Y. Electroactive Polymer (EAP) Actuators as Artificial Muscles: Reality, Potential, and Challenges. Bellingham, Washington: SPIE Press, 2004Google Scholar
  16. 16.
    Carpi F, De Rossi D, Kornbluh R, et al. Dielectric Elastomers as Electromechanical Transducers: Fundamentals, Materials, Devices, Models and Applications of an Emerging Electroactive Polymer Technology. New York: Elsevier, 2011Google Scholar
  17. 17.
    Carpi F, Anderson I, Bauer S, et al. Standards for dielectric elastomer transducers. Smart Mater Struct, 2015, 24: 105025Google Scholar
  18. 18.
    Madsen F B, Daugaard A E, Hvilsted S, et al. The current state of silicone-based dielectric elastomer transducers. Macromol Rapid Commun, 2016, 37: 378–413Google Scholar
  19. 19.
    Rosset S, Shea H R. Flexible and stretchable electrodes for dielectric elastomer actuators. Appl Phys A, 2013, 110: 281–307Google Scholar
  20. 20.
    Wang H, Qu S. Constitutive models of artificial muscles: A review. J Zhejiang Univ Sci-A, 2016, 17: 22–36Google Scholar
  21. 21.
    Henke E F M, Schlatter S, Anderson I A. Soft dielectric elastomer oscillators driving bioinspired robots. Soft Robot, 2017, doi: 10.1089/soro.2017.0022Google Scholar
  22. 22.
    Wissler M, Mazza E. Electromechanical coupling in dielectric elastomer actuators. Sens Actuators A-Phys, 2007, 138: 384–393Google Scholar
  23. 23.
    Plante J S, Dubowsky S. Large-scale failure modes of dielectric elastomer actuators. Int J Solids Struct, 2006, 43: 7727–7751zbMATHGoogle Scholar
  24. 24.
    Suo Z. Theory of dielectric elastomers. Acta Mech Solid Sin, 2010, 23: 549–578Google Scholar
  25. 25.
    Zhao X, Koh S J A, Suo Z. Nonequilibrium thermodynamics of dielectric elastomers. Int J Appl Mech, 2011, 03: 203–217Google Scholar
  26. 26.
    Liu L, Li J, Lv X, et al. Progress in constitutive theory and stability research of electroactive dielectric elastomers (in Chinese). Sci Sin Tech, 2015, 45: 450Google Scholar
  27. 27.
    Liu L, Liu Y, Luo X, et al. Electromechanical instability and snapthrough instability of dielectric elastomers undergoing polarization saturation. Mech Mater, 2012, 55: 60–72Google Scholar
  28. 28.
    Zhou J, Hong W, Zhao X, et al. Propagation of instability in dielectric elastomers. Int J Solids Struct, 2008, 45: 3739–3750zbMATHGoogle Scholar
  29. 29.
    Liu Y, Liu L, Zhang Z, et al. Analysis and manufacture of an energy harvester based on a Mooney-Rivlin-type dielectric elastomer. Europhys Lett, 2010, 90: 36004Google Scholar
  30. 30.
    Sahu R K, Patra K. Estimation of elastic modulus of dielectric elastomer materials using Mooney-Rivlin and Ogden Models. In: Gupta K M. Advanced Materials Research. Vol 685. Zurich: Trans Tech Publications Ltd., 2013. 331–335Google Scholar
  31. 31.
    Wex C, Arndt S, Stoll A, et al. Isotropic incompressible hyperelastic models for modelling the mechanical behaviour of biological tissues: A review. BioMed Eng/Biomedizinische Technik, 2015, 60: 577–592Google Scholar
  32. 32.
    Wissler M T. Modeling dielectric elastomer actuators. Dissertation of Masteral Degree. Zürich, Switzerland: Eidgenössische Technische Hochschule (ETH), 2007Google Scholar
  33. 33.
    Marckmann G, Verron E. Comparison of hyperelastic models for rubber-like materials. Rubber Chem Tech, 2006, 79: 835–858Google Scholar
  34. 34.
    Li B, Zhou J, Chen H. Electromechanical stability in charge-controlled dielectric elastomer actuation. Appl Phys Lett, 2011, 99: 244101Google Scholar
  35. 35.
    Qu S, Suo Z. A finite element method for dielectric elastomer transducers. Acta Mech Solid Sin, 2012, 25: 459–466Google Scholar
  36. 36.
    Zhao X, Wang Q. Harnessing large deformation and instabilities of soft dielectrics: Theory, experiment, and application. Appl Phys Rev, 2014, 1: 021304Google Scholar
  37. 37.
    Gent A N. Engineering with Rubber: How to Design Rubber Components. München: Carl Hanser Verlag GmbH Co KG, 2012Google Scholar
  38. 38.
    Suo Z, Zhu J. Dielectric elastomers of interpenetrating networks. Appl Phys Lett, 2009, 95: 232909Google Scholar
  39. 39.
    Seifi S, Park H S. Computational modeling of electro-elasto-capillary phenomena in dielectric elastomers. Int J Solids Struct, 2016, 87: 236–244Google Scholar
  40. 40.
    Wang Y, Zhou J, Sun W, et al. Mechanics of dielectric elastomeractivated deformable transmission grating. Smart Mater Struct, 2014, 23: 095010Google Scholar
  41. 41.
    Ogden R W. Large deformation isotropic elasticity-on the correlation of theory and experiment for incompressible rubberlike solids. In: Proceedings of the Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. The Royal Society, 1972Google Scholar
  42. 42.
    Goulbourne N C. A constitutive model of polyacrylate interpenetrating polymer networks for dielectric elastomers. Int J Solids Struct, 2011, 48: 1085–1091zbMATHGoogle Scholar
  43. 43.
    Rizzello G, Hodgins M, Naso D, et al. Dynamic modeling and experimental validation of an annular dielectric elastomer actuator with a biasing mass. J Vib Acoust, 2015, 137: 011014Google Scholar
  44. 44.
    Leng J, Zhang Z, Liu L, et al. Thermodynamics and thermo-electromechanical stability of dielectric elastomers composite (in Chinese). Sci Sin Phys, Mech Astron, 2012, 42: 61Google Scholar
  45. 45.
    Yeoh O H. Characterization of elastic properties of carbon-black-filled rubber vulcanizates. Rubber Chem Tech, 1990, 63: 792–805Google Scholar
  46. 46.
    Barforooshi S D, Mohammadi A K. Study Neo-Hookean and Yeoh hyper-elastic models in dielectric elastomer-based micro-beam resonators. Lat Am J Solids Struct, 2016, 13: 1823–1837Google Scholar
  47. 47.
    Wissler M, Mazza E. Modeling of a pre-strained circular actuator made of dielectric elastomers. Sens Actuators A-Phys, 2005, 120: 184–192Google Scholar
  48. 48.
    Klassen M, Xu B, Klinkel S, et al. Material modeling and microstructural optimization of dielectric elastomer actuators. Technische Mechanik, 2012, 32: 38–52Google Scholar
  49. 49.
    Teh Y S, Koh S J A. Giant continuously-tunable actuation of a dielectric elastomer ring actuator. Extreme Mech Lett, 2016, 9: 195–203Google Scholar
  50. 50.
    Gatti D, Haus H, Matysek M, et al. The dielectric breakdown limit of silicone dielectric elastomer actuators. Appl Phys Lett, 2014, 104: 052905Google Scholar
  51. 51.
    Chen F, Wang M Y, Zhu J, et al. Interactions between dielectric elastomer actuators and soft bodies. Soft Robotics, 2016, 3: 161–169Google Scholar
  52. 52.
    Park H S, Nguyen T D. Viscoelastic effects on electromechanical instabilities in dielectric elastomers. Soft Matter, 2013, 9: 1031–1042Google Scholar
  53. 53.
    Lu T, Shi Z, Chen Z, et al. Current leakage performance of dielectric elastomers under different boundary conditions. Appl Phys Lett, 2015, 107: 152901Google Scholar
  54. 54.
    Chiang Foo C, Cai S, Jin Adrian Koh S, et al. Model of dissipative dielectric elastomers. J Appl Phys, 2012, 111: 034102–034102Google Scholar
  55. 55.
    Zhang J, Li B, Chen H, et al. Dissipative performance of dielectric elastomers under various voltage waveforms. Soft Matter, 2016, 12: 2348–2356Google Scholar
  56. 56.
    Patra K, Sahu R K. A visco-hyperelastic approach to modelling ratedependent large deformation of a dielectric acrylic elastomer. Int J Mech Mater Des, 2015, 11: 79–90Google Scholar
  57. 57.
    Qu S, Li K, Li T, et al. Rate dependent stress-stretch relation of dielectric elastomers subjected to pure shear like loading and electric field. Acta Mech Solid Sin, 2012, 25: 542–549Google Scholar
  58. 58.
    Wang B, Wang Z, He T. Investigation on the viscoelastic behaviors of a circular dielectric elastomer membrane undergoing large deformation. AIP Adv, 2016, 6: 125127Google Scholar
  59. 59.
    Kiser J, Manning M, Adler D, et al. A reduced order model for dielectric elastomer actuators over a range of frequencies and prestrains. Appl Phys Lett, 2016, 109: 133506Google Scholar
  60. 60.
    Zhang J, Wang Y, McCoul D, et al. Viscoelastic creep elimination in dielectric elastomer actuation by preprogrammed voltage. Appl Phys Lett, 2014, 105: 212904Google Scholar
  61. 61.
    Gu G Y, Gupta U, Zhu J, et al. Modeling of viscoelastic electromechanical behavior in a soft dielectric elastomer actuator. IEEE Trans Robot, 2017, 1–8Google Scholar
  62. 62.
    Carpi F, Migliore A, Serra G, et al. Helical dielectric elastomer actuators. Smart Mater Struct, 2005, 14: 1210–1216Google Scholar
  63. 63.
    Carpi F, Salaris C, DeRossi D. Folded dielectric elastomer actuators. Smart Mater Struct, 2007, 16: S300–S305Google Scholar
  64. 64.
    Nguyen C T, Phung H, Dat Nguyen T, et al. A small biomimetic quadruped robot driven by multistacked dielectric elastomer actuators. Smart Mater Struct, 2014, 23: 065005Google Scholar
  65. 65.
    Kovacs G. Arm wrestling robot driven by dielectric elastomer actuators. In: The First IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics. Pisa: IEEE, 2006Google Scholar
  66. 66.
    Kovacs G, Düring L, Michel S, et al. Stacked dielectric elastomer actuator for tensile force transmission. Sens Actuators A-Phys, 2009, 155: 299–307Google Scholar
  67. 67.
    Zhang Z, Liu L, Fan J, et al. New silicone dielectric elastomers with a high dielectric constant. In: Proceedings SPIE 6926, Modeling, Signal Processing, and Control for Smart Structures. San Diego, California, 2008Google Scholar
  68. 68.
    Opris D M, Molberg M, Walder C, et al. New silicone composites for dielectric elastomer actuator applications in competition with acrylic foil. Adv Funct Mater, 2011, 21: 3531–3539Google Scholar
  69. 69.
    Racles C, Cazacu M, Fischer B, et al. Synthesis and characterization of silicones containing cyanopropyl groups and their use in dielectric elastomer actuators. Smart Mater Struct, 2013, 22: 104004Google Scholar
  70. 70.
    Rosset S, Shea H R. Small, fast, and tough: Shrinking down integrated elastomer transducers. Appl Phys Rev, 2016, 3: 031105Google Scholar
  71. 71.
    Michel S, Zhang X Q, Wissler M, et al. A comparison between silicone and acrylic elastomers as dielectric materials in electroactive polymer actuators. Polym Int, 2009, 59: 391–399Google Scholar
  72. 72.
    Sheng J, Chen H, Li B. Effect of temperature on the stability of dielectric elastomers. J Phys D-Appl Phys, 2011, 44: 365406Google Scholar
  73. 73.
    Liu L, Chen H, Li B, et al. Experimental investigation on electromechanical deformation of dielectric elastomers under different temperatures. Theor Appl Mech Lett, 2015, 5: 155–159Google Scholar
  74. 74.
    Pelrine R, Kornbluh R, Pei Q, et al. High-speed electrically actuated elastomers with strain greater than 100%. Science, 2000, 287: 836–839Google Scholar
  75. 75.
    Li B, Chen H, Qiang J, et al. Effect of mechanical pre-stretch on the stabilization of dielectric elastomer actuation. J Phys D-Appl Phys, 2011, 44: 155301Google Scholar
  76. 76.
    Jiang L, Betts A, Kennedy D, et al. Eliminating electromechanical instability in dielectric elastomers by employing pre-stretch. J Phys D-Appl Phys, 2016, 49: 265401Google Scholar
  77. 77.
    Kofod G, Sommer-Larsen P, Kornbluh R, et al. Actuation response of polyacrylate dielectric elastomers. J Intelligent Material Syst Struct, 2003, 14: 787–793Google Scholar
  78. 78.
    Akbari S, Rosset S, Shea H R. Improved electromechanical behavior in castable dielectric elastomer actuators. Appl Phys Lett, 2013, 102: 071906Google Scholar
  79. 79.
    Huang J, Shian S, Diebold R M, et al. The thickness and stretch dependence of the electrical breakdown strength of an acrylic dielectric elastomer. Appl Phys Lett, 2012, 101: 122905Google Scholar
  80. 80.
    Chen B, Kollosche M, Stewart M, et al. Electrical breakdown of an acrylic dielectric elastomer: effects of hemispherical probing electrode’s size and force. Int J Smart Nano Mater, 2015, 6: 290–303Google Scholar
  81. 81.
    Zhao X, Suo Z. Theory of dielectric elastomers capable of giant deformation of actuation. Phys Rev Lett, 2010, 104: 178302Google Scholar
  82. 82.
    Koh S J A, Li T, Zhou J, et al. Mechanisms of large actuation strain in dielectric elastomers. J Polym Sci B Polym Phys, 2011, 49: 504–515Google Scholar
  83. 83.
    Li T, Keplinger C, Baumgartner R, et al. Giant voltage-induced deformation in dielectric elastomers near the verge of snap-through instability. J Mech Phys Solids, 2013, 61: 611–628Google Scholar
  84. 84.
    Vu-Cong T, Nguyen-Thi N, Jean-Mistral C, et al. How does static stretching decrease the dielectric constant of VHB 4910 elastomer. In: SPIE Smart Struct Mater+Nondestruct Eval Heal Monit, International Society for Optics and Photonics. San Diego, California, 2014Google Scholar
  85. 85.
    Qiang J, Chen H, Li B. Experimental study on the dielectric properties of polyacrylate dielectric elastomer. Smart Mater Struct, 2012, 21: 025006Google Scholar
  86. 86.
    Zhang X, Wissler M, Jaehne B, et al. Effects of crosslinking, prestrain, and dielectric filler on the electromechanical response of a new silicone and comparison with acrylic elastomer. In: Proceedings Volume 5385, Smart Structures and Materials. San Diego, CA, 2004Google Scholar
  87. 87.
    Nguyen H C, Doan V T, Park J, et al. The effects of additives on the actuating performances of a dielectric elastomer actuator. Smart Mater Struct, 2008, 18: 015006Google Scholar
  88. 88.
    Dascalu M, Dünki S J, Quinsaat J E Q, et al. Synthesis of silicone elastomers containing trifluoropropyl groups and their use in dielectric elastomer transducers. RSC Adv, 2015, 5: 104516–104523Google Scholar
  89. 89.
    Molberg M, Crespy D, Rupper P, et al. High breakdown field dielectric elastomer actuators using encapsulated polyaniline as high dielectric constant filler. Adv Funct Mater, 2010, 20: 3280–3291Google Scholar
  90. 90.
    Carpi F, De Rossi D. Improvement of electromechanical actuating performances of a silicone dielectric elastomer by dispersion of titanium dioxide powder. IEEE Trans Dielect Electr Insul, 2005, 12: 835–843Google Scholar
  91. 91.
    Hu W, Niu X, Yang X, et al. Synthesis and electromechanical characterization of a new acrylic dielectric elastomer with high actuation strain and dielectric strength. In: Proceedings Volume 8687, Electroactive Polymer Actuators and Devices (EAPAD). San Diego, California, 2013Google Scholar
  92. 92.
    Vargantwar P H, Özçam A E, Ghosh T K, et al. Prestrain-free dielectric elastomers based on acrylic thermoplastic elastomer gels: A morphological and (electro)mechanical property study. Adv Funct Mater, 2012, 22: 2100–2113Google Scholar
  93. 93.
    Ha S M, Yuan W, Pei Q, et al. Interpenetrating networks of elastomers exhibiting 300% electrically-induced area strain. Smart Mater Struct, 2007, 16: S280–S287Google Scholar
  94. 94.
    Ha S, Yuan W, Pei Q, et al. Interpenetrating polymer networks for high-performance electroelastomer artificial muscles. Adv Mater, 2006, 18: 887–891Google Scholar
  95. 95.
    Niu X, Stoyanov H, Hu W, et al. Synthesizing a new dielectric elastomer exhibiting large actuation strain and suppressed electromechanical instability without prestretching. J Polym Sci B Polym Phys, 2013, 51: 197–206Google Scholar
  96. 96.
    Keplinger C, Kaltenbrunner M, Arnold N, et al. Rontgen’s electrodefree elastomer actuators without electromechanical pull-in instability. Proc Natl Acad Sci USA, 2010, 107: 4505–4510Google Scholar
  97. 97.
    Carpi F, Chiarelli P, Mazzoldi A, et al. Electromechanical characterisation of dielectric elastomer planar actuators: Comparative evaluation of different electrode materials and different counterloads. Sens Actuators A-Phys, 2003, 107: 85–95Google Scholar
  98. 98.
    Rosset S, Niklaus M, Dubois P, et al. Mechanical characterization of a dielectric elastomer microactuator with ion-implanted electrodes. Sens Actuators A-Phys, 2008, 144: 185–193Google Scholar
  99. 99.
    Yuan W, Li H, Brochu P, et al. Fault-tolerant silicone dielectric elastomers. Int J Smart Nano Mat, 2010, 1: 40–52Google Scholar
  100. 100.
    Keplinger C, Sun J Y, Foo C C, et al. Stretchable, transparent, ionic conductors. Science, 2013, 341: 984–987Google Scholar
  101. 101.
    Lotz P, Matysek M, Schlaak H F. Fabrication and application of miniaturized dielectric elastomer stack actuators. IEEE/ASME Trans Mechatron, 2011, 16: 58–66Google Scholar
  102. 102.
    Lu T, Huang J, Jordi C, et al. Dielectric elastomer actuators under equal-biaxial forces, uniaxial forces, and uniaxial constraint of stiff fibers. Soft Matter, 2012, 8: 6167Google Scholar
  103. 103.
    Zou Z, Li T, Qu S, et al. Active shape control and phase coexistence of dielectric elastomer membrane with patterned electrodes. J Appl Mech, 2013, 81: 031016Google Scholar
  104. 104.
    Levard T, Diglio P J, Lu S-G, et al. Core-free rolled actuators for Braille displays using P (VDF-TrFE-CFE). Smart Mater Struct, 2011, 21: 012001Google Scholar
  105. 105.
    Chouinard P, Plante J S. Bistable antagonistic dielectric elastomer actuators for binary robotics and mechatronics. IEEE/ASME Trans Mechatron, 2012, 17: 857–865Google Scholar
  106. 106.
    Yuan W, Hu L, Ha S, et al. Self-clearable carbon nanotube electrodes for improved performance of dielectric elastomer actuators. In: Proceedings of the International Symposium on Smart Structures and Materials & Nondestructive Evaluation and Health Monitoring. San Diego, California, 2008Google Scholar
  107. 107.
    Benslimane M, Gravesen P, Sommer-Larsen P. Mechanical properties of dielectric elastomer actuators with smart metallic compliant electrodes. In: Proceedings of the SPIE Electroactive Polymer Actuators and Devices. San Diego, California, 2002Google Scholar
  108. 108.
    Rosset S, Niklaus M, Dubois P, et al. Performance characterization of miniaturized dielectric elastomer actuators fabricated using metal ion implantation. In: 21st International Conference on Micro Electro Mechanical Systems. Wuhan, China: IEEEGoogle Scholar
  109. 109.
    Cao Y, Morrissey T G, Acome E, et al. A transparent, self-healing, highly stretchable ionic conductor. Adv Mater, 2017, 29: 1605099Google Scholar
  110. 110.
    Wang Y, Chen B, Bai Y, et al. Actuating dielectric elastomers in pure shear deformation by elastomeric conductors. Appl Phys Lett, 2014, 104: 064101Google Scholar
  111. 111.
    Berselli G, Vertechy R, Vassura G, et al. Design of a single-acting constant-force actuator based on dielectric elastomers. J Mech Robot, 2009, 1: 031007Google Scholar
  112. 112.
    Berselli G, Vertechy R, Vassura G, et al. Optimal synthesis of conically shaped dielectric elastomer linear actuators: Design methodology and experimental validation. IEEE/ASME Trans Mechatron, 2011, 16: 67–79Google Scholar
  113. 113.
    Berselli G, Vertechy R, Vassura G, et al. A compound-structure frame for improving the performance of a dielectric elastomer actuator. In: Lenarcic J, Wenger P, Eds. Advances in Robot Kinematics: Analysis and Design. Heidelberg: Springer, 2008. 291–299Google Scholar
  114. 114.
    Plante J S. Dielectric elastomer actuators for binary robotics and mechatronics. Dissertation of Masteral Degree. Cambridge: Massachusetts Institute of Technology, 2006Google Scholar
  115. 115.
    Shintake J. Functional Soft robotic actuators based on dielectric elastomers. Dissertation of Masteral Degree. Lausanne, Switzerland: École Polytechnique Fédérale De Lausanne, 2016Google Scholar
  116. 116.
    Pei Q, Pelrine R, Stanford S, et al. Electroelastomer rolls and their application for biomimetic walking robots. Synth Met, 2003, 135-136: 129–131Google Scholar
  117. 117.
    Zhang R, Lochmatter P, Kunz A, et al. Spring roll dielectric elastomer actuators for a portable force feedback glove. In: Proceedings of SPIE Electroactive Polymer Actuators and Devices. San Diego, California, 2006Google Scholar
  118. 118.
    Huang J, Lu T, Zhu J, et al. Large, uni-directional actuation in dielectric elastomers achieved by fiber stiffening. Appl Phys Lett, 2012, 100: 211901Google Scholar
  119. 119.
    Kovacs G, Ha S M, Michel S, et al. Study on core free rolled actuator based on soft dielectric EAP. In: Proceedings of SPIE Smart Structures and Materials+Nondestructive Evaluation and Health Monitoring. San Diego, California, 2008Google Scholar
  120. 120.
    Sarban R, Jones R W, Mace B R, et al. A tubular dielectric elastomer actuator: Fabrication, characterization and active vibration isolation. Mech Syst Signal Process, 2011, 25: 2879–2891Google Scholar
  121. 121.
    Kornbluh R D, Pelrine R, Pei Q, et al. Electroelastomers: Applications of dielectric elastomer transducers for actuation, generation, and smart structures. In: Proceedings of the SPIE’s 9th Annual International Symposium on Smart Structures and Materials. San Diego, California, 2002Google Scholar
  122. 122.
    Pei Q, Rosenthal M, Stanford S, et al. Multiple-degrees-of-freedom electroelastomer roll actuators. Smart Mater Struct, 2004, 13: N86–N92Google Scholar
  123. 123.
    Zhang J, Chen H, Tang L, et al. Modelling of spring roll actuators based on viscoelastic dielectric elastomers. Appl Phys A, 2015, 119: 825–835Google Scholar
  124. 124.
    Chuc N H, Vuong N H L, Kim D S, et al. Design and control of a multi-jointed robot finger driven by an artificial muscle actuator. Adv Robot, 2010, 24: 1983–2003Google Scholar
  125. 125.
    Kovacs G, Wallmersperger T, D RING L. Contractive tension force stack actuator based on soft dielectric EAP. In: Proceddings of SPIE Smart Structures and Materials+Nondestructive Evaluation and Health Monitoring. San Diego, California, 2009Google Scholar
  126. 126.
    Ho S, Banerjee H, Foo Y Y, et al. Experimental characterization of a dielectric elastomer fluid pump and optimizing performance via composite materials. J Intell Mater Syst Struct, 2017: 1045389X17704921Google Scholar
  127. 127.
    Hosoya N, Baba S, Maeda S. Hemispherical breathing mode speaker using a dielectric elastomer actuator. J Acoust Soc Am, 2015, 138: EL424–EL428Google Scholar
  128. 128.
    Shian S, Diebold R M, Clarke D R. Tunable lenses using transparent dielectric elastomer actuators. Opt Express, 2013, 21: 8669Google Scholar
  129. 129.
    Chakraborti P, Toprakci H A K, Yang P, et al. A compact dielectric elastomer tubular actuator for refreshable Braille displays. Sens Actuators A-Phys, 2012, 179: 151–157Google Scholar
  130. 130.
    Maffli L, Rosset S, Shea H R. Zipping dielectric elastomer actuators: characterization, design and modeling. Smart Mater Struct, 2013, 22: 104013Google Scholar
  131. 131.
    Shintake J, Rosset S, Schubert B, et al. DEA for soft robotics: 1-gram actuator picks up a 60-gram egg. In: Proceedings of SPIE, Vol 9430. Bellingham, 2015Google Scholar
  132. 132.
    Kofod G, Wirges W, Paajanen M, et al. Energy minimization for selforganized structure formation and actuation. Appl Phys Lett, 2007, 90: 081916Google Scholar
  133. 133.
    Araromi O, Rosset S, Shea H. Versatile fabrication of PDMS-carbon electrodes for silicone dielectric elastomer transducers. In: 18th International Conference on the Solid-State Sensors, Actuators and Microsystems (Transducers). Alaska: IEEE, 2015Google Scholar
  134. 134.
    O’Brien B, McKay T, Calius E, et al. Finite element modelling of dielectric elastomer minimum energy structures. Appl Phys A, 2009, 94: 507–514Google Scholar
  135. 135.
    Liu F, Zhang Y, Zhang L, et al. Analysis, experiment, and correlation of a petal-shaped actuator based on dielectric elastomer minimumenergy structures. Appl Phys A, 2016, 122: 323Google Scholar
  136. 136.
    Nguyen C H, Alici G, Mutlu R. A compliant translational mechanism based on dielectric elastomer actuators. J Mech Des, 2014, 136: 061009Google Scholar
  137. 137.
    Zhao J, Wang S, McCoul D, et al. Bistable dielectric elastomer minimum energy structures. Smart Mater Struct, 2016, 25: 075016Google Scholar
  138. 138.
    Zhao J, Niu J, McCoul D, et al. Improvement on output torque of dielectric elastomer minimum energy structures. Appl Phys Lett, 2015, 107: 063505Google Scholar
  139. 139.
    Follador M, Cianchetti M, Mazzolai B. Design of a compact bistable mechanism based on dielectric elastomer actuators. Meccanica, 2015, 50: 2741–2749Google Scholar
  140. 140.
    Branz F, Francesconi A. Modelling and control of double-cone dielectric elastomer actuator. Smart Mater Struct, 2016, 25: 095040Google Scholar
  141. 141.
    Wang H, Zhu J, Ye K. Simulation, experimental evaluation and performance improvement of a cone dielectric elastomer actuator. J Zhejiang Univ Sci-A, 2009, 10: 1296–1304Google Scholar
  142. 142.
    Hodgins M, York A, Seelecke S. Experimental comparison of bias elements for out-of-plane DEAP actuator system. Smart Mater Struct, 2013, 22: 094016Google Scholar
  143. 143.
    Bonwit N, Heim J, Rosenthal M, et al. Design of commercial applications of EPAM technology. In: Proceedings of SPIE Smart Structures and Materials+Nondestructive Evaluation and Health Monitoring. San Diego, California, 2006Google Scholar
  144. 144.
    Plante J S, Tadakuma K, DeVita L M, et al. An MRI-compatible needle manipulator concept based on elastically averaged dielectric elastomer actuators for prostate cancer treatment: An accuracy and mr-compatibility evaluation in phantoms. J Med Devices, 2009, 3: 031005Google Scholar
  145. 145.
    Luan Y, Wang H, Zhu Y. Design and implementation of cone dielectric elastomer actuator with double-slider mechanism. J Bionic Eng, 2010, 7: S212–S217Google Scholar
  146. 146.
    Wang H, Zhu J, Ye K, et al. Research on linear dielectric elastomer actuator (in Chinese). J Mech Eng, 2009, 45: 291–296Google Scholar
  147. 147.
    Wang H, Guo H, Luan Y, et al. A rotary joint based on dielectric elastomer. In: International Conference on Advanced Intelligent Mechatronics (AIM). Wollongong, NSW: IEEE, 2013Google Scholar
  148. 148.
    Conn A T, Rossiter J. Towards holonomic electro-elastomer actuators with six degrees of freedom. Smart Mater Struct, 2012, 21: 035012Google Scholar
  149. 149.
    Nguyen C T, Phung H, Jung H, et al. Printable monolithic hexapod robot driven by soft actuator. In: International Conference on Proceedings of the Robotics and Automation (ICRA). Seattle, WA: IEEE, 2015Google Scholar
  150. 150.
    Branz F, Francesconi A. Experimental evaluation of a dielectric elastomer robotic arm for space applications. Acta Astronaut, 2017, 133: 324–333Google Scholar
  151. 151.
    Hodgins M, Rizzello G, York A, et al. Experimental analysis and validation of a circular dielectric electroactive polymer actuator operating against various loading conditions. In: ASME 2014 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. Volume 2: Mechanics and Behavior of Active Materials; Integrated System Design and Implementation; Bioinspired Smart Materials and Systems; Energy Harvesting. Newport, 2014Google Scholar
  152. 152.
    Zhang C, Sun W, Chen H, et al. Electromechanical deformation of conical dielectric elastomer actuator with hydrogel electrodes. J Appl Phys, 2016, 119: 094108Google Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • NianFeng Wang
    • 1
    Email author
  • ChaoYu Cui
    • 1
  • Hao Guo
    • 1
  • BiCheng Chen
    • 1
  • XianMin Zhang
    • 1
  1. 1.Guangdong Provincial Key Laboratory of Precision Equipment and Manufacturing TechnologySouth China University of TechnologyGuangzhouChina

Personalised recommendations