Pliocene flora and paleoenvironment of Zanda Basin, Tibet, China
Abstract
This paper describes a plant megafossil assemblage from the Pliocene strata of Xiangzi, Zanda Basin in the western Qinghai-Tibet Plateau. Twenty-one species belonging to 12 genera and 10 families were identified. Studies show that the Pliocene vegetation in Zanda Basin was mostly deciduous shrub composed of Cotoneaster, Spiraea, Caragana, Hippophae, Rhododendron, Potentilla fruticosa, etc. Leaf sizes of these taxa were generally small. Paleoclimate reconstruction using Coexistence Analysis and CLAMP showed that this area had higher temperature and precipitation in the Pliocene than today, and distinct seasonal precipitation variability was established. The reconstructed paleoelevation of Zanda Basin in the Pliocene was similar to modern times. In the context of central Asian aridification, the gradual drought in the area beginning in the late Cenozoic caused vegetation to transition from shrub to desert, and the flora composition also changed.
Keywords
Qinghai-Tibet Plateau Cenozoic Pliocene Plant fossils Paleovegetation Paleoclimate Environmental changePreview
Unable to display preview. Download preview PDF.
Notes
Acknowledgements
We are grateful to the colleagues from the Xishuangbanna Tropical Botanical Garden (XTBG), Chinese Academy of Sciences (CAS), Institute of Vertebrate Paleontology and Paleoanthropology, CAS and Kunming Institute of Botany, CAS, for their assistance with fossil collection. Public Technology Service Center, XTBG helped with imaging. This work was supported by the Strategic Priority Research Program of CAS (Grant Nos. XDA2007030102, XDB26000000, XDA20070203), the Second Tibetan Plateau Scientific Expedition and Research (STEP) (Grant No. 2019QZKK0705), the NSFC-NERC (the National Natural Science Foundation of China-Natural Environment Research Council of the United Kingdom) joint research program (Grant Nos. 41661134049, NE/P013805/1), the Youth Innovation Promotion Association, CAS (Grant No. 2017439) and the Key Research Program of Frontier Sciences, CAS (Grant No. QYZDB-SSW-SMC016).
Supplementary material
References
- Ai K K, Shi G L, Zhang K X, Ji J L, Song B W, Shen T Y, Guo S X. 2019. The uppermost Oligocene Kailas flora from southern Tibetan Plateau and its implications for the uplift history of the southern Lhasa terrane. Palaeogeogr Palaeoclimatol Palaeoecol, 515: 143–151CrossRefGoogle Scholar
- An Z S, Kutzbach J E, Prell W L, Porter S C. 2001. Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan Plateau since Late Miocene times. Nature, 411: 62–66CrossRefGoogle Scholar
- An Z S, Zhang P Z, Wang E Q, Wang S M, Qiang X K, Li L, Song Y G, Chang H, Liu X D, Zhou W J. 2006. Changes of the monsoon-arid environment in China and growth of the Tibetan Plateau since the Miocene (in Chinese). Quat Sci, 26: 678–693Google Scholar
- Brookfield M E. 2008. Evolution of the great river systems of southern Asia during the Cenozoic India-Asia collision: Rivers draining north from the Pamir syntaxis. Geomorphology, 100: 296–311CrossRefGoogle Scholar
- Deng T, Ding L. 2015. Paleoaltimetry reconstructions of the Tibetan Plateau: Progress and contradictions. Natl Sci Rev, 2: 417–437CrossRefGoogle Scholar
- Deng T, Li Q, Tseng Z J, Takeuchi G T, Wang Y, Xie G P, Wang S Q, Hou S K, Wang X M. 2012. Locomotive implication of a Pliocene three-toed horse skeleton from Tibet and its paleo-altimetry significance. Proc Natl Acad Sci USA, 109: 7374–7378CrossRefGoogle Scholar
- Deng T, Wang X M, Fortelius M, Li Q, Wang Y, Tseng Z J, Takeuchi G T, Saylor J E, Säilä L K, Xie G P. 2011. Out of Tibet: Pliocene woolly rhino suggests high-plateau origin of Ice Age megaherbivores. Science, 333: 1285–1288CrossRefGoogle Scholar
- Deng T, Wang X M, Wang S Q, Li Q, Hou S K. 2015. Evolution of the Chinese Neogene mammalian faunas and its relationship to uplift of the Tibetan Plateau (in Chinese). Adv Earth Sci, 30: 407–415Google Scholar
- Dodds W K, Gido K, Whiles M R, Daniels M D, Grudzinski B P. 2014. The stream biome gradient concept: Factors controlling lotic systems across broad biogeographic scales. Freshwater Sci, 34: 1–19CrossRefGoogle Scholar
- Dupont-Nivet G, Hoorn C, Konert M. 2008. Tibetan uplift prior to the Eocene-Oligocene climate transition: Evidence from pollen analysis of the Xining Basin. Geology, 36: 987–990CrossRefGoogle Scholar
- Fang X M, Wu F L, Han W X, Wang Y D, Zhang Y Z, Zhang W L. 2008. Plio-Pleistocene drying process of Asian inland-sporopollen and salinity records from Yahu section in the central Qaidam Basin (in Chinese). Quat Sci, 28: 874–882Google Scholar
- Guo S X. 1980. Miocene flora in Zekog County of Qinghai (in Chinese). Act Palaeontol Sin, 19: 406–411, 441Google Scholar
- Jacobs B F. 1999. Estimation of rainfall variables from leaf characters in tropical Africa. Palaeogeogr Palaeoclimatol Palaeoecol, 145: 231–250CrossRefGoogle Scholar
- Jia L B, Su T, Huang Y J, Wu F X, Deng T, Zhou Z K. 2018. First fossil record of Cedrelospermum (Ulmaceae) from the Qinghai-Tibetan Plateau: Implications for morphological evolution and biogeography. Jnl Sytematics Evol, 57: 94–104CrossRefGoogle Scholar
- Kempf O, Blisniuk P M, Wang S F, Fang X M, Wrozyna C, Schwalb A. 2009. Sedimentology, sedimentary petrology, and paleoecology of the monsoon-driven, fluvio-lacustrine Zhada Basin, SW-Tibet. Sediment Geol, 222: 27–41CrossRefGoogle Scholar
- Li H M, Guo S X. 1976. The Miocene flora from Namling of Xizang (in Chinese). Act Palaeontol Sin, 15: 598–609Google Scholar
- Li J G, Zhou Y. 2001. Pliocene palynoflora from the Zanda Basin west Xizang (Tibet), and the palaeoenvironment (in Chinese). Act Micropalaeontol Sin, 18: 89–96Google Scholar
- Li J J, Fang X M. 1999. Uplift of the Tibetan Plateau and environmental changes. Chin Sci Bull, 44: 2117–2124CrossRefGoogle Scholar
- Li X C, Xiao L, Lin Z C, He W, Yang Q, Yao Y Z, Ren D, Guo J F, Guo S X. 2016. Fossil fruits of Koelreuteria (Sapindaceae) from the Miocene of northeastern Tibetan Plateau and their palaeoenvironmental, phytogeographic and phylogenetic implications. Rev Palaeobot Palynol, 234: 125–135CrossRefGoogle Scholar
- Liu J, Su T, Spicer R A, Tang H, Deng W Y D, Wu F X, Srivastava G, Spicer T, Van Do T, Deng T, Zhou Z K. 2019. Biotic interchange through lowlands of Tibetan Plateau suture zones during Paleogene. Palaeogeogr Palaeoclimatol Palaeoecol, 524: 33–40CrossRefGoogle Scholar
- Liu S W, Pan J T, Zhang H Z. 1979. Flora of Ngari, Tibet (in Chinese). In: Qinghai Province Institute of Biology, ed. Beijing: Science Press. 73–78Google Scholar
- Meng X G, Zhu D G, Shao Z G, Yang C, Sun L Q, Wang J P, Han T L, Du J J, Han J E, Yu J. 2004. Discovery of rhinoceros fossils in the Pliocene in the Zanda Basin, Ngari, Tibet (in Chinese). Geol Bull Chin, 23: 609–611Google Scholar
- Meng X G, Zhu D G, Shao Z G, Yang C B, Han J E, Yu J, Meng Q W. 2005. Discovery of fossil teeth of Pliocene Ochotona in the Zanda Basin, Ngari, Tibet, China (in Chinese). Geol Bull Chin, 24: 1175–1178Google Scholar
- Miao Y F, Fang X M, Wu F L, Cai M T, Song C H, Meng Q Q, Xu L. 2013. Late Cenozoic continuous aridification in the western Qaidam Basin: Evidence from sporopollen records. Clim Past, 9: 1863–1877CrossRefGoogle Scholar
- Miao Y F, Herrmann M, Wu F L, Yan X L, Yang S L. 2012. What controlled Mid-Late Miocene long-term aridification in Central Asia?—Global cooling or Tibetan Plateau uplift: A review. Earth-Sci Rev, 112: 155–172CrossRefGoogle Scholar
- Pan J T, Zhang H Z, Liu S W. 1979. Vegetation of Ngari, Tibet (in Chinese). In: Qinghai Province Institute of Biology, ed. Beijing: Science Press. 73–78Google Scholar
- Peppe D J, Royer D L, Cariglino B, Oliver S Y, Newman S, Leight E, Enikolopov G, Fernandez-Burgos M, Herrera F, Adams J M, Correa E, Currano E D, Erickson J M, Hinojosa L F, Hoganson J W, Iglesias A, Jaramillo C A, Johnson K R, Jordan G J, Kraft N J B, Lovelock E C, Lusk C H, Niinemets U, Peñuelas J, Rapson G, Wing S L, Wright I J. 2011. Sensitivity of leaf size and shape to climate: Global patterns and paleoclimatic applications. New Phytol, 190: 724–739CrossRefGoogle Scholar
- Qian F. 1999. Study on magnetostratigraphy in Qinghai-Tibetan Plateau in late Cenozoic (in Chinese). J Geomech, 5: 22–34Google Scholar
- Raymo M E, Ruddiman W F. 1992. Tectonic forcing of late Cenozoic climate. Nature, 359: 117–122CrossRefGoogle Scholar
- Ruddiman W F, Kutzbach J E. 1989. Forcing of late Cenozoic northern hemisphere climate by plateau uplift in southern Asia and the American West. J Geophys Res, 94: 18409–18427CrossRefGoogle Scholar
- Saylor J, DeCelles P G, Quade J. 2010. Climate-driven environmental change in the Zhada Basin, southwestern Tibetan Plateau. Geosphere, 6: 74–92CrossRefGoogle Scholar
- Saylor J, DeCelles P G, Gehrels G. 2007. Origin of the Zhada Basin, SW Tibet: a tectonically dammed paleo-river valley. 2007 GSA Denver Annual Meeting. 39: 437Google Scholar
- Saylor J E, Quade J, Dettman D L, DeCelles P G, Kapp P A, Ding L. 2009. The late Miocene through present paleoelevation history of southwestern Tibet. Am J Sci, 309: 1–42CrossRefGoogle Scholar
- Spicer R A, Harris N B W, Widdowson M, Herman A B, Guo S X, Valdes P J, Wolfe J A, Kelley S P. 2003. Constant elevation of southern Tibet over the past 15 million years. Nature, 421: 622–624CrossRefGoogle Scholar
- Spicer R A, Valdes P J, Spicer T E V, Craggs H J, Srivastava G, Mehrotra R C, Yang J. 2009. New developments in CLAMP: Calibration using global gridded meteorological data. Palaeogeogr Palaeoclimatol Palaeoecol, 283: 91–98CrossRefGoogle Scholar
- Su T, Farnsworth A, Spicer R A, Huang J, Wu F X, Liu J, Li S F, Xing Y W, Huang Y J, Deng W Y D, Tang H, Xu C L, Zhao F, Srivastava G, Valdes P J, Deng T, Zhou Z K. 2019. No high Tibetan Plateau until the Neogene. Sci Adv, 5: eaav2189CrossRefGoogle Scholar
- Su T, Spicer R A, Li S H, Xu H, Huang J, Sherlock S, Huang Y J, Li S F, Wang L, Jia L B, Deng W Y D, Liu J, Deng C L, Zhang S T, Valdes P J, Zhou Z K. 2018. Uplift, climate and biotic changes at the Eocene-Oligocene transition in south-eastern Tibet. Natl Sci Rev, 6: 495–504CrossRefGoogle Scholar
- Sun J M, Liu W G, Liu Z H, Deng T, Windley B F, Fu B H. 2017. Extreme aridification since the beginning of the Pliocene in the Tarim Basin, western China. Palaeogeogr Palaeoclimatol Palaeoecol, 485: 189–200CrossRefGoogle Scholar
- Tao J R. 1988. Plant fossils from Liuqu formation in Lhaze County, Xizang and their paleoclimatological significances (in Chinese). Memoirs of the Institute of Geology, Chinese Academy of Sciences, 3: 223–238Google Scholar
- Tao J R, Zhou Z K, Liu Y S. 2000. The Evolution of the Late Cretaceous-Cenozoic Floras in China (in Chinese). Beijing: Science Press. 56–57Google Scholar
- Wang S F, Zhang W L, Fang X M, Dai S, Kempf O. 2008. Magnetostratigraphy of the Zanda Basin in southwest Tibet Plateau and its tectonic implications. Chin Sci Bull, 53: 1393–1400Google Scholar
- Wang X M, Li Q, Xie G P, Saylor J E, Tseng Z J, Takeuchi G T, Deng T, Wang Y, Hou S K, Liu J, Zhang C, Wang N, Wu F. 2013. Mio-Pleistocene Zanda Basin biostratigraphy and geochronology, pre-Ice Age fauna, and mammalian evolution in western Himalaya. Palaeogeogr Palaeoclimatol Palaeoecol, 374: 81–95CrossRefGoogle Scholar
- Wang X M, Wang Y, Li Q, Tseng Z J, Takeuchi G T, Deng T, Xie G P, Chang M M, Wang N. 2015. Cenozoic vertebrate evolution and paleoenvironment in Tibetan Plateau: Progress and prospects. Gondwana Res, 27: 1335–1354CrossRefGoogle Scholar
- Wang Y, Deng T, Biasatti D. 2006. Ancient diets indicate significant uplift of southern Tibet after ca. 7 Ma. Geology, 34: 309CrossRefGoogle Scholar
- Whittaker R H. 1975. Communities and Ecosystems. New York: Mac-Millan Publishing Company, IncGoogle Scholar
- Woodward F I, Lomas M R, Kelly C K. 2004. Global climate and the distribution of plant biomes. Philos Trans R Soc Lond B Biol Sci, 359: 1465–1476CrossRefGoogle Scholar
- Wu F L, Herrmann M, Fang X M. 2014. Early Pliocene paleo-altimetry of the Zanda Basin indicated by a sporopollen record. Palaeogeogr Palaeoclimatol Palaeoecol, 412: 261–268CrossRefGoogle Scholar
- Wu Z Y. 1987. Flora of Tibet (in Chinese). Beijing: Science PressGoogle Scholar
- Xu C L, Su T, Huang J, Huang Y J, Li S F, Zhao Y S, Zhou Z K. 2019. Occurrence of Christella (Thelypteridaceae) in Southwest China and its indications of the paleoenvironment of the Qinghai-Tibetan Plateau and adjacent areas. Jnl Sytemat Evol, 57: 169–179CrossRefGoogle Scholar
- Xu H, Su T, Zhang S T, Deng M, Zhou Z K. 2016. The first fossil record of ring-cupped oak (Quercus L. subgenus Cyclobalanopsis (Oersted) Schneider) in Tibet and its paleoenvironmental implications. Palaeogeogr Palaeoclimatol Palaeoecol, 442: 61–71CrossRefGoogle Scholar
- Xu R. 1973. On the discovery of some plant fossils from the Mt. Jolmo Lungma region, southern Tibet, and its significance (in Chinese). Act Bot Sin, 15: 254–258Google Scholar
- Xu R, Tao J R, Sun X J. 1973. On the discovery of a Quercus semicarpifolia bed at Mount Shisha Pangma and its significance in botany and geology (in Chinese). Act Bot Sin, 15: 103–114Google Scholar
- Yang J, Spicer R A, Spicer T E V, Li C S. 2011. ‘CLAMP Online’: A new web-based palaeoclimate tool and its application to the terrestrial Paleogene and Neogene of North America. Palaeobio Palaeoenv, 91: 163–183CrossRefGoogle Scholar
- Yu J, Luo P, Han J E, Meng Q W, Lu R P, Meng X G, Zhu D G, Shao Z G. 2007. Sporopollen records from the Guge section of the Zanda Basin, Tibet, and paleoenvironmental information reflected by it (in Chinese). Geol Chin, 34: 55–60Google Scholar
- Zhang J W, Li B S, Wang J T, Chen W L. 1988. Vegetation of Tibet (in Chinese). Beijing: Science Press. 1–589Google Scholar
- Zhang M L, Fritsch P W. 2010. Evolutionary response of Caragana (Fabaceae) to Qinghai-Tibetan Plateau uplift and Asian interior aridification. Plant Syst Evol, 288: 191–199CrossRefGoogle Scholar
- Zhang Q S, Wang F B, Ji H X, Huang W B. 1981. Pliocene strata in the Zanda Basin, Tibet (in Chinese). J Stratigr, (3): 62–66Google Scholar
- Zhang X S. 1991. Indirect gradient analysis, quantitative classification and environmental interpretation of plant communities in Ngari, Xizang (Tibet) (in Chinese). Act Phytoecol Geobot Sin, 15: 101–113Google Scholar
- Zhou Y, Ding L, Deng W M, Zhang J J. 2000. Tectonic cyclothems in the Zanda Basin and its significance (in Chinese). Chin J Geol, (3): 305–315Google Scholar
- Zhou Z K, Yang Q S, Xia K. 2007. Fossils of Quercus sect. Heterobalanus can help explain the uplift of the Himalayas (in Chinese). Chin Sci Bull, 52: 238CrossRefGoogle Scholar
- Zhu D G, Meng X G, Shao Z G, Yang C B, Sun L Q, Wang J P, Han T L, Han J E, Du J J, Yu J. 2004. Features of Pliocene- Lower Pleistocene sedimentary facies and tectonic evolution in the Zanda Basin, Ngari area, Tibet (in Chinese). J Geomech, 10: 245–252Google Scholar