Advertisement

Science China Earth Sciences

, Volume 62, Issue 12, pp 1903–1945 | Cite as

Review of Chinese atmospheric science research over the past 70 years: Atmospheric physics and atmospheric environment

  • Tijian WangEmail author
  • Taichang GaoEmail author
  • Hongsheng ZhangEmail author
  • Maofa GeEmail author
  • Hengchi Lei
  • Peichang Zhang
  • Peng Zhang
  • Chunsong Lu
  • Chao Liu
  • Hua Zhang
  • Qiang Zhang
  • Hong Liao
  • Haidong Kan
  • Zhaozhong Feng
  • Yijun Zhang
  • Xiushu Qie
  • Xuhui Cai
  • Mengmeng Li
  • Lei Liu
  • Shengrui Tong
Review
  • 69 Downloads

Abstract

Since the founding of the People’s Republic of China 70 years ago, the subject of atmospheric physics and atmospheric environment has developed rapidly in China, providing important support for the development of atmospheric science and guarantee for the development of national economy. In this paper, the general advancement of atmospheric physics and atmospheric environment in last 70 years was described. The main research progress of atmospheric physics and atmospheric environment in the past 40 years of reform and opening-up was reviewed, the outstanding research achievements since the 21st century were summarized, the major problems and challenges are pointed out, and the key directions and suggestions for future development are put forward.

Keywords

Atmospheric physics Atmospheric environment Atmospheric sounding Atmospheric chemistry Atmospheric remote sensing 

Notes

Acknowledgements

Special thanks to Renjie Chen, Pulong Chen, Yixuan Zheng, Xichuan Liu, ShuaiHu, Xiaoqi Xu, Lei Zhu, Xingcan Jia, Yue Niu, Qianhui Li, Fan Yang, Yunqing Cao, Libo Gao for their great contributions to this paper.

References

  1. Bai W B, Zhang P, Zhang W, Li J. 2016. An efficient method for hyper-spectral infrared atmospheric radiation transfer calculation (in Chinese). J Infrared Millim Waves, 35: 99–108Google Scholar
  2. Bai W G, Zhang P, Zhang W J, Ma G, Qi C L. 2018. A model for accurately calculating hyper-spectral, middle-shortwave infrared radiative transfer for remote sensing. Sci China Earth Sci, 61: 317–326CrossRefGoogle Scholar
  3. Bao Y, Lv S. 2006. Review of land-atmosphere interaction research in arid and semi-arid regions (in Chinese). J Desert Res, 26: 454–460Google Scholar
  4. Bi J R, Huang J P, Holben B, Zhang G L. 2016. Comparison of key absorption and optical properties between pure and transported anthropogenic dust over East and Central Asia. Atmos Chem Phys, 16: 15501–15516CrossRefGoogle Scholar
  5. Bi L, Lin W S, Liu D, Zhang K J. 2018a. Assessing the depolarization capabilities of nonspherical particles in a super-ellipsoidal shape space. Opt Express, 26: 1726–1742CrossRefGoogle Scholar
  6. Bi L, Lin W S, Wang Z, Tang X Y, Zhang X Y, Yi B Q. 2018b. Optical modeling of sea salt aerosols: The effects of nonsphericity and inhomogeneity. J Geophys Res-Atmos, 123: 543–558CrossRefGoogle Scholar
  7. Bi L, Xu F, Gouesbet G. 2018c. Depolarization of nearly spherical particles: The Debye series approach. Phys Rev A, 98: 053809CrossRefGoogle Scholar
  8. Bi L, Yang P. 2014. Accurate simulation of the optical properties of atmospheric ice crystals with the invariant imbedding T-matrix method. J Quant Spectrosc Ra, 138: 17–35CrossRefGoogle Scholar
  9. Bi Y, Mao J, Li C. 2006. Spatial distribution of water vapor observed with GPS along slant path in a storm system (in Chinese). Chin J Atmos Sci, 30: 1169–1176Google Scholar
  10. Cai Q, Yang P. 1990. Scattering phase matrices of ice crystals with hexagonal prism and triangular pyramid form-a vector ray tracing method (in Chinese). Acta Meteorol Sin, 48: 198–209Google Scholar
  11. Cai W, Hui J, Wang C, Zheng Y, Zhang X, Zhang Q, Gong P. 2018. The Lancet Countdown on PM2.5 pollution-related health impacts of China’s projected carbon dioxide mitigation in the electric power generation sector under the Paris Agreement: A modelling study. Lancet Planet Health, 2: e151–e161CrossRefGoogle Scholar
  12. Cai X. 2008. Footprint analysis method for turbulent micrometeorological observations and its applications (in Chinese). Chin J Atmos Sci, 32: 123–132Google Scholar
  13. Cai X, Chen J. 2000. Large-eddy simulations of heat budget and advection effects in heterogeneous convective boundary layers (in Chinese). Chin J Atmos Sci, 24: 95–102Google Scholar
  14. Cao D J, Lu F, Zhang X. 2018. Application of FY-4 satellite lightning detection product in severe convection weather monitoring (in Chinese). Satel Appl, 11: 18–23Google Scholar
  15. Cao Q C, Ding Y H. 1999. The South China Sea monsoon experiment. Science, 2: 24–29Google Scholar
  16. Chai F H, Chen Y Z, Wen Y, Duan N, Xie S D, Xue Z G, Cao D, Liu J, Song G J, Wang S L. 2006. Study for regional air pollutants total amount control technologies and demonstration (in Chinese). Res Envrion Sci, 19: 163–171Google Scholar
  17. Chang Y P, Merer A J, Chang H H, Jhang L J, Chao W, Lin J J M. 2017. High resolution quantum cascade laser spectroscopy of the simplest Criegee intermediate, CH2OO, between 1273 cm−1 and 1290 cm−1. J Chem Phys, 146: 244302CrossRefGoogle Scholar
  18. Che H, Zhang X Y, Xia X, Goloub P, Holben B, Zhao H, Wang Y, Zhang X C, Wang H, Blarel L, Damiri B, Zhang R, Deng X, Ma Y, Wang T, Geng F, Qi B, Zhu J, Yu J, Chen Q, Shi G. 2015. Ground-based aerosol climatology of China: Aerosol optical depths from the China Aerosol Remote Sensing Network (CARSNET) 2002–2013. Atmos Chem Phys, 15: 7619–7652CrossRefGoogle Scholar
  19. Chen B, Wang J, Gong D. 2016. Raindrop size distribution in a midlatitude continental squall line measured by Thies optical disdrometers over East China. J Appl Meteorol Climatol, 55: 621–634CrossRefGoogle Scholar
  20. Chen C S, Yan K W. 1959. Progress of meteorological observation technology and instrument research in China in the past ten years (in Chinese). Acta Meteorol Sin, 30: 212–217Google Scholar
  21. Chen H B, Li J, Ma S Q, Hu S Z. 2019a. Progress of the marine meteorological observation technologies (in Chinese). Sci Technol Rev, 37: 91–97Google Scholar
  22. Chen H B, Li J, Xuan Y J, Huang X S, Zhu W F, Zhu K P, Shao W Z. 2019b. First rocketsonde launched from an unmanned semi-submersible vehicle. Adv Atmos Sci, 36: 339–345CrossRefGoogle Scholar
  23. Chen J. 1981. The effect of environmental turbulence on the uplift of smoke clouds (in Chinese). Meteorol Sin, 39: 59–69Google Scholar
  24. Chen J, Wu X, Yin Y, Huang Q, Xiao H. 2017. Characteristics of cloud systems over the Tibetan Plateau and East China during boreal summer. J Clim, 30: 3117–3137CrossRefGoogle Scholar
  25. Chen Q, Koren I, Altaratz O, Heiblum R H, Dagan G, Pinto L. 2017. How do changes in warm-phase microphysics affect deep convective clouds? Atmos Chem Phys, 17: 9585–9598CrossRefGoogle Scholar
  26. Chen R J, Yin P, Meng X, Liu C, Wang L J, Xu X H, Ross J A, Tse L A, Zhao Z H, Kan H D, Zhou M G. 2017. Fine particulate air pollution and daily mortality. A nationwide analysis in 272 Chinese cities. Am J Respir Crit Care Med, 196: 73–81CrossRefGoogle Scholar
  27. Chen X, Wei H, Xu Q. 2011. Infrared atmospheric transmittance calculation model. Infrared Laser Eng, 40: 811–816Google Scholar
  28. Cheng T H, Wu Y, Chen H. 2014. Effects of morphology on the radiative properties of internally mixed light absorbing carbon aerosols with different aging status. Opt Express, 22: 15904–15917CrossRefGoogle Scholar
  29. Cui X A, Cao Y C, Zhao P T. 2015. Commentary on aircraft meteorological observation (in Chinese). Meteorol Hydrol Marine Instru, 4: 96–99Google Scholar
  30. Dai Z H, Gao T C, Zhao S J, Ma N, Su W. 2016. Application of 2D Fourier transform in mirror image displacement of dew point hygrometer (in Chinese). J Meteorol Sci, 36: 531–536Google Scholar
  31. Deng X, Xue H, Meng Z. 2018. The effect of ice nuclei on a deep convective cloud in South China. Atmos Res, 206: 1–12CrossRefGoogle Scholar
  32. Ding G, Ji X, Fang X, Fu J, Wu F, Su W, Song W, Li W, Yu X, Jiang Z, Xu D. 1991. Characters of cloud-fog water in Lu Shan Mountain. Acta Meteorol Sin, 49: 190–197Google Scholar
  33. Dong C, Yang J, Lu N, Yang Z, Shi J, Zhang P, Liu Y, Cai B. 2010. Main characteristics and primary applications of polar-orbiting satellite FY-3A. Geo-Inf Sci, 12: 458–465Google Scholar
  34. Dong C H, Yang J, Zhang W J, Yang Z D, Lu N M, Shi J M, Zhang P, Liu Y J, Cai B. 2009. An overview of a new Chinese weather satellite Fy-3a. Bull Amer Meteorol Soc, 90: 1531–1544CrossRefGoogle Scholar
  35. Dong Y. 2016. FY-4 satellite and prospect of its development (in Chinese). Aerospace Shanghai, 33: 1–8Google Scholar
  36. Du C, Kong L, Zhanzakova A, Tong S, Yang X, Wang L, Fu H, Cheng T, Chen J, Zhang S. 2018. Impact of heterogeneous uptake of nitrogen dioxide on the conversion of acetaldehyde on gamma-alumina in the absence and presence of simulated solar irradiation. Atmos Environ, 187: 282–291CrossRefGoogle Scholar
  37. Du L, Xu Y, Ge M, Jia L. 2007a. Rate constant for the reaction of ozone with diethyl sulfide. Atmos Environ, 41: 7434–7439CrossRefGoogle Scholar
  38. Du L, Xu Y, Ge M, Jia L, Yao L, Wang W. 2007b. Rate constant of the gas phase reaction of dimethyl sulfide (CH3SCH3) with ozone. Chem Phys Lett, 436: 36–40CrossRefGoogle Scholar
  39. Duan M, Lv D. 2007. The δ-M method in the solution of vector radiative transfer equation (in Chinese). Adv Nat Sci, 17: 488–493Google Scholar
  40. Duan M Z, Min Q L, Lu D R. 2010. A polarized Radiative Transfer model based on successive order of scattering. Adv Atmos Sci, 27: 891–900CrossRefGoogle Scholar
  41. Duan N, Li Q, Duo P, Wang J. 2019. Plant response to atmospheric nitrogen deposition: A research review. World Forest Res, 32: 6–11Google Scholar
  42. Fan S, Wang A, Fan Q, Liu J, Wang B. 2006. Characteristics of the atmosheric boundary layer and its conceptual model in the Pearl River Delta region China (in Chinese). Environ Sci, 26: 4–6Google Scholar
  43. Fan X, Zhang W, Han S. 1999. Vehicle pollution situation and its control in China (in Chinese). Environ Sci, 20: 102–108Google Scholar
  44. Fan X P, Zhang Y J, Zheng D, Zhang Y, Lyu W T, Liu H Y, Xu LT. 2018. A new method of three-dimensional location for low-frequency electric field detection array. J Geophys Res-Atmos, 123: 8792–8812CrossRefGoogle Scholar
  45. Feng Z, Li P, Yuan X, Gao F, Jiang L, Dai L. 2018a. Progress in ecological and environmental effects of ground-level O3 in China (in Chinese). Acta Ecol Sin, 38: 1530–1541CrossRefGoogle Scholar
  46. Feng Z Z, Buker P, Pleijel H, Emberson L, Karlsson P E, Uddling J. 2018b. A unifying explanation for variation in ozone sensitivity among woody plants. Glob Change Biol, 24: 78–84CrossRefGoogle Scholar
  47. Feng Z Z, Sun J S, Wan W X, Hu E Z, Calatayud V. 2014. Evidence of widespread ozone-induced visible injury on plants in Beijing, China. Environ Pollut, 193: 296–301CrossRefGoogle Scholar
  48. Feng Z Z, Tang H Y, Uddling J, Pleijel H, Kobayashi K, Zhu J G, Oue H, Guo W S. 2012. A stomatal ozone flux-response relationship to assess ozone-induced yield loss of winter wheat in subtropical China. Environ Pollut, 164: 16–23CrossRefGoogle Scholar
  49. Fu Y, Pan X, Xian T, Liu G, Zhong L, Liu Q, Li R, Wang Y, Ma M. 2018. Precipitation characteristics over the steep slope of the Himalayas in rainy season observed by TRMM PR and VIRS. Clim Dyn, 51: 1971–1989CrossRefGoogle Scholar
  50. Gai Y, Ge M, Wang W. 2009. Kinetic studies of O3 reactions with 3-bromopropene and 3-iodopropene in the temperature range 288–328 K. Atmos Environ, 43: 3467–3471CrossRefGoogle Scholar
  51. Gai Y, Wang W, Ge M, Kjaergaard H G, Jørgensen S, Du L. 2013. Methyl chavicol reactions with ozone, OH and NO3 radicals: Rate constants and gas-phase products. Atmos Environ, 77: 696–702CrossRefGoogle Scholar
  52. Gan J, Lu W, Li Q, Zhang Z, Yang J, Ma Y, Yao W. 2017. Cloud type classification of total-sky images using duplex norm-bounded sparse coding. IEEE J Sel Top Appl Earth Observ Remote Sens, 10: 3360–3372CrossRefGoogle Scholar
  53. Gao H, Huang M, Xu H, Zhou L. 1997. A study of eurlerian regional sulfur deposition model (in Chinese). J Atmos Sci: 615–626Google Scholar
  54. Gao J, Duan M, Sun S. 2014. A simple limb model for solving vector radiative transfer in the horizontal inhomogeneous atmosphere (in Chinese). Remote Sens Technol Appl, 29: 735–743Google Scholar
  55. Gao T, Liu L, Li H. 2007. Effect of shape and character of aerosol on its near-infrared scattering characteristics (in Chinese). J PLA Univ Sci Technol, 8: 302–306Google Scholar
  56. Gao T C, Liu L, Zhao S J, Sun X J, Liu J. 2010. The actuality an dprogress of the whole sky cloud sounding techniques (in Chinese). J Appl Meteorol Sci, 21: 101–109Google Scholar
  57. Gao Z H, Huang X Y, Wei M, Fan H, Wu J X, Li Y. 2014. Analysis of cloud echo observed by airborne w-band dual-linear polarization cloud radar. Radar Sci Technol, 12: 561–568Google Scholar
  58. Ge H X, Zhang H S, Zhang H, Cai X H, Song Y, Kang L. 2018. The characteristics of methane flux from an irrigated rice farm in East China measured using the eddy covariance method. Agric For Meteorol, 249: 228–238CrossRefGoogle Scholar
  59. Ge J, Zheng C, Xie H, Xin Y, Huang J, Fu Q. 2018. Midlatitude cirrus clouds at the SACOL site: Macrophysical properties and large-scale atmospheric states. J Geophys Res, 123: 2256–2271Google Scholar
  60. Ge M. 2006. Studies of atmospheric chemistry in the climatic and environmental changes. In: Frontier and Outlook for Atmospheric Sciences in the 21th Century (in Chinese). Beijing: China Meteorological PressGoogle Scholar
  61. Gu Z. 1962. Recent investigations in the theory of the formation of the cloud-drop spectra. Acta Meteorol Sin, 32: 267–284Google Scholar
  62. Gu Z. 1965. The single site positioning of lightning activity (in Chinese). Chin Sci Bull, 10: 973–978CrossRefGoogle Scholar
  63. Guo J, Deng M, Lee S S, Wang F, Li Z, Zhai P, Liu H, Lv W, Yao W, Li X. 2016. Delaying precipitation and lightning by air pollution over the Pearl River Delta. Part I: Observational analyses. J Geophys Res-Atmos, 121: 6472–6488CrossRefGoogle Scholar
  64. Guo Q, Yang J, Yang R, Qian Y. 2018. Evaluation of wind performance of domestic Beidou dropsonde of ball-loading (in Chinese). J Nanjing Univ Inform Sci Technol, 10: 629–640Google Scholar
  65. Guo S, Hu M, Guo Q, Zhang X, Zheng M, Zheng J, Chang C C, Schauer J J, Zhang R. 2012. Primary sources and secondary formation of organic aerosols in Beijing, China. Environ Sci Technol, 46: 9846–9853CrossRefGoogle Scholar
  66. Guo X, Lü D R, Lü Y. 2007. A simple but accurate ultraviolet limb-scan spherically-layered radiative-transfer-model based on single-scattering physics. Adv Atmos Sci, 24: 619–630CrossRefGoogle Scholar
  67. Han J, Chu Z, Wang Z, Xu D, Li N, Kou L, Xu F, Zhu Y. 2018. The establishment of optimal ground-based radar datasets by comparison and correlation analyses with space-borne radar data. Meteoroll Appl, 25: 161–170CrossRefGoogle Scholar
  68. Han Y, Gao P, Huang J, Zhang T, Zhuang J, Hu M, Wu Y. 2018. Ground-based synchronous optical instrument for measuring atmospheric visibility and turbulence intensity: Theories, design and experiments. Opt Express, 26: 6833–6850CrossRefGoogle Scholar
  69. Hao J, He K. 1996. Coal-burning SO2 pollution control strategy in China (in Chinese). China Envrion Sci, 16: 208–212Google Scholar
  70. Hao J, Wu Y, Fu L, He D, He K. 2002. Study of the urban vehicular emission control program system in China (in Chinese). J Appl Meteorol Sci, 13: 195–202Google Scholar
  71. Hao J, Zhou X, Fu L, Li Q. 1996. Sulfuric deposition modeling research in the east part of China-model development and performance analysis (in Chinese). China Environ Science, 16: 241–245Google Scholar
  72. Hao L, Wang Z, Fang L, Zhang W, Wang W, Li C, Sheng L. 2006. Characterization of products from photooxidation of toluene. J Environ Sci, 18: 903–909CrossRefGoogle Scholar
  73. He D. 2000. Study on Urban Vehicular Pollution Assessment System and Emission Control Target. Beijing: Tsinghua UniversityGoogle Scholar
  74. He K, Hao J, Fu L, Liu M, Liu Y. 1996. The Status and Trend of Vehicle Pollution in China (in Chinese). Environ Sci, 17: 80–83Google Scholar
  75. He K, Yang F, Ma Y, Zhang Q, Yao X, Chan C K, Cadle S, Chan T, Mulawa P. 2001. The characteristics of PM2.5 in Beijing, China. Atmos Environ, 35: 4959–4970CrossRefGoogle Scholar
  76. Hong Y. 1996. The numerical simulation study of convective-stratiform mixed cloud, Part I—The model and parameterization of microphysical processes (in Chinese). Acta Meteorol Sin, 54: 544–557Google Scholar
  77. Hou S Q, Tong S R, Ge M F, An J L. 2016. Comparison of atmospheric nitrous acid during severe haze and clean periods in Beijing, China. Atmos Environ, 124: 199–206CrossRefGoogle Scholar
  78. Hu E Z, Gao F, Xin Y, Jia H X, Li K H, Hu J J, Feng Z Z. 2015. Concentration- and flux-based ozone dose-response relationships for five poplar clones grown in North China. Environ Pollut, 207: 21–30CrossRefGoogle Scholar
  79. Hu F, Hong Z, Chen J, Liu X. 2006. The field experiment of atmospheric boundary layer over heterogeneous surface in Aaiyangdian area-introduction and preliminary data analysis (in Chinese). Chin J Atmos Sci, 30: 883–893Google Scholar
  80. Hu F, Hong Z, Lei X. 2003. Recent progress of atmospheric boundary layer physics and atmospheric environment research in IAP (in Chinese). Chin J Atmos Sci, 27: 712–728Google Scholar
  81. Hu S, Gao T C, Li H, Liu L, Chen M, Yang B. 2018. Light-scattering model for aerosol particles with irregular shapes and inhomogeneous compositions using a parallelized pseudo-spectral time-domain technique. Chin Phys B, 27: 054215CrossRefGoogle Scholar
  82. Hu Y, Gao Y. 1994. Some new understandings of processes at the land surface in arid area from the Heife (in Chinese). Acta Meteorol Sin, 52: 285–296Google Scholar
  83. Hu Y, Zhang Q. 1996. Similarity theory of atmosphere boundary layer and its applications (in Chinses). Adv Earth Sci, 11: 550–554Google Scholar
  84. Hu Y, Zuo H C. 2004. Some aspects of the turbulent transportation in boundary layer among with atmospheric linear thermodynamics (in Chinese). Plateau Meteorol, 23: 132–138Google Scholar
  85. Hu Z. 1979. On the conditions of warm rain formation in cumulus clouds (in Chinese). Acta Meteorol Sin, 37: 72–79Google Scholar
  86. Hua D, Song X. 2008. Advances in lidar remote sensing techniques (in Chinese). Infrared Laser Eng, 37: 21–27Google Scholar
  87. Huang B, Zhao W. 2017. Current status and development trend of national marine meteorological service (in Chinese). Adv Meteorol Sci Technol, 7: 53–59Google Scholar
  88. Huang C, Liu Y, Wu Z. 2007. Numerical calculatiion of optical cross section and scattering matrix for soot aggregation particles (in Chinese). Acta Phys Sin, 56: 4068–4074Google Scholar
  89. Huang H, Huang Y, Rao R. 2007. Equivalence of light scattering by strong absorbing aerosol particles in internal mixing state (in Chinese). High Power Laser Particle Beams, 19: 1066–1070Google Scholar
  90. Huang J P, Zhang W, Zuo J Q, Bi J R, Shi J S, Wang X, Chang Z L, Huang Z W, Yang S, Zhang B D, Wang G Y, Feng G H, Yuan J Y, Zhang L, Zuo H C, Wang S G, Fu C B, Chou J F. 2008. An overview of the semiarid climate and environment research observatory over the Loess Plateau. Adv Atmos Sci, 25: 906–921CrossRefGoogle Scholar
  91. Huang K Y, Yang X L, Liang F C, Liu F C, Li J X, Xiao Q Y, Chen J C, Liu X Q, Cao J, Shen C, Yu L, Lu F H, Wu X P, Zhao L C, Wu X G, Li Y, Hu D S, Huang J F, Liu Y, Lu X F, Gu D F. 2019. Long-term exposure to fine particulate matter and hypertension incidence in China. Hypertension, 73: 1195–1201CrossRefGoogle Scholar
  92. Huang L, Zhang Q, Qiu S, Shi L, Wang J, Gao C. 2019. Development of a high-speed optical system for lightning flash observation. Measurement, 131: 85–91CrossRefGoogle Scholar
  93. Huang M Y, Hong Z X, Xiong S Q. 1965. A ground continuous cloud-droplet sampler (in Chinese). Acta Meteorol Sin, 35: 258–262Google Scholar
  94. Huang R, Zhou D, Chen W, Zhou L, Wei Z, Zhang Q, Gao X, Wei G, Hou X. 2013. Recent progress in studies of air-land interactions over the arid area of Northwest China and its impact on climate (in Chinese). J Atmos Sci, 37: 189–210Google Scholar
  95. Huang R J, Zhang Y, Bozzetti C, Ho K F, Cao J J, Han Y, Daellenbach K R, Slowik J G, Platt S M, Canonaco F, Zotter P, Wolf R, Pieber S M, Bruns E A, Crippa M, Ciarelli G, Piazzalunga A, Schwikowski M, Abbaszade G, Schnelle-Kreis J, Zimmermann R, An Z, Szidat S, Baltensperger U, El Haddad I, Prévôt A S H. 2014. High secondary aerosol contribution to particulate pollution during haze events in China. Nature, 514: 218–222CrossRefGoogle Scholar
  96. Huang W, Wang G, Lu S E, Kipen H, Wang Y, Hu M, Lin W, Rich D, Ohman-Strickland P, Diehl S R, Zhu P, Tong J, Gong J, Zhu T, Zhang J. 2012. Inflammatory and oxidative stress responses of healthy young adults to changes in air quality during the Beijing Olympics. Am J Respir Crit Care Med, 186: 1150–1159CrossRefGoogle Scholar
  97. Huang X, Jin Y. 1997. Polarimetric scattering and its simulation of multiple nonspherical scatters (in Chinese). J Electron, 19: 376–381Google Scholar
  98. Huo J, Lu D. 2012. Comparison of cloud cover from all-sky imager and meteorological observer. J Atmos Ocean Technol, 29: 1093–1101CrossRefGoogle Scholar
  99. Huo J, Lü D R. 2002. Preliminary study on cloud-cover using an all-sky digital camera (in Chinese). J Nanjing Inst Meteorol, 25: 242–246Google Scholar
  100. Ji Y, Wang B. 1989. Radar backscattering by oblate spongy ice spheroids (in Chinese). J Nanjing Inst Meteorol, 12: 56–66Google Scholar
  101. Jiang J, Chen M, Kuang C, Attoui M, McMurry P H. 2011. Electrical mobility spectrometer using a diethylene glycol condensation particle counter for measurement of aerosol size distributions down to 1 nm. Aerosol Sci Tech, 45: 510–521CrossRefGoogle Scholar
  102. Jiang L J, Feng Z Z, Dai L L, Shang B, Paoletti E. 2018. Large variability in ambient ozone sensitivity across 19 ethylenediurea-treated Chinese cultivars of soybean is driven by total ascorbate. J Environ Sci, 64: 10–22CrossRefGoogle Scholar
  103. Jiang W, Miao S G, Zhang N, Liu H, Hu F, Li L, Wang Y, Wang C. 2010. Numerical simulation on urban meteorology and urban boundary layer (in Chinses). Adv Earth Sci, 25: 463–473Google Scholar
  104. Jiang W, Wang Y, Zhang N. 2009. Research on urban land-surface process and boundary layer structure (in Chinses). Adv Earth Sci, 24: 411–419Google Scholar
  105. Jin C, Liu C, Yin Y, Bi L, Nousiainen T. 2016. Modeling the scattering phase matrix of red clays. Opt Lett, 41: 4879–4882CrossRefGoogle Scholar
  106. Jin S, Quan G, Xiao-Li D, Xiao-Ming S. 2011. Current situation and development trend of weather radar. Electron Des Eng, 19: 82–85Google Scholar
  107. Jin Y, Zeng L. 1992. Complete polarimetric scattering from a layer of nonuniformly-oriented and nonspherical scatters (in Chinese). Acta Electron Sin, 9: 55–61Google Scholar
  108. Jing X Q, Geerts B, Wang Y G, Liu C H. 2019. Ambient factors controlling the wintertime precipitation distribution across mountain ranges in the interior Western United States. Part II: Changes in orographic precipitation distribution in a pseudo-global warming simulation. J Appl Meteorol Climatol, 58: 695–715CrossRefGoogle Scholar
  109. Jones L, Provins A, Holland M, Mills G, Hayes F, Emmett B, Hall J, Sheppard L, Smith R, Sutton M, Hicks K, Ashmore M, Haines-Young R, Harper-Simmonds L. 2014. A review and application of the evidence for nitrogen impacts on ecosystem services. Ecosyst Serv, 7: 76–88CrossRefGoogle Scholar
  110. Kang P, Wang J, Liu G L, Sun Y R, Zhou Z Y, Liu A W, Hu S M. 2018. Line intensities of the 30011e-00001e band of 12C16O2 by laser-locked cavity ring-down spectroscopy. J Quant Spectrosc Ra, 207: 1–7CrossRefGoogle Scholar
  111. Kleffmann J. 2007. Daytime sources of nitrous acid (HONO) in the atmospheric boundary layer. Chemphyschem, 8: 1137–1144CrossRefGoogle Scholar
  112. Kong F, Huang M, Xu H. 1990. Three-dimensional numerical modelling of the ice phase processes in convective cloud I: Model setup and parameterization of cold cloud (in Chinese). Sci Atmos Sin, 14: 441–453Google Scholar
  113. Kong Q, Wang G. 1990. Study on the total absorption of atmospheric ozone at the 9.6 µm and 4.8 µm wavelengths. Collected works of Atmospheric ScienceGoogle Scholar
  114. Lei H, Hong Y, Zhao Z, Xiao H, Guo X. 2008. Advances in cloud and precipitation physics and weather modification in recent years (in Chinese). Chin J Atmos Sci, 32: 967–974Google Scholar
  115. Lei X, Xia X, Yuan S, Luo Q, Chen S, Xu Y. 1985. A numerical simulation of distribution on the acid precipitation in Chongqing area (in Chinese). Chin J Atmos Sci: 276–284Google Scholar
  116. Li B. 2011. A review of Yangjiang 8th international radiosonde inter-comparison (in Chinese). Adv Meteorol Sci, 3: 6–13Google Scholar
  117. Li D, Mo J, Fang Y, Peng S, Per G. 2003. Impact of nitrogen deposition on forest plants (in Chinese). Acta Ecol Sin, 23: 1891–1900Google Scholar
  118. Li F, Zhang H, Chen J. 2004. Advances in studies of characteristics of turbulent kinetic budget in atmospheric boundary layer (in Chinese). Meteorol Sci Technol, 32: 305–310Google Scholar
  119. Li H, Zhong J, Vehkamäki H, Kurtén T, Wang W, Ge M, Zhang S, Li Z, Zhang X, Francisco J S, Zeng X C. 2018. Self-catalytic reaction of SO3 and NH3 to produce sulfamic acid and its implication to atmospheric particle formation. J Am Chem Soc, 140: 11020–11028CrossRefGoogle Scholar
  120. Li J, Duan M, Qin J. 2014. A coupled successive order scattering vector radiative transfer model for ocean-atmosphere system (in Chinese). Remote Sens Technol Appl, 29: 181–188Google Scholar
  121. Li J, Mao J. 1989. Inverse of the property of atmospheric aerosols by optical remote sensing (in Chinese). Acta Meteorol Sin, 47: 450–456Google Scholar
  122. Li J W, Han Z W. 2016. Aerosol vertical distribution over east China from RIEMS-Chem simulation in comparison with CALIPSO measurements. Atmos Environ, 143: 177–189CrossRefGoogle Scholar
  123. Li K, Jacob D J, Liao H, Shen L, Zhang Q, Bates K H. 2019. Anthropogenic drivers of 2013–2017 trends in summer surface ozone in China. Proc Natl Acad Sci USA, 116: 422–427CrossRefGoogle Scholar
  124. Li K, Li J, Liggio J, Wang W, Ge M, Liu Q, Guo Y, Tong S, Li J, Peng C, Jing B, Wang D, Fu P. 2017. Enhanced light scattering of secondary organic aerosols by multiphase reactions. Environ Sci Technol, 51: 1285–1292CrossRefGoogle Scholar
  125. Li L, Duan Z, Li H, Zhu C, Henkelman G, Francisco J S, Zeng X C. 2018. Formation of HONO from the NH3-promoted hydrolysis of NO2 dimers in the atmosphere. Proc Natl Acad Sci USA, 115: 7236–7241CrossRefGoogle Scholar
  126. Li M, Liu H, Geng G, Hong C, Liu F, Song Y, Tong D, Zheng B, Cui H, Man H, Zhang Q, He K. 2017. Anthropogenic emission inventories in China: A review. Natl Sci Rev, 4: 834–866CrossRefGoogle Scholar
  127. Li M, Zhang D, Li C T, Mulvaney K M, Selin N E, Karplus V J. 2018. Air quality co-benefits of carbon pricing in China. Nat Clim Change, 8: 398–403CrossRefGoogle Scholar
  128. Li N, Wang Z, Xu F, Chu Z, Zhu Y, Han J. 2017. The assessment of ground-based weather radar data by comparison with TRMM PR. IEEE Geosci Remote Sens Lett, 14: 72–76CrossRefGoogle Scholar
  129. Li P, De Marco A, Feng Z, Anav A, Zhou D, Paoletti E. 2018. Nationwide ground-level ozone measurements in China suggest serious risks to forests. Environ Pollut, 237: 803–813CrossRefGoogle Scholar
  130. Li Q C. 1962. Radar equation considering the coherent scattering of radar waves from cloud and rain drops (in Chinese). Acta Meteorol Sin, 32: 119–128Google Scholar
  131. Li R, Dong X, Guo J, Fu Y, Zhao C, Wang Y, Min Q. 2017. The implications of dust ice nuclei effect on cloud top temperature in a complex mesoscale convective system. Sci Rep, 7: 13826CrossRefGoogle Scholar
  132. Li S, Wang X, Zhou M, Xue F, Li B, Wang S. 2010. A polar regions flux observation system and its application in the IPY global coordinated observation (in Chinese). Mar Forecast, 27: 62–71Google Scholar
  133. Li T T, Zhang Y, Wang J N, Xu D D, Yin Z X, Chen H S, Lv Y B, Luo J S, Zeng Y, Liu Y, Kinney P L, Shi X M. 2018. All-cause mortality risk associated with long-term exposure to ambient PM2.5 in China: A cohort study. Lancet Public Health, 3: E470–E477CrossRefGoogle Scholar
  134. Li X, Hu F, Liu G, Hong Z. 2001. Multi-scale fractal characteristics of atmospheric boundary-layer turbulence. Adv Atmos Sci, 18: 787–792CrossRefGoogle Scholar
  135. Li X, Li X, Li Z, Wang J, Ma M, Liu Q, Xiao Q, Hu Z, Che T, Wang J, Liu Q, Chen E, Yan G J, Liu S, Wang W, Zhang L, Wang J, Niu Z, Jin R, Ran Y, Wang L. 2012a. Progresses on the watershed allied telemetry experimental research (WATER). Remote Sens Technol Appl, 27: 637–649Google Scholar
  136. Li X, Liu S, Ma M, Xiao Q, Liu Q, Jin R, Che T, Wang W, Qi Y, Li H, Zhu G, Guo J, Ran Y, Wen J, Wang S. 2012b. An integrated remote sensing experiment on hydrological and ecological processes in the Heihe River Basin. Adv Earth Sci, 27: 481–498Google Scholar
  137. Li Y, Gao Z, Yuan R, Miao S G, Zhang B, Hu Y. 2009. Non-iteration methods of turbulent flux parameterization (in Chinese). Chin J Atmos Sci, 33: 790–770Google Scholar
  138. Li Y, Li F, Zhao Z Q, Guo H P, Sun L H, Li Z L, Zhou Q, Zhen W. 2013. Construction of operation monitoring system of mesoscale automatic weather stations in China (in Chinese). Meteorol Sci Technol, 41: 231–277Google Scholar
  139. Li Y, Qiu S, Shi L, Wang T, Zhang Q, Lei Q, Sun Z. 2018. Observed variation of three-dimensional return stroke speeds along the channel in rocket-triggered lightning. Geophys Res Lett, 45: 12569–12575CrossRefGoogle Scholar
  140. Li Y J, Zhang G S, Wen J, Wang D H, Wang Y H, Zhang T, Fan X P, Wu B. 2013. Electrical structure of a Qinghai-Tibet Plateau thunderstorm based on three-dimensional lightning mapping. Atmos Res, 134: 137–149CrossRefGoogle Scholar
  141. Li Z, Hu R, Xie P, Chen H, Wu S, Wang F, Wang Y, Ling L, Liu J, Liu W. 2018. Development of a portable cavity ring down spectroscopy instrument for simultaneous, in situ measurement of NO3 and N2O5. Opt Express, 26: A433CrossRefGoogle Scholar
  142. Li Z, Zhu X. 1987. Thermal buoyancy smoke uplift mode defined by mechanical turbulence (in Chinese). Sci Sin Ser B, 7: 780–788Google Scholar
  143. Li Z Q, Xu H, Li K T, Li D H, Xie Y S, Li L, Zhang Y, Gu X F, Zhao W, Tian Q J, Deng R R, Su X L, Huang B, Qiao Y L, Cui W Y, Hu Y, Gong C L, Wang Y Q, Wang X F, Wang J P, Du W B, Pan Z Q, Li Z Z, Bu D. 2018. Comprehensive study of optical, physical, chemical, and radiative properties of total columnar atmospheric aerosols over China: An overview of sun-sky radiometer observation network (sonet) measurements. Bull Amer Meteorol Soc, 99: 739–755CrossRefGoogle Scholar
  144. Liang P, Mu Y J, Daële V, Mellouki A. 2011. Kinetic studies of Cl reactions with 3-buten-1-ol and 2-buten-1-ol over the temperature range 298–363 K. Chem Phys Lett, 502: 154–158CrossRefGoogle Scholar
  145. Liao M, Healy S, Zhang P. 2019. Processing and quality control of FY-3C GNOS data used in numerical weather prediction applications. Atmos Meas Tech, 12: 2679–2692CrossRefGoogle Scholar
  146. Lin J, Pan D, Davis S J, Zhang Q, He K, Wang C, Streets D G, Wuebbles D J, Guan D. 2014. China’s international trade and air pollution in the United States. Proc Natl Acad Sci USA, 111: 1736–1741CrossRefGoogle Scholar
  147. Lin J, Tong D, Davis S, Ni R, Tan X, Pan D, Zhao H, Lu Z, Streets D, Feng T, Zhang Q, Yan Y, Hu Y, Li J, Liu Z, Jiang X, Geng G, He K, Huang Y, Guan D. 2016. Global climate forcing of aerosols embodied in international trade. Nat Geosci, 9: 790–794CrossRefGoogle Scholar
  148. Lin W S, Bi L, Dubovik O. 2018. Assessing superspheroids in modeling the scattering matrices of dust aerosols. J Geophys Res-Atmos, 123: 13917–13943Google Scholar
  149. Lin W S, Bi L, Liu D, Zhang K J. 2017. Use of Debye’s series to determine the optimal edge-effect terms for computing the extinction efficiencies of spheroids. Opt Express, 25: 20298–20312CrossRefGoogle Scholar
  150. Lin Z, Liu H, Xie Z, Wang A, Liu S. 2008. Recent progress in the land-surface and hydrological precess studies (in Chinese). Chin J Atmos Sci, 32: 935–949Google Scholar
  151. Liu AW, Hu C L, Wang J, Perevalov V I, Hu S M. 2019. Cavity ring-down spectroscopy of 15N enriched N2O near 1.56 µm. J Quant Spectrosc Ra, 232: 1–9CrossRefGoogle Scholar
  152. Liu B, Hao J, He K, Chai F, Xue Z, Fan Y, Liu Z, Zhao W. 1998. Study on designation of acid rain and SO2 pollution control areas and policy implementation (in Chinese). China Envrion Sci, 18: 1–7Google Scholar
  153. Liu C, Chung C E, Yin Y, Schnaiter M. 2018. The absorption Ångström exponent of black carbon: From numerical aspects. Atmos Chem Phys, 18: 6259–6273CrossRefGoogle Scholar
  154. Liu C, Li J, Yin Y, Zhu B, Feng Q. 2017. Optical properties of black carbon aggregates with non-absorptive coating. J Quant Spectrosc Ra, 187: 443–452CrossRefGoogle Scholar
  155. Liu C, Liao F, Zhao Z. 2012a. Advances in tropical air-sea boundary observations (in Chinese). Adv Meteorol Sci Technol, 2: 27–31Google Scholar
  156. Liu C, Ma Q, Liu Y, Ma J, He H. 2012b. Synergistic reaction between SO2 and NO2 on mineraloxides: A potential formation pathway of sulfate aerosol. Phys Chem Chem Phys, 14: 1668–1676CrossRefGoogle Scholar
  157. Liu C, Yin Y. 2016. Inherent optical properties of pollen particles: A case study for the morning glory pollen. Opt Express, 24: A104CrossRefGoogle Scholar
  158. Liu D Y, Niu S J, Yang J, Zhao L J, Lü J J, Lu C S. 2011. Summary of a 4-year fog field study in Northern Nanjing, Part 1: Fog boundary layer. Pure Appl Geophys, 169: 809–819CrossRefGoogle Scholar
  159. Liu F, Zhang Q, Zheng B, Tong D, Yan L, Zheng Y, He K. 2016. Recent reduction in NOx, emissions over China: Synthesis of satellite observations and emission inventories. Environ Res Lett, 11: 114002CrossRefGoogle Scholar
  160. Liu G, Qiu J. 2004. A three-dimensional Monte-Carlo model of surface-atmosphere coupled radiation (in Chinese). Chin J Atmos Sci, 28: 69–77Google Scholar
  161. Liu G, Sun J, Jiang W, Liu H, Yuan R, Luo T. 2009. Comprehensive observations of urban atmospheric boundary layer: Exeprimental descriptions and characteristics analysis of the near-surface micro-meteorology (in Chinese). J Univ Sci Technol China, 39: 23–32CrossRefGoogle Scholar
  162. Liu H, Dong W, Wu T, Zheng D, Zhang Y. 2012. Observation of compact intracloud discharges using VHF broadband interferometers. J Geophys Res-Atmos, 117Google Scholar
  163. Liu J, Huang X, He Y, Wang Z, Wang. 2015. Comparative Analysis of X Band Phased Array Antenna Weather Radar Measurements. Plateau Meteorol, 34: 1167–1176Google Scholar
  164. Liu L, Ge R. 2006. An overview on radar meteorology research in Chinese academy of meteorological sciences for a half centory (in Chinese). J Appl Meteorol Sci, 17: 682–689Google Scholar
  165. Liu L, Mo Y, Sha X, Su T. 2005. Radar data processing and a variational algorithm for 3-dimensional wind field retrieval by C band bistatic radar network (in Chinese). Chin J Atmos Sci, 20: 144–154Google Scholar
  166. Liu L, Sun X, Gao T C, Zhao S J. 2013. Comparison of cloud properties from ground-based infrared cloud measurement and visual observations. J Atmos Ocean Technol, 30: 1171–1179CrossRefGoogle Scholar
  167. Liu L, Sun X, Chen F, Zhao S, Gao T. 2011. Cloud classification based on structure features of infrared images. J Atmos Ocean Technol, 28: 410–417CrossRefGoogle Scholar
  168. Liu L, Wu L, Wu C, Wang X, Chen X, Cao J, Zhuang W. 2014. Field experiment on convective precipitation by X-band phased-array radar and preliminary results. Chin J Atmos Sci, 38: 1079–1094Google Scholar
  169. Liu M, Huang X, Song Y, Tang J, Cao J, Zhang X, Zhang Q, Wang S, Xu T, Kang L, Cai X, Zhang H, Yang F, Wang H, Yu J Z, Lau A K H, He L, Huang X, Duan L, Ding A, Xue L, Gao J, Liu B, Zhu T. 2019. Ammonia emission control in China would mitigate haze pollution and nitrogen deposition, but worsen acid rain. Proc Natl Acad Sci USA, 116: 7760–7765CrossRefGoogle Scholar
  170. Liu T, Wang X, Deng W, Hu Q, Ding X, Zhang Y, He Q, Zhang Z, Lü S, Bi X, Chen J, Yu J. 2015. Secondary organic aerosol formation from photochemical aging of light-duty gasoline vehicle exhausts in a smog chamber. Atmos Chem Phys, 15: 9049–9062CrossRefGoogle Scholar
  171. Liu X. 1999. Research on lightning physics and artificially triggered lightning over last decade: Progress and prospect (in Chinese). Plateau Meteorol, 18: 266–272Google Scholar
  172. Liu X, Dong W, Fu C, Shi L. 2004. The long-term field experiment on aridification and the ordered human activity in semi-arid area at Tongyu, Northeast China (in Chinese). Clim Environ Res, 9: 378–389Google Scholar
  173. Liu X, Gao T, Hu Y, Shu X. 2017. Precipitation micro-physical characteristics sensor based on double-pulse in single frame imaging (in Chinese). Opt Precis Eng, 25: 842–849CrossRefGoogle Scholar
  174. Liu X, Ye Z, Shao X, Wang C, Yan M, Guo C. 1989. Intracloud lighting discharges in the lower part of thundercloud. Acta Meteorol Sin, 3: 212–219Google Scholar
  175. Liu X C, Gao T C, Liu L. 2014. A video precipitation sensor for imaging and velocimetry of hydrometeors. Atmos Meas Tech, 7: 2037–2046CrossRefGoogle Scholar
  176. Liu X G, Li J, Qu Y, Han T, Hou L, Gu J, Chen C, Yang Y, Liu X, Yang T, Zhang Y, Tian H, Hu M. 2013. Formation and evolution mechanism of regional haze: A case study in the megacity Beijing, China. Atmos Chem Phys, 13: 4501–4514CrossRefGoogle Scholar
  177. Liu Y, Chen Y, Xu X, Liu Z. 2013. Implementation and analysis of the perfectly matched layer with auxiliary differential equation for the multiresolution time-domain method (in Chinese). Acta Phys Sin, 62: 122–127Google Scholar
  178. Liu Y, Laiguang Y, Weinong Y, Feng L. 1995. On the size distribution of cloud droplets. Atmos Res, 35: 201–216CrossRefGoogle Scholar
  179. Liu Y, Liggio J, Staebler R, Li S M. 2015. Reactive uptake of ammonia to secondary organic aerosols: Kinetics of organonitrogen formation. Atmos Chem Phys, 15: 13569–13584CrossRefGoogle Scholar
  180. Liu Y, Lu K, Li X, Dong H, Tan Z, Wang H, Zou Q, Wu Y, Zeng L, Hu M, Min K E, Kecorius S, Wiedensohler A, Zhang Y. 2019. A comprehensive model test of the HONO sources constrained to field measurements at rural North China Plain. Environ Sci Technol, 53: 3517–3525CrossRefGoogle Scholar
  181. Liu Z. 2015. Dopper wind lidar: From vehicle-mounted to sparce-borne (in Chinese). J Atmos Environm Opt, 10: 126–138Google Scholar
  182. Lu C, Liu Y, Niu S, Krueger S, Wagner T. 2013. Exploring parameterization for turbulent entrainment-mixing processes in clouds. J Geophys Res, 118: 185–194Google Scholar
  183. Lu D, Pan W, Wang Y. 2018. Atmospheric profiling synthetic observation system in Tibet. Adv Atmos Sci, 35: 264–267CrossRefGoogle Scholar
  184. Lu G, Jiang R, Qie X, Zhang H, Sun Z, Liu M, Wang Z, Liu K. 2014. Burst of intracloud current pulses during the initial continuous current in a rocket-triggered lightning flash. Geophys Res Lett, 41: 9174–9181CrossRefGoogle Scholar
  185. Lu K, Zhang Y. 2010. Observations of HOx radical in field studies and the analysis of its chemical mechanism. Prog Chem, 22: 500–514Google Scholar
  186. Lu K D, Rohrer F, Holland F, Fuchs H, Bohn B, Brauers T, Chang C C, Haeseler R, Hu M, Kita K, Kondo Y, Li X, Lou S R, Nehr S, Shao M, Zeng L M, Wahner A, Zhang Y H, Hofzumahaus A. 2012. Observation and modelling of OH and HO2 concentrations in the Pearl River Delta 2006: A missing OH source in a VOC rich atmosphere. Atmos Chem Phys, 12: 1541–1569CrossRefGoogle Scholar
  187. Lu Q F, Bell W, Bauer P, Bormann N, Peubey C. 2011. An evaluation of FY-3A satellite data for numerical weather prediction. Q J R Meteorol Soc, 137: 1298–1311CrossRefGoogle Scholar
  188. Lu W, Chen L, Ma Y, Rakov VA, Gao Y, Zhang Y, Yin Q, Zhang Y. 2013. Lightning attachment process involving connection of the downward negative leader to the lateral surface of the upward connecting leader. Geophys Res Lett, 40: 5531–5535CrossRefGoogle Scholar
  189. Lu Z, Hao J, Takekawa H, Hu L, Li J. 2009. Effect of high concentrations of inorganic seed aerosols on secondary organic aerosol formation in the m-xylene/NOx photooxidation system. Atmos Environ, 43: 897–904CrossRefGoogle Scholar
  190. Luo G, Wang Z. 2006. A global environmental atmospheric transport model (GEATM): Model description and validation (in Chinese). Dissertation for Doctoral Degree. Beijing: Institute of Atmospheric Physics, Chinese Academy of Sciences. 504–518Google Scholar
  191. Lv C, Tian H, Huang Y. 2007. Ecological effects of increased nitrogen deposition in terrestrial ecosystem. Chin J Plant Ecol, 31: 205–218CrossRefGoogle Scholar
  192. Lv D. 1999. Progress of atmospheric physics in China. Physics, 28: 654–661Google Scholar
  193. Lv D R, Wang P C, Qiu J H, Tao S Y. 2003. An overview on the research progress of atmospheric remote sensing and satellite meteorology in China (in Chinese). Chin J Atmos Sci, 27: 552–566Google Scholar
  194. Ma J, Guo X, Zhao C, Zhang Y, Hu Z. 2007. Recent progress in cloud physics research in China. Adv Atmos Sci, 24: 1121–1137CrossRefGoogle Scholar
  195. Ma N, Zhao C S, Müller T, Cheng Y F, Liu P F, Deng Z Z, Xu W Y, Ran L, Nekat B, van Pinxteren D, Gnauk T, Müller K, Herrmann H, Yan P, Zhou X J, Wiedensohler A. 2012. A new method to determine the mixing state of light absorbing carbonaceous using the measured aerosol optical properties and number size distributions. Atmos Chem Phys, 12: 2381–2397CrossRefGoogle Scholar
  196. Ma S Q, Wu K J, Chen D D, Tang Z Y, Li X X, Du B, Cao Z G. 2011. Automated present weather observing system experiment (in Chinese). Meteorol Month, 37: 1166–1172Google Scholar
  197. Ma Y, Yao T, Wang J. 2006. Experimental study of energy and water cycle in Tibetan Plateau-the process introduction on the study of GAME/Tibet and CAMP/Tibet (in Chinese). Plateau Meteorol, 25: 344–351Google Scholar
  198. Mao J. 1992. A statistic model on the range of acid deposition (in Chinese). Acta Sci Circumst, 12: 28–36Google Scholar
  199. Mao J, Gu Z. 1963. Formation of the Superadiabatic Moisture Content in the Stratiform Cloud (in Chinese). Beijing: Science PressGoogle Scholar
  200. Mao J, Luan S. 1985. Determination of scattering phase function of the atmosphere (in Chinese). Sci Atmos Sin, 9: 107–111Google Scholar
  201. Mao J, Zheng G. 2006. Discussions on some weather modification issues. J Appl Meteorol Sci, 17: 643–646Google Scholar
  202. Mu M, Duan W, Chen D, Yu W. 2015. Target observations for improving initialization of high-impact ocean-atmospheric environmental events forecasting. Nat Sci Rev, 2: 226–236CrossRefGoogle Scholar
  203. Mu M, Duan W S, Wang B. 2003. Conditional nonlinear optimal perturbation and its applications. Nonlin Processes Geophys, 10: 493–501CrossRefGoogle Scholar
  204. Nie J, Qin M, Yang Y, Zhang W. 2002. The photochemical reaction study of toluene by smog chamber (in Chinese). Chin J Atomic Molecul Phys, 19: 304–306Google Scholar
  205. Niu S, Ma T, Guan Y, Lu Y. 1992. Observation analysis of the microstructures of precipitation sheet clouds in summer over Ningxia (in Chinese). Plateau Meteorol, 11: 241–248Google Scholar
  206. Niu Y, Chen R J, Xia Y J, Cai J, Lin Z J, Liu C, Chen C, Peng L, Zhao Z H, Zhou W H, Chen J M, Kan H D. 2018. Personal ozone exposure and respiratory inflammatory response: The role of DNA methylation in the arginase-nitric oxide synthase pathway. Environ Sci Technol, 52: 8785–8791CrossRefGoogle Scholar
  207. Peng J, Hu M, Du Z, Wang Y, Zheng J, Zhang W, Yang Y, Qin Y, Zheng R, Xiao Y, Wu Y, Lu S, Wu Z, Guo S, Mao H, Shuai S. 2017. Gasoline aromatics: A critical determinant of urban secondary organic aerosol formation. Atmos Chem Phys, 17: 10743–10752CrossRefGoogle Scholar
  208. Peng J F, Hu M, Guo S, Du Z F, Zheng J, Shang D J, Zamora M L, Zeng L M, Shao M, Wu Y S, Zheng J, Wang Y, Glen C R, Collins D R, Molina M J, Zhang R Y. 2016. Markedly enhanced absorption and direct radiative forcing of black carbon under polluted urban environments. Proc Natl Acad Sci USA, 113: 4266–4271CrossRefGoogle Scholar
  209. Peng Y, Wang H, Li Y B, Liu C W, Zhao T L, Zhang X Y, Gao Z Q, Jiang T, Che H Z, Zhang M. 2018. Evaluating the performance of two surface layer schemes for the momentum and heat exchange processes during severe haze pollution in Jing-Jin-Ji in eastern China. Atmos Chem Phys, 18: 17421–17435CrossRefGoogle Scholar
  210. Qie X. 2012. Progresses in the atmospheric electricity researches in China during 2006–2010. Adv Atmos Sci, 29: 993–1005CrossRefGoogle Scholar
  211. Qie X, Liu X, Zhang G, Yu Y, Guo C, Wang D, Ushio T, Watanabe T. 1998. Characteristics of lightning discharge to ground in Zhongchuan area (in Chinese). Acta Meteorol Sin, 56: 312–322Google Scholar
  212. Qie X S, Lü D R, Chen H B, Wang P C, Duan S, Zhang W X, Wang X, Xuan Y J, Wang Y, Huo J. 2008. Advances in high technology of atmospherics sounding and application researches (in Chinese). Chin J Atmos Sci, 32: 867–881Google Scholar
  213. Qie X S, Yang J, Jiang R, Wang C, Feng G, Wu S. 2012. Shandong artifically triggering lightning experiment and current characterization of return stroke (in Chinese). Chin J Atmos Sci, 36: 77–88Google Scholar
  214. Qie X S, Zhang Y J. 2019. A review of atmospheric electricity research in China from 2011 to 2018. Adv Atmos Sci, 36: 994–1014CrossRefGoogle Scholar
  215. Qin Y, Lin Y, Xu S, Ma H Y, Xie S. 2018. A diagnostic PDF cloud scheme to improve subtropical low clouds in NCAR Community Atmosphere Model (CAM 5). J Adv Model Earth Syst, 10: 320–341CrossRefGoogle Scholar
  216. Qin Y, Xiu A. 1992. An Eulerian meso-scale model on deposition of pollutants (in Chinese). Acta Scientiarum Naturalium Universitatis Pekinensis, 28: 602–612Google Scholar
  217. Qiu J. 1986. An improved algorithm for solving radiative transfer equation (in Chinese). Sci Atmos Sin, 10: 250–257Google Scholar
  218. Qiu J, Lv D, Chen H, Wang G, Shi G. 2003. Modern research progresses in atmospheric physics (in Chinese). Chin J Atmos Sci, 27: 628–652Google Scholar
  219. Qiu S, Zhou B, Guo J. 2011. Measurement of lightning electric field changes (in Chinese). Chin J Radio Sci, 26: 79–83Google Scholar
  220. Randles C A, Kinne S, Myhre G, Schulz M, Stier P, Fischer J, Doppler L, Highwood E, Ryder C, Harris B, Huttunen J, Ma Y, Pinker R T, Mayer B, Neubauer D, Hitzenberger R, Oreopoulos L, Lee D, Pitari G, Di Genova G, Quaas J, Rose F G, Kato S, Rumbold S T, Vardavas I, Hatzianastassiou N, Matsoukas C, Yu H, Zhang F, Zhang H, Lu P. 2013. Intercomparison of shortwave radiative transfer schemes in global aerosol modeling: Results from the aerocom radiative transfer experiment. Atmos Chem Phys, 13: 2347–2379CrossRefGoogle Scholar
  221. Rao R. 1996. Equivalence of light scattering by external mixture of atmospheric aerosol particles (in Chinese). Acta Opt Sin, 16: 77–86Google Scholar
  222. Ren K, Li J, Wang W, Zhang H. 2005. Investigation on experiment system for modeling of photochemical smog (in Chinese). Acta Sci Circumst, 25: 1431–1435Google Scholar
  223. Ren X, Matthias O, Shao K, Tang X. 1999. Measurement of hydroxyl radical using fluorescence assay with gas expansion technique (in Chinese). Modern Sci Instru, 9: 11–13Google Scholar
  224. Ren Y, Zhang H S, Wei W, Wu B G, Cai X H, Song Y. 2019. Effects of turbulence structure and urbanization on the heavy haze pollution process. Atmos Chem Phys, 19: 1041–1057CrossRefGoogle Scholar
  225. Shang B, Feng Z Z, Li P, Yuan X Y, Xu Y S, Calatayud V. 2017. Ozone exposure- and flux-based response relationships with photosynthesis, leaf morphology and biomass in two poplar clones. Sci Total Environ, 603: 185–195CrossRefGoogle Scholar
  226. Shang Z, Xie C. 2016. Raman lidar for measuring water vapor in the troposphere (in Chinese). Infrared Laser Eng, 45: 184–189Google Scholar
  227. Shao X, Liu X. 1987. Preliminary analysis of the intra-cloud lightning and positive charge below cloud (in Chinese). Plateau Meteorol, 6: 317–325Google Scholar
  228. Shen G, Ru M, Du W, Zhu X, Zhong Q, Chen Y, Shen H, Yun X, Meng W, Liu J, Cheng H, Hu J, Guan D, Tao S. 2019. Impacts of air pollutants from rural Chinese households under the rapid residential energy transition. Nat Commun, 10: 3405CrossRefGoogle Scholar
  229. Sheng P, Mao J. 1987. The estimation of the long-range transport of air pollutants in China-I Trajectory analysis (in Chineses). Acta Meteorol Sin, 45: 65–71Google Scholar
  230. Shi C, Sun X, Yang J, Li Z. 1996. 3D model study on fog over complex terrain-part I: Numerical study. J Meteorol Res, 10: 493–506Google Scholar
  231. Shi D, Hua D, Lei N, Gao F, Wang L, Yan Q. 2018. Research of solar-blind ultraviolet Raman lidar for water vapor. Measure Technol Spectros Spect Anal, 38: 1430–1436Google Scholar
  232. Shi D, Zheng D, Zhang Y, Zhang Y J, Huang Z G, Lv W, Chen S. 2017. Low-frequency E-field Detection Array (LFEDA)—Construction and preliminary results. Sci China Earth Sci, 60: 1896–1908CrossRefGoogle Scholar
  233. Shi G. 1998. Distribution mode of absorption coefficient calculated from atmospheric radiation (in Chinese). Sci Atmos Sin, 22: 277–294Google Scholar
  234. Shi G. 2007. Atmospheric Radiation. Beijing: Science PressGoogle Scholar
  235. Shi G, Qu Y. 1985. An approximate approach for diffusivity factor. Chin Sci Bull, 30: 1887–1890CrossRefGoogle Scholar
  236. Song Y, Shao M, Liu Y, Lu S, Kuster W, Goldan P, Xie S. 2007. Source apportionment of ambient volatile organic compounds in Beijing. Environ Sci Technol, 41: 4348–4353CrossRefGoogle Scholar
  237. Sun D, Zhong Z, Wang B, Xia H, Huang J, Zhou X. 2006. Direct detection doppler wind lidar based on dual FP etalon (in Chinese). Chin J Quantum Electron, 23: 303–306Google Scholar
  238. Sun G, Li Y, Lu J. 2019. Cloud vertical structures associated with northward advance of the East Asian summer monsoon. Atmos Res, 215: 317–325CrossRefGoogle Scholar
  239. Sun J, Zhang L, Shen X, Che H, Zhang Y, Fan R, Ma Q, Yue Y, Yu X. 2016. A review of the effects of relative humidity on aerosol scattering properties. Acta Meteorol Sin, 74: 672–682Google Scholar
  240. Sun X, Wang H, Liu W, Shen J. 2010. Nonspherical model for sand dust storm and its application to the research of light multiple scattering (in Chinese). Acta Opt Sin, 30: 1506–1510CrossRefGoogle Scholar
  241. Sun Y, Jiang Q, Wang Z, Fu P, Li J, Yang T, Yin Y. 2014. Investigation of the sources and evolution processes of severe haze pollution in Beijing in January 2013. J Geophys Res-Atmos, 119: 4380–4398CrossRefGoogle Scholar
  242. Sun Y, Zhuang G, Tang A, Wang Y, An Z. 2006. Chemical characteristics of PM2.5 and PM10 in haze-fog episodes in Beijing. Environ Sci Technol, 40: 3148–3155CrossRefGoogle Scholar
  243. Tan F, Tong S, Jing B, Hou S, Liu Q, Li K, Zhang Y, Ge M. 2016. Heterogeneous reactions of NO2 with CaCO3-(NH4)2SO4 mixtures at different relative humidities. Atmos Chem Phys, 16: 8081–8093CrossRefGoogle Scholar
  244. Tan Y B, Tao S C, Zhu B Y. 2006. Fine-resolution simulation of the channel structures and propagation features of intracloud lightning. Geophys Res Lett, 33: L09809CrossRefGoogle Scholar
  245. Tan Y B, Zheng T X, Shi Z. 2019. Improved lightning model: Application to discuss the characteristics of upward lightning. Atmos Res, 217: 63–72CrossRefGoogle Scholar
  246. Tan Z, Rohrer F, Lu K, Ma X, Bohn B, Broch S, Dong H, Fuchs H, Gkatzelis G I, Hofzumahaus A, Holland F, Li X, Liu Y, Liu Y, Novelli A, Shao M, Wang H, Wu Y, Zeng L, Hu M, Kiendler-Scharr A, Wahner A, Zhang Y. 2018. Wintertime photochemistry in Beijing: Observations of RO, radical concentrations in the North China Plain during the BEST-ONE campaign. Atmos Chem Phys, 18: 12391–12411CrossRefGoogle Scholar
  247. Tang X, Bi M, Li J, Zhang X, Tang D, Zhang Y. 1982. Trial production and performance test of photochemical smog chamber (in Chinese). Environ Chem, 1: 344–351Google Scholar
  248. Tang X, Li J, Dong Z. 1989. Photochemical pollution in Lanzhou, China—A case study. J Environ Sci, 1: 31–38Google Scholar
  249. Tao S, Ru M Y, Du W, Zhu X, Zhong Q R, Li B G, Shen G F, Pan X L, Meng W J, Chen Y L, Shen H Z, Lin N, Su S, Zhuo S J, Huang T B, Xu Y, Yun X, Liu J F, Wang X L, Liu W X, Cheng H F, Zhu D Q. 2018. Quantifying the rural residential energy transition in China from 1992 to 2012 through a representative national survey. Nat Energy, 3: 567–573CrossRefGoogle Scholar
  250. Tian Y H, Liu H, Zhao Z L, Xiang X, Li M, Juan J, Song J, Cao Y Y, Wang X W, Chen L B, Wei C, Hu Y H, Gao P. 2018. Association between ambient air pollution and daily hospital admissions for ischemic stroke: A nationwide time-series analysis. Plos Medicine, 15: e1002668CrossRefGoogle Scholar
  251. Tong S, Hou S Q, Zhang Y, Chu B W, Liu Y C, He H, Zhao P S, Ge M F. 2016. Exploring the nitrous acid (HONO) formation mechanism in winter Beijing: Direct emissions and heterogeneous production in urban and suburban areas. Faraday Discuss, 189: 213–230CrossRefGoogle Scholar
  252. Tong D, Zhang Q, Davis S J, Liu F, Zheng B, Geng G, Xue T, Li M, Hong C, Lu Z, Streets D G, Guan D, He K. 2018. Targeted emission reductions from global super-polluting power plant units. Nat Sustain, 1: 59–68CrossRefGoogle Scholar
  253. Wang B. 2017a. A unified formulation of radiative transfer in plane-parallel atmospheres based on general decomposition of radiance. Part I: The Theory. J Atmos Sci, 74: 4139–4151CrossRefGoogle Scholar
  254. Wang B, Ji Y. 1989. Scattering theory and numerical calculation of Polarized electromagnetic wave by rotational ellipsoid (in Chinese). Sci Atmos Sin, 13: 329–342Google Scholar
  255. Wang B, Zhang P, Ji Y. 1991. Quasi-analytic method for calculating microwave attenuation (in Chinese). J Nanjing Inst Meteorol, 14: 34–42Google Scholar
  256. Wang B, Zhang P, Jiang X, Ji Y. 1997. Series-expanded coefficients of scattering quasi-analytic solution by a layered particle (in Chinese). J Nanjing Inst Meteorol, 20: 1–10Google Scholar
  257. Wang B A. 2017b. A unified formulation of radiative transfer in planeparallel atmospheres based on general decomposition of radiance. Part II: An exemplifying application to the hemispherical harmonics method with four components. J Atmos Sci, 74: 4153–4176CrossRefGoogle Scholar
  258. Wang D, Qie X, Guo C. 2000. Thunderbolt and Artificially Triggered Lightning (in Chinese). Shanghai: Shanghai Jiao Tong University PressGoogle Scholar
  259. Wang H, Chen J, Lu K. 2017. Development of a portable cavity-enhanced absorption spectrometer for the measurement of ambient NO3 and N2O5: Experimental setup, lab characterizations, and field applications in a polluted urban environment. Atmos Meas Tech, 10: 1465–1479CrossRefGoogle Scholar
  260. Wang H, Zhang Y, Mu Y. 2008. Rate constants for reactions of •OH with several reduced sulfur compounds determined by relative rate constant method. Acta Physico-Chim Sin, 24: 945–950CrossRefGoogle Scholar
  261. Wang H, Zhao G. 1989. Calculation of the radiation intensity based on discrete ordinate method in the anisotropic scattering atmosphere (in Chinese). Chin Sci Ser B, 12: 1330–1339Google Scholar
  262. Wang J. 1999. Land surface process experiments and interaction study in China-from HEIFE to IMGRASS and GAME-TIBET/TIPEX (in Chinese). Plateau Meteorol, 18: 280–293Google Scholar
  263. Wang J, Zhang X, Li D, Yang Y, Zhong J, Wang Y, Che H, Che H, Zhang Y. 2018. Interdecadal changes of summer aerosol pollution in the Yangtze River Basin of China, the relative influence of meteorological conditions and the relation to climate change. Sci Total Environ, 630: 46–52CrossRefGoogle Scholar
  264. Wang M. 1999. Atmospheric Chemistry. Beijing: China Meteorological PressGoogle Scholar
  265. Wang M, Xu H, Wang Y, Zhang J. 2018. Large-eddy simulation of summer clear sky convective boundary layer in the Taklimakan desert (in Chinese). J Desert Res, 38: 1275–1286Google Scholar
  266. Wang M J, Zhao K, Xue M, Zhang G F, Liu S, Wen L, Chen G. 2016. Precipitation microphysics characteristics of a Typhoon Matmo (2014) rainband after landfall over eastern China based on polarimetric radar observations. J Geophys Res-Atmos, 121: 12415–12433CrossRefGoogle Scholar
  267. Wang N, Sun X, Chen J, Li X. 2017. Heterogeneous nucleation of trichloroethylene ozonation products in the formation of new fine particles. Sci Rep, 7: 42600CrossRefGoogle Scholar
  268. Wang S, Xing J, Chatani S, Hao J, Klimont Z, Cofala J, Amann M. 2011a. Verification of anthropogenic emissions of China by satellite and ground observations. Atmos Environ, 45: 6347–6358CrossRefGoogle Scholar
  269. Wang S, Xing J, Jang C, Zhu Y, Fu J S, Hao J. 2011b. Impact assessment of ammonia emissions on inorganic aerosols in East China using response surface modeling technique. Environ Sci Technol, 45: 9293–9300CrossRefGoogle Scholar
  270. Wang S, Zhao M, Xing J, Wu Y, Zhou Y, Lei Y, He K, Fu L, Hao J. 2010. Quantifying the air pollutants emission reduction during the 2008 Olympic Games in Beijing. Environ Sci Technol, 44: 2490–2496CrossRefGoogle Scholar
  271. Wang T, Li Z, Nan F. 1996. Numerical modeling of regional acid depisition part-I. Model (in Chinese). Chin J Atmos Sci, 20: 606–614Google Scholar
  272. Wang T, Shi L H, Qiu S, Sun Z, Zhang Q, Duan Y T, Liu B. 2018. Multiple-antennae observation and EMTR processing of lightning VHF radiations. IEEE Access, 6: 26558–26566CrossRefGoogle Scholar
  273. Wang T J, Jiang F, Deng J J, Shen Y, Fu Q Y, Wang Q, Fu Y, Xu J H, Zhang D N. 2012. Urban air quality and regional haze weather forecast for Yangtze River Delta region. Atmos Environ, 58: 70–83CrossRefGoogle Scholar
  274. Wang T J, Li S, Shen Y, Deng J J, Xie M. 2010. Investigations on direct and indirect effect of nitrate on temperature and precipitation in China using a regional climate chemistry modeling system. J Geophys Res-Atmos, 115Google Scholar
  275. Wang W G, Li K, Zhou L, Ge M F, Hou S Q, Tong S R, Mu Y J, Jia L. 2015. Evaluation and application of dual-reactor chamber for studying atmospheric oxidation processes and mechanisms. Acta Physico-Chim Sin, 31: 1251–1259Google Scholar
  276. Wang X, Liu T, Bernard F, Ding X, Wen S, Zhang Y, Zhang Z, He Q, Lü S, Chen J, Saunders S, Yu J. 2014. Design and characterization of a smog chamber for studying gas-phase chemical mechanisms and aerosol formation. Atmos Meas Tech, 7: 301–313CrossRefGoogle Scholar
  277. Wang Y, Hao J, McElroy M B, Munger J W, Ma H, Chen D, Nielsen C P. 2009. Ozone air quality during the 2008 Beijing Olympics: Effectiveness of emission restrictions. Atmos Chem Phys, 9: 5237–5251CrossRefGoogle Scholar
  278. Wang Y, Wu Z, Hu M. 2017. Hygroscopicity of atmospheric sub-micrometer particles in various environments in China. China Environ Sci, 37: 1601–1609Google Scholar
  279. Wang Y S, Xin J Y, Li Z Q, Wang S G, Wang P C, Hao W M, Nordgren B L, Chen H B, Wang L L, Sun Y. 2011c. Seasonal variations in aerosol optical properties over China. J Geophys Res-Atmos, 116Google Scholar
  280. Wang Z, Cui S C, Yang J, Gao H Y, Liu C, Zhang Z B. 2017a. A novel hybrid scattering order-dependent variance reduction method for Monte Carlo simulations of radiative transfer in cloudy atmosphere. J Quant Spectrosc Ra, 189: 283–302CrossRefGoogle Scholar
  281. Wang Z, Guo P, Zhang H. 2009. A numerical study of direct radiative forcing due to black carbon and its effects on the summer precipitation in China (in Chinese). Clim Environ Res, 14: 161–171Google Scholar
  282. Wang Z, Sui X, Zhang Q, Yang L, Zhao H, Tang M, Zhan Y, Zhang Z. 2017b. Derivation of cloud-free-region atmospheric motion vectors from FY-2E thermal infrared imagery. Adv Atmos Sci, 34: 272–282CrossRefGoogle Scholar
  283. Wang Z, Wang Z, Li J, Zheng H, Yan P, Li J. 2014. Development of meteorology-chemistry two-way coupled numerical model (WRF-NAQPMS) and its application in a severe autumn haze simulation over the Beijing-Tianjin-Hebei area, China (in Chinese). Clim Environ Res, 19: 153–163Google Scholar
  284. Wang Z, Zhang P. 1998. Absorption and scattering of microwaves by mixed ice and liquid water spheres (in Chinese). J Nanjing Inst Meteorol, 21: 469–477Google Scholar
  285. AGCM2.0.1_CUACE/Aero, evaluation against observations, and updated aerosol indirect effect. J Geophys Res-Atmos, 119, doi: https://doi.org/10.1002/2014JD021886 Google Scholar
  286. Wei H, Chen X, Rao R. 2007. Introduction to the combined atmospheric radiative transfer software CART (in Chinese). J Atmos Environm Opt, 2: 446–450Google Scholar
  287. Wei H, Song Z. 1995. Calculation of atmospheric transmissivity for infrared radiations (in Chinese). J Infrared Millim Wave, 14: 159–160Google Scholar
  288. Wei H L, Chen X H, Rao R Z, Wang Y J, Yang P. 2007. A moderate-spectral-resolution transmittance model based on fitting the line-by-line calculation. Opt Express, 15: 8360–8370CrossRefGoogle Scholar
  289. Wei X, Zhang H. 2011. Analysis of optical properties of nonspherical dustlike aerosols. Acta Opt Sin, 31: 0501002–1–8CrossRefGoogle Scholar
  290. Wei M, Zhang S, Liu J, Shao C, Liu X. 2011. Simulation algorithm research of an airborne Doppler weather radar with scanning ideal model. Trans Atmos Sci, 34: 28–35Google Scholar
  291. Wei W, Zhang H S, Schmitt F G, Huang Y X, Cai X H, Song Y, Huang X, Zhang H. 2017. Investigation of turbulence behaviour in the stable boundary layer using arbitrary-order Hilbert Spectra. Bound-Layer Meteorol, 163: 311–326CrossRefGoogle Scholar
  292. Wen J, Zhao K, Huang H, Zhou B, Yang Z, Chen G, Wang M, Wen L, Dai H, Xu L, Liu S, Zhang G, Lee W C. 2017. Evolution of microphysical structure of a subtropical squall line observed by a polarimetric radar and a disdrometer during OPACC in Eastern China. J Geophys Res-Atmos, 122: 8033–8050CrossRefGoogle Scholar
  293. Wu B, Li W, Chen H, Li F, Zhang W, Lv D 1998. Practical Algorithm for Atmospheric Radiation Transmission. Beijing: China Meteorological PressGoogle Scholar
  294. Wu B, Lv D. 1989. Simulation of the characteristics of twilight after volcanic eruption using the Monte-Carlo method (in Chinese). Sci Atmos Sin, 13: 204–213Google Scholar
  295. Wu D, Mao J T, Deng X J, Tie X X, Zhang Y H, Zeng L M, Li F, Tan H B, Bi X Y, Huang X Y, Chen J, Deng T. 2009. Black carbon aerosols and their radiative properties in the Pearl River Delta region. Sci China Ser D-Earth Sci, 52: 1152–1163CrossRefGoogle Scholar
  296. Wu H, Mou Y, Zhang X, Song W, Zhou L. 2001. Measurements of the reaction rate constants of OH radical and several low carbon mixed alcohol using relative rate method (in Chinese). J Environ Sci, 21: 525–529Google Scholar
  297. Wuebbles D J, Brasseur G P, Rodhe H, Barrie L A, Crutzen P J, Delmas R J, Jacob D J, Kolb C, Pszenny A, Steffen W, Weiss R F. 2003. Changes in the chemical composition of the atmosphere and potential impacts. In: Atmospheric Chemistry in a Changing World, 1–17. Berlin Heidelberg: Springer-VerlagGoogle Scholar
  298. Xiao D E, Zhang W. 2009. Current situation and development trend of meteorological balloon (in Chinese). China Rubber, 25: 9–11Google Scholar
  299. Xiao H, Yin Y, Jin L, Chen Q, Chen J. 2014. Simulation of aerosol effects on orographic clouds and precipitation using WRF model with a detailed bin microphysics scheme. Atmos Sci Lett, 15: 134–139CrossRefGoogle Scholar
  300. Xie C, Zhou J, Yue G, Qi F, Fan Y. 2007. Mobile lidar system for measuring tropospheric aerosol and water vapor (in Chinese). Infrared Laser Eng, 36: 365–372Google Scholar
  301. Xie X, Zhang H, Liu X, Peng Y, Liu Y. 2017. Sensitivity study of cloud parameterizations with relative dispersion in CAM5.1: Impacts on aerosol indirect effects. Atmos Chem Phys, 17: 5877–5892CrossRefGoogle Scholar
  302. Xie X S, Tao S C, Zhou X J. 1999. Meteorological visibility measurement by digital camera method (in Chinese). Chin Sci Bull, 44: 97–100Google Scholar
  303. Xin J Y, Wang Y S, Li Z Q, Wang P C, Hao W M, Nordgren B L, Wang S G, Liu G R, Wang L L, Wen T X, Sun Y, Hu B. 2007. Aerosol optical depth (AOD) and Angstrom exponent of aerosols observed by the Chinese Sun Hazemeter Network from August 2004 to September 2005. J Geophys Res-Atmos, 112: D05203Google Scholar
  304. Xu D, Zhu R, Li Z. 1997. On the PDF models for atmospheric diffusion in boundary layer (in Chinese). Acta Meteorol Sin, 55: 670–680Google Scholar
  305. Xu H. 1964. Preliminary observations of the cloud-fog microphysical structures at Hengshan site (in Chinese). Acta Meteorol Sin, 34: 539–547Google Scholar
  306. Xu J, Guo Q, Lu Q, Lu F, Zhang X. 2014. Innovations in the data processing algorithm of Fengyun meteorological satellite (in Chinese). Acta Meteorol Sin, 72: 1023–1038CrossRefGoogle Scholar
  307. Xu J, Yang J, Zhang Z, Sun A. 2010. Development and application of meteorological satellite in China (in Chinese). Meteorol Month, 36: 94–100Google Scholar
  308. Xu L T, Zhang Y J, Liu H Y, Zheng D, Wang F. 2016. The role of dynamic transport in the formation of the inverted charge structure in a simulated hailstorm. Sci China Earth Sci, 59: 1414–1426CrossRefGoogle Scholar
  309. Xu X. 2003. Construction, techniques and application of new generation Doppler weather radar network in China (in Chinese). Eng Sci, 5: 7–14Google Scholar
  310. Xu X, Chen L. 2006. Advances of the study on Tibetan Plateau experiment of atmospheric sciences (in Chinese). J Appl Meteorol Sci, 17: 756–772Google Scholar
  311. Xu X, Ding G, Bian L. 2004. Characteristics of atmospheric environment of boundary layer sturcture of city community in BECAPEX and integrate influence (in Chinese). Acta Meteorol Sin, 62: 663–671Google Scholar
  312. Xu X, Zhou M, Chen J, Bian L, Zhang G, Liu H, Li S, Zhang H, Zhao J, Suoluo D, Wang J. 2001. A comprehensive physical pattern of land-air dynamic and thermal structure on the Qinghai-Xizang Plateau. China Ser D-Earth Sci, 45: 577–595CrossRefGoogle Scholar
  313. Xue C, Ye C, Zhang Y, Ma Z, Liu P, Zhang C, Zhao X, Liu J, Mu Y. 2019. Development and application of a twin open-top chambers method to measure soil HONO emission in the North China Plain. Sci Total Environ, 659: 621–631CrossRefGoogle Scholar
  314. Yan M, Guo C, Ge Z. 1996a. Numerical study of cloud dynamic-electrification in an axisymmetric, time-dependent cloud model I. Results (in Chinese). Acta Geophys Sin, 39(S1): 65–77Google Scholar
  315. Yan M, Guo C, Ge Z. 1996b. Numerical study of cloud dynamic-electrification in an axisymmetric, time-dependent cloud model I. theory and model (in Chinese). Acta Geophys Sin, 39(S1): 52–64Google Scholar
  316. Yan Q, Hua D, Li S. 2013. Observation and productization of the micropulsed Mie scattering lidar system. Chin J Quantum Electron, 30: 123–128Google Scholar
  317. Yang C, Liu W, Zhang Y. 2011. Wavelet denoising algorithm of laser diode ceilometer (in Chinese). J Atmos Environm Opt, 6: 463–469Google Scholar
  318. Yang J. 2012. Meteorological Satellite and its Application (in Chinese). Beijing: China Meteorological PressGoogle Scholar
  319. Yang J, Xian D, Tang S. 2018. Development and applition of Fengyun satellites (in Chinese). Satel Appl, 83: 8–14Google Scholar
  320. Yang J, Zhang P, Lu N M, Yang Z D, Shi J M, Dong C H. 2012. Improvements on global meteorological observations from the current Fengyun 3 satellites and beyond. Int J Digital Earth, 5: 251–265CrossRefGoogle Scholar
  321. Yang J, Zhang Z Q, Wei C Y, Lu F, Guo Q. 2017. Introducing the new generation of Chinese geostationary weather satellites, Fengyun-4. Bull Amer Meteorol Soc, 98: 1637–1658CrossRefGoogle Scholar
  322. Yang K, Koike T, Fujii H, Tamagawa K, Hirose N. 2002. Improvement of surface flux parametrizations with a turbulence-related length. Q J R Meteorol Soc, 128: 2073–2087CrossRefGoogle Scholar
  323. Yang P, Cai Q. 1990. Phase matrix for radiation scattering of ellipsoidal and cylindrical large particles (in Chinese). Sci Atmos Sin, 14: 342–353Google Scholar
  324. Yang P, Cai Q, Xu B. 1989. A succinct numerical method to solve the scattering problem of large nospherical particles (in Chinese). Plateau Meteorol, 8: 291–300Google Scholar
  325. Yao L, Garmash O, Bianchi F, Zheng J, Yan C, Kontkanen J, Junninen H, Mazon S B, Ehn M, Paasonen P, Sipilä M, Wang M, Wang X, Xiao S, Chen H, Lu Y, Zhang B, Wang D, Fu Q, Geng F, Li L, Wang H, Qiao L, Yang X, Chen J, Kerminen V M, Petäjä T, Worsnop D R, Kulmala M, Wang L. 2018. Atmospheric new particle formation from sulfuric acid and amines in a Chinese megacity. Science, 361: 278–281CrossRefGoogle Scholar
  326. Yin D, Li Z. 1993. A long range transport-chemical transformation model and its application in the study of acid deposition (in Chinese). Acta Sci Circumst, 13: 11–21Google Scholar
  327. Yin P, Brauer M, Cohen A, Burnett R T, Liu J M, Liu Y N, Liang R M, Wang W H, Qi J L, Wang L J, Zhou M G. 2017. Long-term fine particulate matter exposure and nonaccidental and cause-specific mortality in a large national cohort of chinese men. Environmental Health Perspectives, 125Google Scholar
  328. You L, Liu Y. 1995. Some microphysical characteristics of cloud and precipitation over China. Atmos Res, 35: 271–281CrossRefGoogle Scholar
  329. Yu H, Jiang W. 1994. A study on the prediction of radiative fumigation (in Chinese). Acta Sci Circumst, 14: 191–197Google Scholar
  330. Yuan P, Liu X, Zhang Y, Qie X, Zhang G, Wang H. 2004a. Spectral study on lightning return stroke in plateau area. Chin J Geophys-Chin Ed, 47: 42–46Google Scholar
  331. Yuan P, Liu X, Zhang Y, Qie X S, Zhang G S. 2004b. Spectral study on lightning return straoke in Plateau Area (in Chinese). Chin J Gephys, 47: 42–46Google Scholar
  332. Yuan X Y, Feng Z Z, Liu S, Shang B, Li P, Xu Y S, Paoletti E. 2017. Concentration- and flux-based dose-responses of isoprene emission from poplar leaves and plants exposed to an ozone concentration gradient. Plant Cell Environ, 40: 1960–1971CrossRefGoogle Scholar
  333. Yuan Z, Jiang B, Ren L, Zhou S, Zheng D. 1965. Analysis of the detection results of strong electric field sonde and thunderstorm cloud electric field (in Chinese). Acta Meteorol Sin, 35: 440–448Google Scholar
  334. Yuan Z, Zhang P, Gu S. 1993. A compression method for the primitive data of the digital weather radar echoes (in Chinese). J Nanjing Inst Meteorol, 16: 432–438Google Scholar
  335. Yue D L, Hu M, Zhang R Y, Wang Z B, Zheng J, Wu Z J, Wiedensohler A, He L Y, Huang X F, Zhu T. 2010. The roles of sulfuric acid in new particle formation and growth in the mega-city of Beijing. Atmos Chem Phys, 10: 4953–4960CrossRefGoogle Scholar
  336. Yue Z, Rosenfeld D, Liu G, Dai J, Yu X, Zhu Y, Hashimshoni E, Xu X, Hui Y, Lauer O. 2019. Automated Mapping of Convective Clouds (AMCC) Thermodynamical, Microphysical, and CCN Properties from SNPP/VIIRS Satellite Data. J Appl Meteorol Climatol, 58: 887–902CrossRefGoogle Scholar
  337. Zeng C, Liu C, Li J, Zhu B, Yin Y, Wang Y. 2019. Optical properties and radiative forcing of aged BC due to hygroscopic growth: Effects of the aggregate structure. J Geophys Res-Atmos, 124: 4620–4633CrossRefGoogle Scholar
  338. Zeng Q. 1974a. Principle of atmospheric Infrared Telemetry. Beijing: Science PressGoogle Scholar
  339. Zeng Q. 1974b. Theory of Atmospheric Infrared Remote Sensing. Beijing: Science PressGoogle Scholar
  340. Zeng Q C, Cheng X L, Hu F, Peng Z. 2010. Gustiness and coherent structure of strong winds and their role in dust emission and entrainment. Adv Atmos Sci, 27: 1–13CrossRefGoogle Scholar
  341. Zhang B, Yang G, Zhang Z, Li J. 1986. Overview of mesoscale weather experiments in east China (in Chinese). Meteorol Month, 4: 2–5Google Scholar
  342. Zhang F, Li J N. 2013. Doubling-adding method for delta-four-stream spherical harmonic expansion approximation in radiative transfer parameterization. J Atmos Sci, 70: 3084–3101CrossRefGoogle Scholar
  343. Zhang F, Wu K, Li J, Yang Q, Zhao J Q, Li J. 2016. Analytical infrared delta-four-stream adding method from invariance principle. J Atmos Sci, 73: 4171–4188CrossRefGoogle Scholar
  344. Zhang F, Wu K, Li J N, Zhang H, Hu S. 2018. Radiative transfer in the region with solar and infrared spectra overlap. J Quant Spectrosc Ra, 219: 366–378CrossRefGoogle Scholar
  345. Zhang F, Zhang H, Shen Z, Wei X. 2011. A new approach for deal with diffusivity factor (in Chinese with English abstract). Acta Phys Sin, 60: 010702Google Scholar
  346. Zhang F, Zhu M, Li J, Li W, Di D, Shi Y, Wu K. 2019. Alternate mapping correlated k-distribution method for infrared radiative transfer forward simulation. Remote Sens, 11: 994, doi:  https://doi.org/10.3390/rs11090994 CrossRefGoogle Scholar
  347. Zhang F, Wu K, Li J N, Zhang H, Hu S. 2018. Radiative transfer in the region with solar and infrared spectra overlap. J Quant Spectrosc Ra, 219: 366–378CrossRefGoogle Scholar
  348. Zhang G, Li Y, Wang Y, Zhang T, Wu B. 2015. Experimental study on location accuracy of a 3D VHF lightning-radiation-source locating network. Sci China Earth Sci, 58: 2034–2048CrossRefGoogle Scholar
  349. Zhang H. 1999. Study of the K-distribution method related to heterogeneous path. Dissertation for Doctoral Degree. Beijing: Institute of Atmospheric Physics of Chinese Academy of SciencesGoogle Scholar
  350. Zhang H. 2015. Study on Atmospheric Radiation Absorption. Beijing: China Meteorological PressGoogle Scholar
  351. Zhang H. 2016. BCC_RAD Atmospheric Radiation Transfer Model. Beijing: China Meteorological PressGoogle Scholar
  352. Zhang H, Jing X, Li J. 2014. Application and evaluation of a new radiation code under McICA scheme in BCC_AGCM2.0.1. Geosci Model Dev, 7: 737–754CrossRefGoogle Scholar
  353. Zhang H, Lu P. 2014. Construction of the multi-layers four-stream spherical harmonic expansion algorithm and its application to atmospheric radiative model (in Chinese). Acta Meteorol Sin, 72: 1257–1268Google Scholar
  354. Zhang H, Nakajima T, Shi G Y, Suzuki T, Imasu R. 2003. An optimal approach to overlapping bands with correlated k distribution method and its application to radiative calculations. J Geophys Res-Atmos, 108: 4641CrossRefGoogle Scholar
  355. Zhang H, Shi G. 2000. A fast and efficient line-by-line calculation method foratmospheric absorption (in Chinese). Chin J Atmos Sci, 24: 111–121Google Scholar
  356. Zhang H, Shi G. 2001. An improved approach to diffuse radiation. J Quant Pectrosc Radiat Transfer, 70: 367–372CrossRefGoogle Scholar
  357. Zhang H, Shi G, Liu Y. 2005. A comparison between the two line-by-line integration algorithms (in Chinese). Chin J Atmos Sci, 29: 581–593Google Scholar
  358. Zhang H, Shi G, Liu Y. 2007. The effects of line-wing cutoff on radiative calculations (in Chinese). Acta Meteorol Sin, 65: 968–975Google Scholar
  359. Zhang H, Wang M, Guo Z, Zhou C, Zhou T, Qian Y, Larson V E, Ghan S, Ovchinnikov M, Bogenschutz P A, Gettelman A. 2018a. Low-cloud feedback in CAM5-CLUBB: Physical mechanisms and parameter sensitivity analysis. J Adv Model Earth Syst, 10: 2844–2864CrossRefGoogle Scholar
  360. Zhang H, Wang ZL, Wang Z Z, Liu Q X, Gong S L, Zhang XY, Shen Z P, Lu P, Wei X D, Che H Z, Li L. 2012. Simulation of direct radiative forcing of aerosols and their effects on East Asian climate using an interactive AGCM-aerosol coupled system. Clim Dyn, 38: 1675–1693CrossRefGoogle Scholar
  361. Zhang H, Zhang H S, Cai X H, Song Y, Sun J N. 2016. Contribution of low-frequency motions to sensible heat fluxes over urban and suburban areas. Bound-Layer Meteorol, 161: 183–201CrossRefGoogle Scholar
  362. Zhang H, Zhang Y, He H, Xie Y, Zeng Q. 2017. Comparison of raindrop size distributions in a midlatitude continental squall line during different stages as measured by parsivel over East China. J Appl Meteorol Climatol, 56: 2097–2111CrossRefGoogle Scholar
  363. Zhang H, Zhou C, Zhao S Y. 2018b. Influences of the internal mixing of anthropogenic aerosols on global aridity change. J Meteorol Res, 32: 723–733CrossRefGoogle Scholar
  364. Zhang H S, Li X L. 2014. Review of the field measurements and parameterization for dust emission during sand-dust events. J Meteorol Res, 28: 903–922CrossRefGoogle Scholar
  365. Zhang J, An J, Qu Y, Liu X, Chen Y. 2019. Impacts of potential HONO sources on the concentrations of oxidants and secondary organic aerosols in the Beijing-Tianjin-Hebei region of China. Sci Total Environ, 647: 836–852CrossRefGoogle Scholar
  366. Zhang L, Wang R, Huang X. 2002. Introduction of L-band wind radar-electronic sonde system (in Chinese). Gansu Meteorol, 20: 30–32Google Scholar
  367. Zhang M, Hu F, Zou H, Hong Z, Zhao Y, Gao Z. 2008. An overview of recent studies on atmospheric boundary layer physics and atmospheric environment in LAPC (in Chinese). Chin J Atmos Sci, 32: 923–934Google Scholar
  368. Zhang P, Li X, Gu S. 1989. A four-dimensional assimilation method of weather radar (in Chinese). J Nanjing Inst Meteorol, 12: 22–28Google Scholar
  369. Zhang P, Lu Q F, Hu X Q, Gu S Y, Yang L, Min M, Chen L, Xu N, Sun L, Bai W G, Ma G, Xian D. 2019a. Latest progress of the Chinese meteorological satellite program and core data processing technologies. Adv Atmos Sci, 36: 1027–1045CrossRefGoogle Scholar
  370. Zhang P, Wang Z, Hu F. 2012. Radar meteorological equations for bistatic/multistatic weather radar systems detecting small spheroid raindrops (in Chinese). Acta Meteorol Sin, 70: 867–874Google Scholar
  371. Zhang P, Wang Z, Hu F. 2013. A study on meteorological equations for dual-polarization radar detecting small ellipsoids (in Chinese). J Trop Meteorol, 29: 505–510Google Scholar
  372. Zhang P, Zhu L, Tang S H, Gao L, Chen L, Zheng W, Han X Z, Chen J, Shao J L. 2019b. General comparison of FY-4A/AGRI with other GEO/LEO instruments and its potential and challenges in non-meteorological applications. Front Earth Sci, 6, doi:  https://doi.org/10.3389/feart.2018.00224
  373. Zhang Q, Geng G N, Wang S W, Richter A, He K B. 2012. Satellite remote sensing of changes in NOx emissions over China during 1996–2010. Chin Sci Bull, 57: 2857–2864CrossRefGoogle Scholar
  374. Zhang Q, Huang R, Wang S. 2005. NWC-ALIEX and its research advances (in Chinses). Adv Earth Sci, 4: 427–441Google Scholar
  375. Zhang Q, Jiang X, Tong D, Davis S J, Zhao H, Geng G, Feng T, Zheng B, Lu Z, Streets D G, Ni R, Brauer M, van Donkelaar A, Martin R V, Huo H, Liu Z, Pan D, Kan H, Yan Y, Lin J, He K, Guan D. 2017. Trans-boundary health impacts of transported global air pollution and international trade. Nature, 543: 705–709CrossRefGoogle Scholar
  376. Zhang Q, Streets D G, Carmichael G R, He K B, Huo H, Kannari A, Klimont Z, Park I S, Reddy S, Fu J S, Chen D, Duan L, Lei Y, Wang L T, Yao Z L. 2009a. Asian emissions in 2006 for the NASA INTEX-B mission. Atmos Chem Phys, 9: 5131–5153CrossRefGoogle Scholar
  377. Zhang Q, Wang S, Zhang J, Wang R, Liu H, Li Y. 2009b. The progresses on land surface processes and atmospheric boundary layer in arid regions (in Chinses). Adv Earth Sci, 24: 1185–1194Google Scholar
  378. Zhang Q, Wang S, Zhang J, Wang R, Liu H, Li Y. 2009c. The progresses on land surface processes and atmospheric boundary layer in arid regions (in Chinese). Adv Earth Sci: 1185–1194Google Scholar
  379. Zhang R, Jing J, Tao J, Hsu S C, Wang G, Cao J, Lee C S L, Zhu L, Chen Z, Zhao Y, Shen Z. 2013. Chemical characterization and source apportionment of PM2.5 in Beijing: Seasonal perspective. Atmos Chem Phys, 13: 7053–7074CrossRefGoogle Scholar
  380. Zhang S, Wei M, Lai Q. 2017. Analysis of CINRAD echo characteristics about two fires (in Chinese). J Meteorol Sci, 37: 359–367Google Scholar
  381. Zhang W. 2001. Status and development of FY series of meteorological satellites (in Chinese). Aerosp Shanghai, 2: 8–14Google Scholar
  382. Zhang W, Tong S, Ge M, An J, Shi Z, Hou S, Xia K, Qu Y, Zhang H, Chu B, Sun Y, He H. 2019. Variations and sources of nitrous acid (HONO) during a severe pollution episode in Beijing in winter 2016. Sci Total Environ, 648: 253–262CrossRefGoogle Scholar
  383. Zhang W X, Lü D R. 2012. Comparison of cloud base heights by ground based sky IR brightness temperature measurements with cloud radar and ceilometer in Shouxian (in Chinese). Chin J Atmos Sci, 36: 657–672Google Scholar
  384. Zhang W, Zhang Y, Zheng D, Wang F, Xu L. 2015. Relationship between lightning activity and tropical cyclone intensity over the northwest Pacific. J Geophys Res-Atmos, 120: 4072–4089CrossRefGoogle Scholar
  385. Zhang X, Zhong J, Wang J, Wang Y, Liu Y. 2018. The interdecadal worsening of weather conditions affecting aerosol pollution in the Beijing area in relation to climate warming. Atmos Chem Phys, 18: 5991–5999CrossRefGoogle Scholar
  386. Zhang Y. 2001. Development status and propest of Fengyun satellite (in Chinese). Aerospace Shanghai, 18: 8–14Google Scholar
  387. Zhang Y H, Hu M, Zhong L J, Wiedensohler A, Liu S C, Andreae M O, Wang W, Fan S J. 2008. Regional integrated experiments on air quality over Pearl River Delta 2004 (PRIDE-PRD2004): Overview. Atmos Environ, 42: 6157–6173CrossRefGoogle Scholar
  388. Zhang Y, Lv W, Chen S, Zheng D, Zhang Y, Yan X, Chen L, Dong W, Dan J, Pan H. 2016. Ten-year progress in the comprehensive observational experiments of thunderstorm in the field in Guangdong (in Chinese). Acta Meteorol Sin, 74: 655–671Google Scholar
  389. Zhang Y, Yan M, Sun A, Guo F. 2009. Thunderstorm Electricity (in Chinese). Beijing: China Meteorological PressGoogle Scholar
  390. Zhang Y, Yang S, Lv W, Zheng D, Dong W, Li B, Chen S, Zhang Y. 2012. Comprehensive observation experiments and application study of artificially triggered lightning during 2006–2011 (in Chinese). Quart J Appl Meteorol, 23: 513–522Google Scholar
  391. Zhang Y, Zhou Q, Lv S, Jia S, Tao F, Chen D, Guo J. 2019. Elucidating cloud vertical structures based on three-year Ka-band cloud radar observations from Beijing, China. Atmos Res, 222: 88–99CrossRefGoogle Scholar
  392. Zhang Y C, Wang W P. 2001. The meteorological instrument present situation and development in the end of the 20 century (in Chinese). Meteorol Hydrol Mar Inst, 3: 1–9Google Scholar
  393. Zhang Z, Lu F, Fang X, Tang S, Zhang X, Xu Y, Han W, Nie S, Shen Y, Zhou Y. 2017. Application and development of FY-4 satellite (in Chinese). Aerosp Shanghai, 34: 8–19Google Scholar
  394. Zhao B, Ding R. 1963. Possibility for the artificial precipitation enhancement of Nimbostratus (1) (in Chinese). Acta Meteorol Sin, 33: 382–391Google Scholar
  395. Zhao B, Zheng H, Wang S, Smith K R, Lu X, Aunan K, Gu Y, Wang Y, Ding D, Xing J, Fu X, Yang X, Liou K, Hao J. 2018. Change in household fuels dominates the decrease in PM2.5 exposure and premature mortality in China in 2005–2015. Proc Nat Acad Sci, 115: 12401–12406CrossRefGoogle Scholar
  396. Zhao C, Liu L, Wang Q, Qiu Y, Wang W, Wang Y, Fan T. 2016. Toward understanding the properties of high ice clouds at the naqu site on the Tibetan Plateau using ground-based active remote sensing measurements obtained during a short period in July 2014. J Appl Meteorol Climatol, 55: 2493–2507CrossRefGoogle Scholar
  397. Zhao C S, Yu Y L, Kuang Y, Tao J C, Zhao G. 2019. Recent progress of aerosol light-scattering enhancement factor studies in China. Adv Atmos Sci, 36: 1015–1026CrossRefGoogle Scholar
  398. Zhao G, Rockel B, Raschke E. 1987. Parameterized model of infrared radiation transfer in the atmosphere (in Chinese). Chin Sci Bull, 32: 1479–1482CrossRefGoogle Scholar
  399. Zhao G, Wang H. 1994. Cloud and radiation II Cloud and cloud radiation parameterizations in General Circulation Models (in Chinese). Sci Atmos Sin, 18: 933–958Google Scholar
  400. Zhao H, Zheng Y, Wu X. 2018. Assessment of yield and economic losses for wheat and rice due to ground-level O3 exposure in the Yangtze River Delta, China. Atmos Environ, 191: 241–248CrossRefGoogle Scholar
  401. Zhao J Q, Hu Y Q. 2003. Bridging technique for calculating the extinction efficiency of arbitrary shaped particles. Appl Opt, 42: 4937–4945CrossRefGoogle Scholar
  402. Zhao J Q, Shi G Y. 2013. An accurate approximation to the diffusivity factor. Infrared Phys Technol, 56: 21–24CrossRefGoogle Scholar
  403. Zhao P, Li Y, Guo X. 2018a. The coupling system of air and earth over the Tibetan Plateau and its synoptic and climatic effects: The third Tibetan Plateau atmospheric scientific experiment (in Chinese). Acta Meteorol Sin, 76: 833–860Google Scholar
  404. Zhao P, Li Y, Guo X, Xu X, Liu Y, Tang S, Xiao W, Shi C, Ma Y, Yu X, Liu H, Jia L, Zhan Y, Liu Y, Li J, Luo D, Cao Y, Zheng X, Chen J, Xiao A, Yuan F, Chen D, Pan S, Hu Z, Zhang S, Dong L, Hu J, Han S, Zhou X. 2018b. Land-atmosphere coupling system in the Tibet Plateau and its climatic effects: The 3rd atmospheric experiment (in Chinese). Acta Meteorol Sin, 76: 833–860Google Scholar
  405. Zhao S, Gao T, Liu T. 2012. Upper wind sounding method based on Beidou-I navigation system (in Chinese). Meteorol Sci Technol, 40: 170–174Google Scholar
  406. Zhao W, Peng Y, Wang B, Li J. 2018. Cloud longwave scattering effect and its impact on climate simulation. Atmosphere, 9: 153CrossRefGoogle Scholar
  407. Zhao Y Z, Xie W G, Chen X M. 1964. An instrument for measuring electric charge distribution of the cloud droplets (in Chinese). Acta Meteorol Sin, 34: 531–538Google Scholar
  408. Zheng B, Tong D, Li M, Liu F, Hong C, Geng G, Li H, Li X, Peng L, Qi J, Yan L, Zhang Y, Zhao H, Zheng Y, He K, Zhang Q. 2018. Trends in China’s anthropogenic emissions since 2010 as the consequence of clean air actions. Atmos Chem Phys, 18: 14095–14111CrossRefGoogle Scholar
  409. Zheng D, Zhang Y, Meng Q. 2018. Properties of negative initial leaders and lightning flash size in a cluster of supercells. J Geophys Res-Atmos, 123: 12857–12876Google Scholar
  410. Zheng D, Zhang Y J, Zhang Y, Lu W T, Yan X, Chen S D, Xu L T, Huang Z G, You J, Zhang R, Su Z G. 2017. Characteristics of the initial stage and return stroke currents of rocket-triggered lightning flashes in southern China. J Geophys Res-Atmos, 122: 6431–6452CrossRefGoogle Scholar
  411. Zheng G G. 2000. Design and implementation of meteorological observation system projects (in Chinese). Eng Sci, 2: 21–26Google Scholar
  412. Zhang Z Q, Liu L P. 2011. A simulation and analysis of the observation errors of cloud intensity and structure with the S-band phased array radar and the CINRAD/SA. Acta Meteorol Sin, 69: 729–735Google Scholar
  413. Zhong Z, Zhou J, Qi F, Fan A, Yue G, Lan J. 2003. Portable Mie lidar for monitoring atmospheric aerosol extinction (in Chinese). High Power Laser Particle Beams, 15: 1145–1147Google Scholar
  414. Zhou C H, Gong S L, Zhang X Y, Wang Y Q, Niu T, Liu H L, Zhao T L, Yang Y Q, Hou Q. 2008. Development and evaluation of an operational SDS forecasting system for East Asia: CUACE/Dust. Atmos Chem Phys, 8: 787–798CrossRefGoogle Scholar
  415. Zhou W Y, Guo P W, Luo Y, Liou K N, Gu Y, Xue Y K. 2009. Four-stream radiative transfer parameterization scheme in a land surface process model. Acta Meteorol Sin, 23: 105–115Google Scholar
  416. Zhou X. 1963. Statistical theory of the microphysical mechanism for warm cloud precipitaton (in Chinese). Acta Meteorol Sin, 33: 97–107Google Scholar
  417. Zhou X. 1979. Progress in atmospheric remote sensing research (in Chinese). Sci Atmos Sin, 3: 203–209Google Scholar
  418. Zhou X, Li W. 1997. Changes of atmospheric ozone and their impacts on climatic environment in China. Annual Report of CAMSGoogle Scholar
  419. Zhou X, Lv D, Huang R. 1982a. Principles of Atmospheric Microwave Radiation and Remote Sensing. Beijing: Science PressGoogle Scholar
  420. Zhou X, Lv D, Huang R. 1982b. Theory of Atmospheric Microwave Radiation and Remote Sensing. Beijing: Science PressGoogle Scholar
  421. Zhou X, Qin R. 1964. Theoretical analysis of the critical drop rupture electric field (in Chinese). Acta Meteorol Sin, 34: 103–110Google Scholar
  422. Zhou H, Zhang P. 2002. A new technique of recovering three-dimensional wind fields from simulated dual-dopler radar data in the cartesian space (in Chinese). Acta Meteorol Sin, 60: 585–593Google Scholar
  423. Zhu Y, Rosenfeld D, Yu X, Li Z. 2015. Separating aerosol microphysical effects and satellite measurement artifacts of the relationships between warm rain onset height and aerosol optical depth. J Geophys Res-Atmos, 120: 7726–7736CrossRefGoogle Scholar
  424. Zhu Y L, Chen H B, Ling C, Wang Y, Sun B L, Liu Y S, Yang Z Q. 2016. Development and application of mini-rocket meteorological sounding system for atmospheric boundary layer observation (in Chinese). Meteorol Environ Sci, 39: 102–107Google Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Tijian Wang
    • 1
    Email author
  • Taichang Gao
    • 2
    Email author
  • Hongsheng Zhang
    • 3
    Email author
  • Maofa Ge
    • 4
    Email author
  • Hengchi Lei
    • 5
  • Peichang Zhang
    • 6
  • Peng Zhang
    • 7
  • Chunsong Lu
    • 6
  • Chao Liu
    • 6
  • Hua Zhang
    • 8
  • Qiang Zhang
    • 9
  • Hong Liao
    • 10
  • Haidong Kan
    • 11
  • Zhaozhong Feng
    • 10
  • Yijun Zhang
    • 12
  • Xiushu Qie
    • 5
  • Xuhui Cai
    • 13
  • Mengmeng Li
    • 1
  • Lei Liu
    • 2
  • Shengrui Tong
    • 4
  1. 1.School of Atmospheric SciencesNanjing UniversityNanjingChina
  2. 2.College of Meteorology and OceanographyNational University of Defense TechnologyNanjingChina
  3. 3.Department of Atmospheric and Oceanic Sciences, School of PhysicsPeking UniversityBeijingChina
  4. 4.Institute of ChemistryChinese Academy of SciencesBeijingChina
  5. 5.Institute of Atmospheric PhysicsChinese Academy of SciencesBeijingChina
  6. 6.School of Atmospheric PhysicsNanjing University of Information Science and TechnologyNanjingChina
  7. 7.National Satellite Meteorological CenterChina Meteorological AdministrationBeijingChina
  8. 8.State Key Laboratory of Severe WeatherChinese Academy of Meteorological SciencesBeijingChina
  9. 9.Department of Earth System ScienceTsinghua UniversityBeijingChina
  10. 10.School of Environmental Science and EngineeringNanjing University of Information Science and TechnologyNanjingChina
  11. 11.Department of Environmental Health, School of Public HealthFudan UniversityShanghaiChina
  12. 12.Department of Atmospheric and Oceanic SciencesFudan UniversityShanghaiChina
  13. 13.Department of Environmental Science, College of Environmental Science and EngineeringPeking UniversityBeijingChina

Personalised recommendations