Advertisement

Tibetan Plateau: An evolutionary junction for the history of modern biodiversity

  • Tao DengEmail author
  • Feixiang Wu
  • Zhekun Zhou
  • Tao Su
Research Paper Special Topic: Cenozoic mammals and plants from Tibetan Plateau and their biogeographical significance
  • 26 Downloads

Abstract

Holding particular biological resources, the Tibetan Plateau is a unique geologic-geographic-biotic interactively unite and hence play an important role in the global biodiversity domain. The Tibetan Plateau has undergone vigorous environmental changes since the Cenozoic, and played roles switching from “a paradise of tropical animals and plants” to “the cradle of Ice Age mammalian fauna”. Recent significant paleontological discoveries have refined a big picture of the evolutionary history of biodiversity on that plateau against the backdrop of major environmental changes, and paved the way for the assessment of its far-reaching impact upon the biota around the plateau and even in more remote regions. Here, based on the newly reported fossils from the Tibetan Plateau which include diverse animals and plants, we present a general review of the changing biodiversity on the Tibetan Plateau and its influence in a global scale. We define the Tibetan Plateau as a junction station of the history of modern biodiversity, whose performance can be categorized in the following three patterns: (1) Local origination of endemism; (2) Local origination and “Out of Tibet”; (3) Intercontinental dispersal via Tibet. The first pattern is exemplified by the snow carps, the major component of the freshwater fish fauna on the plateau, whose temporal distribution pattern of the fossil schizothoracines approximately mirrors the spatial distribution pattern of their living counterparts. Through ascent with modification, their history reflects the biological responses to the stepwise uplift of the Tibetan Plateau. The second pattern is represented by the dispersal history of some mammals since the Pliocene and some plants. The ancestors of some Ice Age mammals, e.g., the wholly rhino, Arctic fox, and argali sheep first originated and evolved in the uplifted and frozen Tibet during the Pliocene, and then migrated toward the Arctic regions or even the North American continent at beginning of the Ice Age; the ancestor of pantherines (big cats) first rose in Tibetan Plateau during the Pliocene, followed by the disperse of its descendants to other parts of Asia, Africa, North and South America to play as top predators of the local ecosystems. The early members of some plants, e.g., Elaeagnaceae appeared in Tibet during the Late Eocene and then dispersed and were widely distributed to other regions. The last pattern is typified by the history of the tree of heaven (Ailanthus) and climbing perch. Ailanthus originated in the Indian subcontinent, then colonized into Tibet after the Indian-Asian plate collision, and dispersed therefrom to East Asia, Europe and even North America. The climbing perches among freshwater fishes probably rose in Southeast Asia during the Middle Eocene, dispersed to Tibet and then migrated into Africa via the docked India. These cases highlight the role of Tibet, which was involved in the continental collision, in the intercontinental biotic interchanges. The three evolutionary patterns above reflect both the history of biodiversity on the plateau and the biological and environmental effects of tectonic uplift.

Keywords

Tibetan Plateau Cenozoic Biodiversity Evolution Plants Fish Mammals 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

Heartfelt thanks go to all co-workers of the Expedition Team of Paleontology on the Tibetan Plateau. The reviewers are kindly acknowledged for their comments on the manuscript. This work was supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant Nos. XDB26000000, XDA20070203, XDA20070301), the Second Comprehensive Scientific Expedition on the Tibetan Plateau (Grant No. QZK0705, 2019), the National Natural Science Foundation of China (Grant Nos. 41430102, 41872006), the Frontier Science Key Research Project (Grant No. QYZDY-SSW-DQC022), the International Partnership Program (Grant No. GJHZ1885), and the Youth Innovation Promotion Association of the Chinese Academy of Sciences (Grant No. 2017103).

References

  1. An Z S, Kutzbach J E, Prell W L, Porter S C. 2001. Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan Plateau since Late Miocene times. Nature, 411: 62–66CrossRefGoogle Scholar
  2. Andersen N M. 1982. Phylogeny, Adaptations, Biogeography, and Classification. Entomonograph. Klampenborg: Scandinavian Science Press. 1–455Google Scholar
  3. Andersen N M. 1990. Phylogeny and taxonomy of water striders, genus Aquarius Schellenberg (Insecta, Hemiptera, Gerridae), with a new species from Australia. Steenstrupia, 16: 37–81Google Scholar
  4. Audet A M, Robbins C B, Larivière S. 2002. Alopex lagopus. Mamm Spec, 713: 1–10CrossRefGoogle Scholar
  5. Bai B, Wang Y Q, Meng J. 2018. The divergence and dispersal of early perissodactyls as evidenced by early Eocene equids from Asia. Commun Biol, 1: 115CrossRefGoogle Scholar
  6. Ballantyne A P, Greenwood D R, Sinninghe Damste J S, Csank A Z, Eberle J J, Rybczynski N. 2010. Significantly warmer Arctic surface temperatures during the Pliocene indicated by multiple independent proxies. Geology, 38: 603–606CrossRefGoogle Scholar
  7. Barnett R, Shapiro B, Barnes I, Ho S Y W, Burger J, Yamaguchi N, Higham T F G, Wheeler H T, Rosendahl W, Sher A V, Sotnikova M, Kuznetsova T, Baryshnikov G F, Martin L D, Harington C R, Burns J A, Cooper A. 2009. Phylogeography of lions (Panthera leo ssp.) reveals three distinct taxa and a late Pleistocene reduction in genetic diversity. Mol Ecol, 18: 1668–1677CrossRefGoogle Scholar
  8. Becker H. 1960. The Tertiary Mormon Creek flora from the Upper Ruby River Basin in southwestern Montana. Palaeontographica B, 107: 83–126Google Scholar
  9. Bell C D, Soltis D E, Soltis P S. 2010. The age and diversification of the angiosperms re-revisited. Am J Bot, 97: 1296–1303CrossRefGoogle Scholar
  10. Berg L S. 1912. Fauna of Russia and Adjacent Countries. Volume 3. St. Petersburg: Imperial Academy of Sciences. 369–704Google Scholar
  11. Berra T M. 2007. Freshwater Fish Distribution. Chicago: University of Chicago Press. 1–615CrossRefGoogle Scholar
  12. Bibi F, Vrba E, Fack F. 2012. A new African fossil caprin and a combined molecular and morphological bayesian phylogenetic analysis of caprini (Mammalia: Bovidae). J Evol Biol, 25: 1843–1854CrossRefGoogle Scholar
  13. Bohlin B. 1937. Eine Tertiäre säugetier-fauna aus Tsaidam. Sino-Swedish Expedition Publication. Palaeont Sin Ser C, 14: 3–111Google Scholar
  14. Borsuk-Bialynicka M. 1973. Studies on the Pleistocene rhinoceros Coelodonta antiquitatis (Blumenbach). Palaeont Pol, 29: 1–94Google Scholar
  15. Bossuyt F, Milinkovitch M C. 2001. Amphibians as indicators of Early Tertiary “Out-of-India” dispersal of vertebrates. Science, 292: 93–95CrossRefGoogle Scholar
  16. Bowmaker A P, Jackson P B N, Jubb R A. 1978. Freshwater fishes. In: Werger M J A, ed. Biogeography and Ecology of Southern Africa. The Hague: Junk Publishers. 1207–1230Google Scholar
  17. Brigham-Grette J, Melles M, Minyuk P, Andreev A, Tarasov P, DeConto R, Koenig S, Nowaczyk N, Wennrich V, Rosén P, Haltia E, Cook T, Gebhardt C, Meyer-Jacob C, Snyder J, Herzschuh U. 2013. Pliocene warmth, polar amplification, and stepped Pleistocene cooling recorded in NE Arctic Russia. Science, 340: 1421–1427CrossRefGoogle Scholar
  18. Cai C Y, Huang D Y, Wu F X, Zhao M, Wang N. 2019. Tertiary water striders (Hemiptera, Gerromorpha, Gerridae) from the central Tibetan Plateau and their palaeobiogeographic implications. J Asian Earth Sci, 175: 121–127CrossRefGoogle Scholar
  19. Cao W X, Chen Y Y, Wu Y F, Zhu S Q. 1981. Origin and evolution of schizothoracine fishes in relation to the upheaval of the Qinghai-Xizang Plateau. In: Comprehensive Scientific Expedition to the Qinghai-Xizang Plateau, Chinese Academy of Sciences, ed. Studies on the Period, Amplitude and Type of Uplift of the Qinghai-Xizang Plateau (in Chinese). Beijing: Science Press. 118–130Google Scholar
  20. Capobianco A, Friedman M. 2019. Vicariance and dispersal in southern hemisphere freshwater fish clades: A palaeontological perspective. Biol Rev, 94: 662–699CrossRefGoogle Scholar
  21. Chang M M, Miao D S. 2016. Review of the Cenozoic fossil fishes from the Tibetan Plateau and their bearings on paleoenvironment (in Chinese). Chin Sci Bull, 61: 981–995CrossRefGoogle Scholar
  22. Chang M M, Miao D S, Wang N. 2010. Ascent with modification: Fossil fishes witnessed their own group’s adaptation to the uplift of the Tibetan Plateau during the late Cenozoic. In: Long M Y, Gu H Y, Zhou Z H, eds. Darwin’s Heritage Today: Proceedings of the Darwin 200 Beijing International Conference. Beijing: Higher Education Press. 60–75Google Scholar
  23. Chang M M, Wang X M, Liu H Z, Miao D S, Zhao Q H, Wu G X, Liu J, Li Q, Sun Z C, Wang N. 2008. Extraordinarily thick-boned fish linked to the aridification of the Qaidam Basin (northern Tibetan Plateau). Proc Natl Acad Sci USA, 105: 13246–13251CrossRefGoogle Scholar
  24. Chatterjee S, Scotese C R, Bajpai S. 2017. The restless Indian Plate and its epic voyage from Gondwana to Asia: Its tectonic, paleoclimatic, and paleobiogeographic evolution. Geol Soc Am Spec Paper, 529: 1–147Google Scholar
  25. Chen X Y, Yang J X. 2005. Triplophysa rosa sp. nov.: A new blind loach from China. J Fish Biol, 66: 599–608CrossRefGoogle Scholar
  26. Chen Y F. 1998. Phylogenetic and distributional patterns of subfamily Schizothoracinae (Pisces: Cyprinidae) I, the phylogenetic patterns (in Chinese). Acta Zootaxon Sin, 23 (Suppl): 17–25Google Scholar
  27. Chen Y F, Cao W X. 2000. Schizothoracinae. In: Yue P Q, ed. Fauna Sinica, Osteichthyes, Cypriniformes III (in Chinese). Beijing: Science Press. 273–390Google Scholar
  28. Chen Y S, Meseguer A S, Godefroid M, Zhou Z, Zhang J W, Deng T, Kim J H, Nie Z L, Liu Y S C, Sun H. 2017. Out-of-India dispersal of Paliurus (Rhamnaceae) indicated by combined molecular phylogenetic and fossil evidence. Taxon, 66: 78–90CrossRefGoogle Scholar
  29. Chen Y Y, Chen Y F, Liu H Z. 1996. Studies on the position of the Qinghai-Xizang Plateau region in zoogeographic divisions and its eastern demarcation line (in Chinese). Acta Hydrobiol Sin, 20: 97–103Google Scholar
  30. Chow M C, Chow B S. 1965. Notes on Villafranchian mammals of Lingyi, Shansi (in Chinese). Vert PalAsiat, 9: 223–234Google Scholar
  31. Clark H O, Newman D P, Murdoch J D, Tseng J, Wang Z H, Harris R B. 2008. Vulpes ferrilata. Mamm Spec, 821: 1–6CrossRefGoogle Scholar
  32. Clayton J W, Soltis P S, Soltis D E. 2009. Recent long-distance dispersal overshadows ancient biogeographical patterns in a pantropical angiosperm family (Simaroubaceae, Sapindales). Syst Biol, 58: 395–410CrossRefGoogle Scholar
  33. Clyde W C, Khan I H, Gingerich P D. 2003. Stratigraphic response and mammalian dispersal during initial India-Asia collision: Evidence from the Ghazij Formation, Balochistan, Pakistan. Geology, 31: 1097–1100CrossRefGoogle Scholar
  34. Corbett S L, Manchester S R. 2004. Phytogeography and Fossil History of Ailanthus (Simaroubaceae). Int J Plant Sci, 165: 671–690CrossRefGoogle Scholar
  35. Croitor R, Brugal J P. 2010. Ecological and evolutionary dynamics of the carnivore community in Europe during the last 3 million years. Quat Int, 212: 98–108CrossRefGoogle Scholar
  36. Csank A Z, Tripati A K, Patterson W P, Eagle R A, Rybczynski N, Ballantyne A P, Eiler J M. 2011. Estimates of Arctic land surface temperatures during the Early Pliocene from two novel proxies. Earth Planet Sci Lett, 304: 291–299CrossRefGoogle Scholar
  37. Cun Y Z, Wang X Q. 2010. Plant recolonization in the Himalaya from the southeastern Qinghai-Tibetan Plateau: Geographical isolation contributed to high population differentiation. Mol Phylogenets Evol, 56: 972–982CrossRefGoogle Scholar
  38. Damgaard J. 2005. Genetic diversity, taxonomy, and phylogeography of the western Palaearctic water strider Aquarius najas (DeGeer) (Heteroptera: Gerridae). Insect Syst Evol, 36: 395–406CrossRefGoogle Scholar
  39. Darlington P J. 1957. Zoogeography, the Geographic Distribution of Animals. New York: John Wiley & Sons. 1–675Google Scholar
  40. Davis B W, Li G, Murphy W J. 2010. Supermatrix and species tree methods resolve phylogenetic relationships within the big cats, Panthera (Carnivora: Felidae). Mol Phylogenet Evol, 56: 64–76CrossRefGoogle Scholar
  41. DeCelles P G, Kapp P, Ding L, Gehrels G E. 2007. Late Cretaceous to middle Tertiary basin evolution in the central Tibetan Plateau: Changing environments in response to tectonic partitioning, aridification, and regional elevation gain. Geol Soc Am Bull, 119: 654–680CrossRefGoogle Scholar
  42. Deng T, Ding L. 2015. Paleoaltimetry reconstructions of the Tibetan Plateau: Progress and contradictions. Natl Sci Rev, 2: 417–437CrossRefGoogle Scholar
  43. Deng T, Li Q, Tseng Z J, Takeuchi G T, Wang Y, Xie G P, Wang S Q, Hou S K, Wang X M. 2012a. Locomotive implication of a Pliocene three-toed horse skeleton from Tibet and its paleo-altimetry significance. Proc Natl Acad Sci USA, 109: 7374–7378CrossRefGoogle Scholar
  44. Deng T, Wang S Q, Xie G P, Li Q, Hou S K, Sun B Y. 2012b. A mammalian fossil from the Dingqing Formation in the Lunpola Basin, northern Tibet, and its relevance to age and paleo-altimetry. Chin Sci Bull, 57: 261–269CrossRefGoogle Scholar
  45. Deng T, Wang X M, Fortelius M, Li Q, Wang Y, Tseng Z J, Takeuchi G T, Saylor J E, Säilä L K, Xie G P. 2011. Out of Tibet: Pliocene woolly rhino suggests high-plateau origin of Ice Age megaherbivores. Science, 333: 1285–1288CrossRefGoogle Scholar
  46. Deng T, Wang X M, Li Q. 2012. Ancestral woolly rhino from the Zanda Basin in Tibet, China suggests origin of Ice Age megaherbivores in high plateau (in Chinese). China Basic Sci, 14: 17–21Google Scholar
  47. Deng T, Wang X M, Wang S Q, Li Q, Hou S K. 2015. Evolution of the Chinese Neogene mammalian faunas and its relationship to uplift of the Tibetan Plateau (in Chinese). Adv Earth Sci, 30: 407–415Google Scholar
  48. Deng T, Wang X M, Wu F X, Wang Y, Li Q, Wang S Q, Hou S K. 2019. Review: Implications of vertebrate fossils for paleo-elevations of the Tibetan Plateau. Glob Planet Change, 174: 58–69CrossRefGoogle Scholar
  49. Ding L, Maksatbek S, Cai F L, Wang H Q, Song P P, Ji W Q, Xu Q, Zhang L Y, Muhammad Q, Upendra B. 2017. Processes of initial collision and suturing between India and Asia. Sci China Earth Sci, 60: 635–651CrossRefGoogle Scholar
  50. Favre A, Michalak I, Chen C H, Wang J C, Pringle J S, Matuszak S, Sun H, Yuan Y M, Struwe L, Muellner-Riehl A N. 2016. Out-of-Tibet: The spatio-temporal evolution of Gentiana (Gentianaceae). J Biogeogr, 43: 1967–1978CrossRefGoogle Scholar
  51. Favre A, Päckert M, Pauls S U, Jähnig S C, Uhl D, Michalak I, Muellner-Riehl A N. 2015. The role of the uplift of the Qinghai-Tibetan Plateau for the evolution of Tibetan biotas. Biol Rev, 90: 236–253CrossRefGoogle Scholar
  52. Fernández M H, Vrba E S. 2005. A complete estimate of the phylogenetic relationships in Ruminantia: A dated species-level supertree of the extant ruminants. Biol Rev, 80: 269–302CrossRefGoogle Scholar
  53. Fortelius M. 2018. New and Old Worlds Database of Fossil Mammals (NOW). Helsinki: University of Helsinki. http://www.helsinki.fi/science/now/ Google Scholar
  54. Friis E M, Crane P R, Pedersen K R. 2011. Early Flowers and Angiosperm Evolution. New York: Cambridge University Press. 1–596CrossRefGoogle Scholar
  55. Fuentes-González J A, Muñoz-Durán J. 2012. Filogenia de los cánidos actuales (Carnivora: Canidae) mediante análisis de congruencia de characteres bajo parsimonia. Actual Biol, 34: 85–102Google Scholar
  56. Fuentes-Hurtado M, Hof A R, Jansson R. 2016. Paleodistribution modeling suggests glacial refugia in Scandinavia and out-of-Tibet range expansion of the Arctic fox. Ecol Evol, 6: 170–180CrossRefGoogle Scholar
  57. Gao Q B, Li Y H, Gornall R J, Zhang Z X, Zhang F Q, Xing R, Fu P C, Wang J L, Liu H R, Tian Z Z, Chen S L. 2015. Phylogeny and speciation in Saxifraga sect. Ciliatae (Saxifragaceae): Evidence from psbA-trnH, trnL-F and ITS sequences. Taxon, 64: 703–713CrossRefGoogle Scholar
  58. Gentry A W. 1968. The extinct bovid genus Qurliqnoria Bohlin. J Mammal, 49: 769CrossRefGoogle Scholar
  59. Gheerbrant E, Rage J C. 2006. Paleobiogeography of Africa: How distinct from Gondwana and Laurasia? Palaeogeogr Palaeoclimatol Palaeoecol, 241: 224–246CrossRefGoogle Scholar
  60. He D K, Chen Y X, Chen Y F. 2006. Research on molecular phylogeny and biogeography of the Triplophysa species (in Chinese). Prog Nat Sci, 2006, 16: 1395–1404Google Scholar
  61. Hoffmann R S. 1991. The Tibetan Plateau fauna, a high altitude desert associated with the Sahara-Gobi. In: McNeely J A, Neronov V, eds. Mammals of the Palaearctic Desert: Status and Trends in the Sahara-Gobi Region. Moscow: Russian Academy of Sciences. 285–297Google Scholar
  62. Hollick A. 1936. The Tertiary floras of Alaska. US Geol Surv Prof Paper, 182: 1–185Google Scholar
  63. Hora S L. 1953. Fish distribution and Central Asian orography. Curr Sci, 22: 93–97Google Scholar
  64. Huang J H, Liu C R, Zhang J L, Lu X H, Ma K P. 2016. Diversity hotspots and conservation gaps for the Chinese endemic seed flora. Biol Conserv, 198: 104–112CrossRefGoogle Scholar
  65. Jacques F M B, Guo S X, Su T, Xing Y W, Huang Y J, Liu Y S C, Ferguson D K, Zhou Z K. 2011. Quantitative reconstruction of the Late Miocene monsoon climates of southwest China: A case study of the Lincang flora from Yunnan Province. Palaeogeogr Palaeoclimatol Palaeoecol, 304: 318–327CrossRefGoogle Scholar
  66. Jiang H, Su T, Wong W O, Wu F, Huang J, Shi G. 2019. Oligocene Koelreuteria (Sapindaceae) from the Lunpola Basin in central Tibet and its implication for early diversification of the genus. J Asian Earth Sci, 175: 99–108CrossRefGoogle Scholar
  67. Jiang Z G, Li L L, Hu Y M, Hu H J, Li C W, Ping X G, Luo Z H. 2018. Diversity and endemism of ungulates on the Qinghai-Tibetan Plateau: Evolution and conservation (in Chinese). Biodivers Sci, 26: 158–170CrossRefGoogle Scholar
  68. Johnson W E, Eizirik E, Pecon-Slattery J, Murphy W J, Antunes A, Teeling E, O’Brien S J. 2006. The Late Miocene radiation of modern felidae: A genetic assessment. Science, 311: 73–77CrossRefGoogle Scholar
  69. Kahlke H D. 1969. Die Rhinocerotiden-Reste aus den Kiesen von Süssenborn bei Weimar. Paläont Abh A, 3: 567–709Google Scholar
  70. Kahlke R D. 1999. The History of the Origin, Evolution and Dispersal of the Late Pleistocene Mammuthus-Coelodonta Faunal Complex in Eurasia (Large Mammals). Rapid City: Fenske Companies. 1–219Google Scholar
  71. Kahlke R D, Lacombat F. 2008. The earliest immigration of woolly rhinoceros (Coelodonta tologoijensis, Rhinocerotidae, Mammalia) into Europe and its adaptive evolution in Palaearctic cold stage mammal faunas. Quat Sci Rev, 27: 1951–1961CrossRefGoogle Scholar
  72. Klaus S, Morley R J, Plath M, Zhang Y P, Li J T. 2016. Biotic interchange between the Indian subcontinent and mainland Asia through time. Nat Commun, 7: 12132CrossRefGoogle Scholar
  73. Kullander O S, Fang F, Bo D, Erik A. 1999. The fishes of the Kashmir Valley. In: Lennart N, ed. River Jhelum, Kashmir Valley: Impacts on the Aquatic Environment. Swedmar: The International Consultancy Group of the National Board of Fisheries. 99–168Google Scholar
  74. Kurtén B. 1968. Pleistocene Mammals of Europe. Chicago: Aldine Publishing Company. 1–316Google Scholar
  75. Li J T, Li Y, Klaus S, Rao D Q, Hillis D M, Zhang Y P. 2013. Diversification of rhacophorid frogs provides evidence for accelerated faunal exchange between India and Eurasia during the Oligocene. Proc Natl Acad Sci USA, 110: 3441–3446CrossRefGoogle Scholar
  76. Li J X, Wang Y, Jin H F, Li W J, Yan C C, Yan P F, Zhang X Y, He S P, Song Z B. 2017. Identification of Triplophysa species from the Qinghai-Tibetan Plateau (QTP) and its adjacent regions through DNA barcodes. Gene, 605: 12–19CrossRefGoogle Scholar
  77. Li Q, Stidham T A, Ni X J, Li L Z. 2017. Two new Pliocene hamsters (Cricetidae, Rodentia) from southwestern Tibet (China), and their implications for rodent dispersal ‘into Tibet’. J Vert Paleontol, 37: e1403443CrossRefGoogle Scholar
  78. Li Q, Xie G P, Takeuchi G T, Deng T, Tseng Z J, Grohé C, Wang X M. 2014. Vertebrate fossils on the Roof of the World: Biostratigraphy and geochronology of high-elevation Kunlun Pass Basin, northern Tibetan Plateau, and basin history as related to the Kunlun strike-slip fault. Palaeogeogr Palaeoclimatol Palaeoecol, 411: 46–55CrossRefGoogle Scholar
  79. Liem K F. 1963. The comparative osteology and phylogeny of the Anabantoidei (Teleostei, Pisces). Illinois Biol Monogr, 30: 1–149Google Scholar
  80. Lin Q B. 1981. Two new species of Tertiary insect fossils from northern Xizang (in Chinese). In: Comprehensive Scientific Expedition to the Tibetan Plateau, Chinese Academy of Sciences, eds. Palaeontology of Xizang, Vol. 3. Beijing: Science Press. 345–348Google Scholar
  81. Liu J, Su T, Spicer R A, Tang H, Deng W Y D, Wu F X, Srivastava G, Spicer T, Do T V, Deng T, Zhou Z K. 2019. Biotic interchange through lowlands of Tibetan Plateau suture zones during Paleogene. Palaeogeogr Palaeoclimatol Palaeoecol, 524: 33–40CrossRefGoogle Scholar
  82. Lydekker R. 1901. On the skull of a chiru-like antelope from the ossiferous deposits of Hundes (Tibet). Q J Geol Soc, 57: 289–292CrossRefGoogle Scholar
  83. Matuszak S, Muellner-Riehl A N, Sun H, Favre A. 2016. Dispersal routes between biodiversity hotspots in Asia: The case of the mountain genus Tripterospermum (Gentianinae, Gentianaceae) and its close relatives. J Biogeogr, 43: 580–590CrossRefGoogle Scholar
  84. Murray A M, Thewissen J G M. 2008. Eocene actinopterygian fishes from Pakistan, with the description of a new genus and species of channid (Channiformes). J Vert Paleontol, 28: 41–52CrossRefGoogle Scholar
  85. Myers N, Mittermeier R A, Mittermeier C G, da Fonseca G A B, Kent J. 2000. Biodiversity hotspots for conservation priorities. Nature, 403: 853–858CrossRefGoogle Scholar
  86. Nalbant T T, Bianco P G. 1998. The loaches of Iran and adjacent regions with description of six new species (Cobitoidea). Ital J Zool, 65: 109–123CrossRefGoogle Scholar
  87. Ni X J, Li Q, Stidham T A, Li L Z, Lu X Y, Meng J. 2016. A late Paleocene probable metatherian (?deltatheroidan) survivor of the Cretaceous mass extinction. Sci Rep, 6: 38547CrossRefGoogle Scholar
  88. Nooteboom H. 1960. Simaroubaceae. Flora Malesiana-Series 1, Spermatophyta, 6: 193–226Google Scholar
  89. Norris S M. 1994. The osteology and phylogenetics of the Anabantidae (Osteichthyes, Perciformes). Dissertation for Doctoral Degree. Tempe: Arizona State UniversityGoogle Scholar
  90. Pocock R I. 1937. The foxes of British India. J Bombay Nat Hist Soc, 39: 36–57Google Scholar
  91. Polhemus J T, Polhemus D A. 2008. Global diversity of true bugs (Heteroptera; Insecta) in freshwater. Hydrobiologia, 595: 379–391CrossRefGoogle Scholar
  92. Prestrud P. 1991. Adaptations by the arctic fox (Alopex lagopus) to the polar winter. Arctic, 44: 132–138CrossRefGoogle Scholar
  93. Qin H N, Michael G G. 2007. Flora of China (English version, Vol. 13). Beijing and Missouri: Science Press and Missouri Botanical GardenGoogle Scholar
  94. Qiu Y X, Fu C X, Comes H P. 2011. Plant molecular phylogeography in China and adjacent regions: Tracing the genetic imprints of Quaternary climate and environmental change in the world’s most diverse temperate flora. Mol Phylogenet Evol, 59: 225–244CrossRefGoogle Scholar
  95. Qiu Z X, Deng T, Wang B Y. 2004. Early Pleistocene mammalian fauna from Longdan, Dongxiang, Gansu, China (in Chinese). Palaeont Sin New Ser C, 27: 1–198Google Scholar
  96. Rezaei H R, Naderi S, Chintauan-Marquier I C, Jordan S, Taberlet P, Virk A T, Naghash H R, Rioux D, Kaboli M, Luikart G, Pompanon F. 2010. Evolution and taxonomy of the wild species of the genus Ovis (Mammalia, Artiodactyla, Bovidae). Mol Phylogenet Evol, 54: 315–326CrossRefGoogle Scholar
  97. Rose K D, Holbrook L T, Rana R S, Kumar K, Jones K E, Ahrens H E, Missiaen P, Sahni A, Smith T. 2014. Early Eocene fossils suggest that the mammalian order Perissodactyla originated in India. Nat Commun, 5: 5570CrossRefGoogle Scholar
  98. Rosen D E. 1978. Vicariant patterns and historical explanation in biogeography. Syst Zool, 27: 159–188CrossRefGoogle Scholar
  99. Royden L H, Burchfiel B C, van der Hilst R D. 2008. The geological evolution of the Tibetan Plateau. Science, 321: 1054–1058CrossRefGoogle Scholar
  100. Rüber L, Britz R, Zardoya R, Linder P. 2006. Molecular phylogenetics and evolutionary diversification of labyrinth fishes (Perciformes: Anabantoidei). Syst Biol, 55: 374–397CrossRefGoogle Scholar
  101. Sandel B, Arge L, Dalsgaard B, Davies R G, Gaston K J, Sutherland W J, Svenning J C. 2011. The influence of late Quaternary climate-change velocity on species endemism. Science, 334: 660–664CrossRefGoogle Scholar
  102. Saylor J E, Quade J, Dettman D L, DeCelles P G, Kapp P A, Ding L. 2009. The Late Miocene through present paleoelevation history of south-western Tibet. Am J Sci, 309: 1–42CrossRefGoogle Scholar
  103. Saylor J, Decelles P, Gehrels G, Murphy M, Zhang R, Kapp P. 2010a. Basin formation in the High Himalaya by arc-parallel extension and tectonic damming: Zhada Basin, southwestern Tibet. Tectonics, 29: TC1004CrossRefGoogle Scholar
  104. Saylor J, DeCelles P, Quade J. 2010b. Climate-driven environmental change in the Zhada basin, southwestern Tibetan Plateau. Geosphere, 6: 74–92CrossRefGoogle Scholar
  105. Schaller G B. 1998. Wildlife of the Tibetan Steppe. Chicago: University of Chicago Press. 1–373Google Scholar
  106. Shafroth P B, Auble G T, Scott M L. 1995. Germination and establishment of the native Plains Cottonwood (Populus deltoides Marshall subsp. monilifera) and the exotic Russian-Olive (Elaeagnus angustifolia L.). Conserv Biol, 9: 1169–1175CrossRefGoogle Scholar
  107. Shukla A, Mehrotra R C, Spicer R A, Spicer T E V. 2016. Aporosa Blume from the paleoequatorial rainforest of Bikaner, India: Its evolution and diversification in deep time. Rev Palaeobot Palynol, 232: 14–21CrossRefGoogle Scholar
  108. Skelton P H. 1980. Systematics and biogeography of the redfin Barbus species (Pisces: Cyprinidae) from southern Africa. Dissertation for Doctoral Degree. Grahamstown: Rhodes University. 1–417Google Scholar
  109. Slechtova V, Bohlen J, Tan H H. 2007. Families of Cobitoidea (Teleostei; Cypriniformes) as revealed from nuclear genetic data and the position of the mysterious genera Barbucca, Psilorhynchus, Serpenticobitis and Vaillantella. Mol Phylogenet Evol, 44: 1358–1365CrossRefGoogle Scholar
  110. Soltis D E, Smith S A, Cellinese N, Wurdack K J, Tank D C, Brockington S F, Refulio-Rodriguez N F, Walker J B, Moore M J, Carlsward B S, Bell C D, Latvis M, Crawley S, Black C, Diouf D, Xi Z, Rushworth C A, Gitzendanner M A, Sytsma K J, Qiu Y L, Hilu K W, Davis C C, Sanderson M J, Beaman R S, Olmstead R G, Judd W S, Donoghue M J, Soltis P S. 2011. Angiosperm phylogeny: 17 genes, 640 taxa. Am J Bot, 98: 704–730CrossRefGoogle Scholar
  111. Song Z Q, Xu D X. 2014. The identity of Ailanthus guangxiensis (Simaroubaceae) and lectotypification of A. integrifolia Lamarck. Phytotaxa, 173: 177–180CrossRefGoogle Scholar
  112. Song Z Q, Shi G L, Chen Y F, Wang Q. 2014. Winged fruits of Ailanthus (Simaroubaceae) from the Oligocene Ningming Formation of Guangxi, and there taxonomic and biogeographic implications (in Chinese). Acta Palaeont Sin, 53: 191–200Google Scholar
  113. Spicer R A. 2017. Tibet, the Himalaya, Asian monsoons and biodiversity—In what ways are they related? Plant Divers, 39: 233–244CrossRefGoogle Scholar
  114. Stiassny M L J. 1991. Phylogenetic intrarelationships of the family Cichlidae: An overview. In: Keenleyside M H A, ed. Cichlid Fishes: Behaviour, Ecology and Evolution. London: Chapman & Hall. 1–35Google Scholar
  115. Su T, Farnsworth A, Spicer R A, Huang J, Wu F X, Liu J, Li S F, Xing Y W, Huang Y J, Deng W Y D, Tang H, Xu C L, Zhao F, Srivastava G, Valdes P J, Deng T, Zhou Z K. 2019a. No high Tibetan Plateau until the Neogene. Sci Adv, 5: eaav2189CrossRefGoogle Scholar
  116. Su T, Jacques F M B, Spicer R A, Liu Y S, Huang Y J, Xing Y W, Zhou Z K. 2013. Post-Pliocene establishment of the present monsoonal climate in SW China: Evidence from the late Pliocene Longmen megaflora. Clim Past, 9: 1911–1920CrossRefGoogle Scholar
  117. Su T, Spicer R A, Li S H, Xu H, Huang J, Sherlock S, Huang Y J, Li S F, Wang L, Jia L B, Deng W Y D, Liu J, Deng C L, Zhang S T, Valdes P J, Zhou Z K. 2019b. Uplift, climate and biotic changes at the Eocene-Oligocene transition in south-eastern Tibet. Natl Sci Rev, 6: 495–504CrossRefGoogle Scholar
  118. Su T, Wilf P, Xu H, Zhou Z K. 2014. Miocene leaves of Elaeagnus (Elaeagnaceae) from the Qinghai-Tibet Plateau, its modern center of diversity and endemism. Am J Bot, 101: 1350–1361CrossRefGoogle Scholar
  119. Sun J, Xu Q, Liu W, Zhang Z, Xue L, Zhao P. 2014. Palynological evidence for the latest Oligocene-Early Miocene paleoelevation estimate in the Lunpola Basin, central Tibet. Palaeogeogr Palaeoclimatol Palaeoecol, 399: 21–30CrossRefGoogle Scholar
  120. Tang Q, Liu H, Mayden R, Xiong B X. 2006. Comparison of evolutionary rates in the mitochondrial DNA cytochrome b gene and control region and their implications for phylogeny of the Cobitoidea (Teleostei: Cypriniformes). Mol Phylogenet Evol, 39: 347–357CrossRefGoogle Scholar
  121. Tedford R H, Wang X M, Taylor B E. 2009. Phylogenetic systematics of the North American fossil Caninae (Carnivora: Canidae). Bull Am Mus Nat Hist, 325: 1–218CrossRefGoogle Scholar
  122. Teilhard de Chardin P, Piveteau J. 1930. Les mammifères fossiles de Nihowan (Chine). Ann Paléont, 19: 1–134Google Scholar
  123. Tseng Z J, Li Q, Wang X. 2013. A new cursorial hyena from Tibet, and analysis of biostratigraphy, paleozoogeography, and dental morphology of Chasmaporthetes (Mammalia, Carnivora). J Vert Paleontol, 33: 1457–1471CrossRefGoogle Scholar
  124. Tseng Z J, Wang X, Slater G J, Takeuchi G T, Li Q, Liu J, Xie G. 2014. Himalayan fossils of the oldest known pantherine establish ancient origin of big cats. Proc R Soc B, 281: 20132686CrossRefGoogle Scholar
  125. Van Sam H, Nooteboom H P. 2007. Ailanthus Vietnamensis (Simaroubaceae): A new species from Vietnam. Blumea, 52: 555–558CrossRefGoogle Scholar
  126. Van Valkenburgh B, Wang X M, Damuth J. 2004. Cope’s rule, hypercarnivory, and extinction in North American canids. Science, 306: 101–104CrossRefGoogle Scholar
  127. Vangengeim E A, Beljaeva E I, Garutt V Y, Dmitrieva E L, Zazhigin V S. 1966. Eopleistocene mammals of Western Transbaikalia. Trudy Geol Inst Akad Nauk SSSR, 152: 92–143Google Scholar
  128. Vermeij G J. 1991. When biotas meet: Understanding biotic interchange. Science, 253: 1099–1104CrossRefGoogle Scholar
  129. Wang C S, Zhao X X, Liu Z F, Lippert P C, Graham S A, Coe R S, Yi H S, Zhu L D, Liu S, Li Y L. 2008. Constraints on the early uplift history of the Tibetan Plateau. Proc Natl Acad Sci USA, 105: 4987–4992CrossRefGoogle Scholar
  130. Wang N, Chang M. 2010. Pliocene cyprinids (Cypriniformes, Teleostei) from Kunlun Pass Basin, northeastern Tibetan Plateau and their bearings on development of water system and uplift of the area. Sci China Earth Sci, 53: 485–500CrossRefGoogle Scholar
  131. Wang N, Chang M. 2012. Discovery of fossil Nemacheilids (Cypriniformes, Teleostei, Pisces) from the Tibetan Plateau, China. Sci China Earth Sci, 55: 714–727CrossRefGoogle Scholar
  132. Wang N, Wu F. 2015. New Oligocene cyprinid in the central Tibetan Plateau documents the pre-uplift tropical lowlands. Ichthyol Res, 62: 274–285CrossRefGoogle Scholar
  133. Wang S Q, Yang Q, Zhao Y, Li C X, Shi Q Q, Zong L Y, Ye J. 2019. New Olonbulukia material and its related assemblage reveal an early radiation of stem Caprini along the north of the Tibetan Plateau. J Paleontol, 93: 385–397CrossRefGoogle Scholar
  134. Wang X M. 1988. Systematics and population ecology of Late Pleistocene bighorn sheep (Ovis canadensis) of Natural Trap Cave, Wyoming. Trans Nebraska Acad Sci, 16: 173–183Google Scholar
  135. Wang X M. 1994. Phylogenetic systematics of the Hesperocyoninae (Carnivora: Canidae). Bull Am Mus Nat Hist, 221: 1–207Google Scholar
  136. Wang X M, Li Q, Takeuchi G T. 2016. Out of Tibet: An early sheep from the Pliocene of Tibet, Protovis himalayensis, genus and species nov. (Bovidae, Caprini), and origin of Ice Age mountain sheep. J Vert Paleontol, 36: e1169190CrossRefGoogle Scholar
  137. Wang X M, Li Q, Xie G P, Saylor J E, Tseng Z J, Takeuchi G T, Deng T, Wang Y, Hou S K, Liu J, Zhang C F, Wang N, Wu F X. 2013. Mio-Pleistocene Zanda Basin biostratigraphy and geochronology, pre-Ice Age fauna, and mammalian evolution in western Himalaya. Palaeogeogr Palaeoclimatol Palaeoecol, 374: 81–95CrossRefGoogle Scholar
  138. Wang X M, Li Q, Xie G P. 2015a. Earliest record of Sinicuon in Zanda Basin, southern Tibet and implications for hypercarnivores in cold environments. Quat Int, 355: 3–10CrossRefGoogle Scholar
  139. Wang X M, Qiu Z D, Li Q, Wang B Y, Qiu Z X, Downs W, Xie G P, Xie J Y, Deng T, Takeuchi G, Tseng Z J, Chang M M, Liu J, Wang Y, Biasatti D, Sun Z C, Fang X M, Meng Q Q. 2007. Vertebrate paleontology, biostratigraphy, geochronology, and paleoenvironment of Qaidam Basin in northern Tibetan Plateau. Palaeogeogr Palaeoclimatol Palaeoecol, 254: 363–385CrossRefGoogle Scholar
  140. Wang X M, Tedford R H, Taylor B E. 1999. Phylogenetic systematics of the Borophaginae (Carnivora: Canidae). Bull Am Mus Nat Hist, 243: 1–391Google Scholar
  141. Wang X M, Tseng Z J, Li Q, Takeuchi G T, Xie G P. 2014. From ‘third pole’ to north pole: A Himalayan origin for the arctic fox. Proc R Soc B, 281: 20140893CrossRefGoogle Scholar
  142. Wang X M, Wang Y, Li Q, Tseng Z J, Takeuchi G T, Deng T, Xie G P, Chang M M, Wang N. 2015b. Cenozoic vertebrate evolution and paleoenvironment in Tibetan Plateau: Progress and prospects. Gondwana Res, 27: 1335–1354CrossRefGoogle Scholar
  143. Wang X M, Xie G P, Li Q, Qiu Z D, Tseng Z J, Takeuchi G T, Wang B Y, Fortelius M, Rosenström-Fortelius A, Wahlquist H, Downs W R, Zhang C F, Wang Y. 2011. Early explorations of Qaidam Basin (Tibetan Plateau) by Birger Bohlin: Reconciling classic vertebrate fossil localities with modern biostratigraphy. Vert PalAsiat, 49: 285–310Google Scholar
  144. Wang Y, Shen Y J, Feng C G, Zhao K, Song Z B, Zhang Y P, Yang L D, He S P. 2016. Mitogenomic perspectives on the origin of Tibetan loaches and their adaptation to high altitude. Sci Rep, 6: 29690CrossRefGoogle Scholar
  145. Wang Y, Xu Y F, Khawaja S, Passey B H, Zhang C F, Wang X M, Li Q, Tseng Z J, Takeuchi G T, Deng T, Xie G P. 2013. Diet and environment of a mid-Pliocene fauna from southwestern Himalaya: Paleo-elevation implications. Earth Planet Sci Lett, 376: 43–53CrossRefGoogle Scholar
  146. Wei L, Wu X B, Zhu L X, Jiang Z G. 2011. Mitogenomic analysis of the genus Panthera. Sci China Life Sci, 54: 917–930CrossRefGoogle Scholar
  147. Wen J, Zhang J Q, Nie Z L, Zhong Y, Sun H. 2014. Evolutionary diversifications of plants on the Qinghai-Tibetan Plateau. Front Genet, 5: 4Google Scholar
  148. Werdelin L, Peigne S. 2010. Carnivora. In: Werdelin L, Sanders W J, eds. Cenozoic Mammals of Africa. Berkeley: University of California Press. 603–657CrossRefGoogle Scholar
  149. Werdelin L, Yamaguchi N, Johnson W E, O’Brien S J. 2010. Phylogeny and evolution of cats (Felidae). In: Macdonald D W, Loveridge A J, eds. Biology and Conservation of Wild Felids. Oxford: Oxford University Press. 59–82Google Scholar
  150. Wheeler E A, Srivastava R, Manchester S R, Baas P, Wiemann M. 2017. Surprisingly modern latest Cretaceous-earliest Paleocene woods of India. IAWA J, 38: 456–542CrossRefGoogle Scholar
  151. Wiens J J, Donoghue M J. 2004. Historical biogeography, ecology and species richness. Trends Ecol Evol, 19: 639–644CrossRefGoogle Scholar
  152. Wu F X, He D K, Fang G Y, Deng T. 2019. Into Africa via docked India: A fossil climbing perch from the Oligocene of Tibet helps solve the anabantid biogeographical puzzle. Sci Bull, 64: 455–463CrossRefGoogle Scholar
  153. Wu F X, Miao D S, Chang M M, Shi G L, Wang N. 2017. Fossil climbing perch and associated plant megafossils indicate a warm and wet central Tibet during the Late Oligocene. Sci Rep, 7: 878CrossRefGoogle Scholar
  154. Wu Y F. 1984. Systematic studies on the cyprinid fishes of the subfamily Schizothoracinae from China (in Chinese). Acta Biol Plateau Sin, 3: 119–140Google Scholar
  155. Wu Y F, Chen Y Y. 1980. Fossil cyprinid fishes from the late Tertiary of North Xizang, China (in Chinese). Vert PalAsiat, 18: 15–20Google Scholar
  156. Wu Y F, Wu C Z. 1992. The Fishes of the Qinghai-Xizang Plateau (in Chinese). Chengdu: Sichuan Publishing House of Science & Technology. 1–599Google Scholar
  157. Wu Y F, Yu D P, Wu C Z, Jing C, Chen Y Q. 1994. A preliminary study on the resources of fishes and conservation in Hohxil (Kokoxili) region of Qinghai Province (in Chinese). Chin J Zool, 29: 9–17Google Scholar
  158. Wu Y H. 2008. The Vascular Plants and Their Eco-geographical Distribution of the Qinghai-Tibetan Plateau (in Chinese). Beijing: Science Press. 1–1369Google Scholar
  159. Wu Z Y. 1987. Origin of the Tibetan flora and its evolution (in Chinese). In: Comprehensive Scientific Expedition to the Tibetan Plateau, Chinese Academy of Sciences, ed. Flora of Tibet, Vol. 5. Beijing: Science Press. 874–902Google Scholar
  160. Xing Y W, Utescher T, Jacques F M, Su T, Liu Y S C, Huang Y J, Zhou Z K. 2012. Paleoclimatic estimation reveals a weak winter monsoon in southwestern China during the Late Miocene: Evidence from plant macrofossils. Palaeogeogr Palaeoclimatol Palaeoecol, 358–360: 19–26CrossRefGoogle Scholar
  161. Yang L, Sado T, Vincent Hirt M, Pasco-Viel E, Arunachalam M, Li J B, Wang X, Freyhof J, Saitoh K, Simons A M, Miya M, He S, Mayden R L. 2015. Phylogeny and polyploidy: Resolving the classification of cyprinine fishes (Teleostei: Cypriniformes). Mol Phylogenet Evol, 85: 97–116CrossRefGoogle Scholar
  162. Yang T, Zhang L, Li W J, Jia J W, Han L, Zhang Y X, Chen Y Q, Yan D F. 2018. New schizothoracine from Oligocene of Qaidam Basin, northern Tibetan Plateau, China, and its significance. J Vert Paleontol, 38: e1442840CrossRefGoogle Scholar
  163. Yao T D, Chen F H, Cui P, Ma Y M, Xu B Q, Zhu L P, Zhang F, Wang W C, Ai L K, Yang X X. 2017. From Tibetan Plateau to Third Pole and Pan-Third Pole (in Chinese). Bull Chin Acad Sci, 32: 924–931Google Scholar
  164. Youngman P. 1993. The Pleistocene small carnivores of eastern Beringia. Can Field Nat, 107: 139–163Google Scholar
  165. Yu H, Zhang Y, Liu L, Chen Z, Qi W. 2018. Floristic characteristics and diversity patterns of seed plants endemic to the Tibetan Plateau (in Chinese). Biodiversity Sci, 26: 130–137CrossRefGoogle Scholar
  166. Yu H B, Zhang Y L, Liu L S, Qi W, Li S C, Hu Z J. 2015. Combining the least cost path method with population genetic data and species distribution models to identify landscape connectivity during the late Quaternary in Himalayan hemlock. Ecol Evol, 5: 5781–5791CrossRefGoogle Scholar
  167. Zeuner F E. 1963. A History of Domesticated Animals. London: Hutchinson. 1–560Google Scholar
  168. Zhang C G, He D W. 1997. Fishes of Xizang (in Chinese). Bull Biol, 32: 9–10Google Scholar
  169. Zhang D C, Ye J X, Sun H. 2016. Quantitative approaches to identify floristic units and centres of species endemism in the Qinghai-Tibetan Plateau, south-western China. J Biogeogr, 43: 2465–2476CrossRefGoogle Scholar
  170. Zheng D, Yao T D. 2006. Uplifting of Tibetan Plateau with its environmental effects (in Chinese). Adv Earth Sci, 21: 451–458Google Scholar
  171. Zheng S H, Wu W Y, Li Y, Wang G D. 1985. Late Cenozoic mammalian faunas of Guide and Gonghe basins, Qinghai Province (in Chinese). Vert PalAsiat, 23: 89–134Google Scholar
  172. Zhu D C, Zhao Z D, Niu Y, Dilek Y, Hou Z Q, Mo X X. 2013. The origin and pre-Cenozoic evolution of the Tibetan Plateau. Gondwana Res, 23: 1429–1454CrossRefGoogle Scholar
  173. Zhu S Q. 1986. A comparative study on the air-bladder and its bony capsule nemacheiline fishes (Cobitidae) in China (in Chinese). Acta Hydrobiol Sin, 10: 137–143Google Scholar
  174. Zhu S Q. 1989. The Loaches of the Subfamily Nemacheilinae in China (in Chinese). Nanjing: Jiangsu Science and Technology Publishing House. 1–150Google Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and PaleoanthropologyChinese Academy of SciencesBeijingChina
  2. 2.CAS Center for Excellence in Life and PaleoenvironmentBeijingChina
  3. 3.University of Chinese Academy of SciencesBeijingChina
  4. 4.Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical GardenChinese Academy of SciencesXishuangbannaChina

Personalised recommendations