Advertisement

Fingerprinting hydrothermal fluids in porphyry Cu deposits using K and Mg isotopes

  • Weiqiang LiEmail author
  • Shugao Zhao
  • Xiaomin Wang
  • Shilei Li
  • Guoguang Wang
  • Tao Yang
  • Zhangdong Jin
Research Paper
  • 15 Downloads

Abstract

In this study, we performed an integrated investigation of K and Mg isotopes in hydrothermally altered rocks from the giant Dexing porphyry Cu deposit in China. Both the altered porphyry intrusion and the surrounding wall rocks exhibit large variations in K and Mg isotope compositions, with δ41K values ranging between −1.0296‰ and 0.38‰, and δ26Mg values ranging between −0.49‰ and 0.32‰. The δ41K and δ26Mg values of the majority of altered samples are higher than the isotopic baseline values for upper continental crust. We attribute the general increase in δ41K and δ26Mg in altered rocks to hydrothermal alteration, which caused preferential incorporation of heavy K and Mg isotopes in alteration products, particularly phyllosilicates. However, a few altered samples show anomalously low δ41K and δ26Mg values. The δ41K and δ26Mg values do not correlate with K and Mg concentrations, or mineralogy of altered samples. The variable K-Mg isotope data likely reflect fluids of different physical-chemical properties, or different isotopic compositions. Based on the combined K-Mg isotope data, at least three groups of hydrothermal fluids are distinguished from the Dexing porphyry deposit. Therefore, K-Mg isotopes are potentially a novel tracer for fingerprinting fluids in complex hydrothermal systems.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

Brian Beard helped in mass spectrometry for K isotope analysis. This manuscript benefited from constructive comments from two anonymous reviewers, as well as editorial handling by Prof. Fangzhen Teng. This study was supported by the National Key R & D Program of China (Grant No. 2018YFC0604106) and the National Natural Science Foundation of China (Grant Nos. 41622301, 41873004).

Supplementary material

11430_2018_9387_MOESM1_ESM.pdf (463 kb)
Fingerprinting hydrothermal fluids in porphyry Cu deposits using K and Mg isotopes

References

  1. Bailey S W. 1984. Classification and structures of the micas. Rev Mineral Geochem, 13: 1–12Google Scholar
  2. Chen A A, Pappu R V. 2007. Quantitative characterization of ion pairing and cluster formation in strong 1:1 electrolytes. J Phys Chem B, 111: 6469–6478CrossRefGoogle Scholar
  3. Chen H, Tian Z, Tuller-Ross B, Korotev R L, Wang K. 2019. High-precision potassium isotopic analysis by MC-ICP-MS: An inter-laboratory comparison and refined K atomic weight. J Anal At Spectrom, 34: 160–171CrossRefGoogle Scholar
  4. Dauphas N, John S G, Rouxel O. 2017. Iron isotope systematics. Rev Mineral Geochem, 82: 415–510CrossRefGoogle Scholar
  5. Elderfield H, Schultz A. 1996. Mid-ocean ridge hydrothermal fluxes and the chemical composition of the ocean. Annu Rev Earth Planet Sci, 24: 191–224CrossRefGoogle Scholar
  6. Fennell C J, Bizjak A, Vlachy V, Dill K A. 2009. Ion pairing in molecular simulations of aqueous alkali halide solutions. J Phys Chem B, 113: 6782–6791CrossRefGoogle Scholar
  7. Gagnevin D, Boyce A J, Barrie C D, Menuge J F, Blakeman R J. 2012. Zn, Fe and S isotope fractionation in a large hydrothermal system. Geochim Cosmochim Acta, 88: 183–198CrossRefGoogle Scholar
  8. He M J, Liu X D, Lu X C, Wang R C. 2017. Molecular simulation study on K+-Cl ion pair in geological fluids. Acta Geochim, 36: 1–8CrossRefGoogle Scholar
  9. Ho P C, Palmer D A. 1997. Ion association of dilute aqueous potassium chloride and potassium hydroxide solutions to 600°C and 300 MPa determined by electrical conductance measurements. Geochim Cosmochim Acta, 61: 3027–3040CrossRefGoogle Scholar
  10. Hu Y, Chen X Y, Xu Y K, Teng F Z. 2018. High-precision analysis of potassium isotopes by HR-MC-ICPMS. Chem Geol, 493: 100–108CrossRefGoogle Scholar
  11. Jin Z D. 1999. Geochemistry and evolution ore-forming fluids at Tongchang poprhyry copper deposit, Dexing county, Jiangxi province, Departaient of Earth Sciences (in Chinese). Dissertation for Doctoral Degree. Nanjing: Nanjing University. 114Google Scholar
  12. Jin Z D, Zhu J C, Ji J F, Lu X W, Li F C. 2001. Ore-forming fluid constraints on illite crystallinity (IC) at Dexing porphyry copper deposit, Jiangxi Province. Sci China Ser-D Earth Sci, 44: 177–184CrossRefGoogle Scholar
  13. Johnson C M, Beard B L, Albarede F. 2004. Geochemistry of non-traditional stable isotopes. Mineralogical Society of America Geochemical SocietyGoogle Scholar
  14. Li S L, Li W Q, Beard B L, Raymo M E, Wang X M, Chen Y, Chen J. 2019. K isotopes as a tracer for continental weathering and geological K cycling. Proc Natl Acad Sci USA, 116: 8740–8745CrossRefGoogle Scholar
  15. Li W Q, Beard B L, Li S L. 2016. Precise measurement ofstable potassium isotope ratios using a single focusing collision cell multi-collector ICP-MS. J Anal At Spectrom, 31: 1023–1029CrossRefGoogle Scholar
  16. Li W Q, Beard B L, Li C X, Johnson C M. 2014. Magnesium isotope fractionation between brucite [Mg(OH)2] and Mg aqueous species: Implications for silicate weathering and biogeochemical processes. Earth Planet Sci Lett, 394: 82–93CrossRefGoogle Scholar
  17. Li W Q, Jackson S E, Pearson N J, Graham S. 2010. Copper isotopic zonation in the Northparkes porphyry Cu-Au deposit, SE Australia. Geochim Cosmochim Acta, 74: 4078–4096CrossRefGoogle Scholar
  18. Li W Q, Johnson C M, Beard B L. 2012. U-Th-Pb isotope data indicate phanerozoic age for oxidation of the 3.4 Ga Apex Basalt. Earth Planet Sci Lett, 319–320: 197–206CrossRefGoogle Scholar
  19. Li W Q, Kwon K D, Li S L, Beard B L. 2017. Potassium isotope fractionation between K-salts and saturated aqueous solutions at room temperature: Laboratory experiments and theoretical calculations. Geochim Cosmochim Acta, 214: 1–13CrossRefGoogle Scholar
  20. Li W Q, Li S L, Beard B L. 2019. Geological cycling of potassium and the K isotopic response: Insights from loess and shales. Acta Geochim, 38: 508–516CrossRefGoogle Scholar
  21. Li X F, Sasaki M. 2007. Hydrothermal alteration and mineralization of middle Jurassic dexing porphyry Cu-Mo deposit, Southeast China. Resour Geol, 57: 409–426CrossRefGoogle Scholar
  22. Mathur R, Munk L, Nguyen M, Gregory M, Annell H, Lang J. 2013. Modern and paleofluid pathways revealed by Cu isotope compositions in surface waters and ores of the Pebble porphyry Cu-Au-Mo deposit, Alaska. Econ Geol, 108: 529–541CrossRefGoogle Scholar
  23. Morgan L E, Santiago Ramos D P, Davidheiser-Kroll B, Faithfull J, Lloyd N S, Ellam R M, Higgins J A. 2018. High-precision 41K/39K measurements by MC-ICP-MS indicate terrestrial variability of δ 41K. J Anal At Spectrom, 33: 175–186CrossRefGoogle Scholar
  24. Pan X F, Song Y C, Li Z Q, Hu B G, Zhu X Y, Wang Z K, Yang D, Zhang T F, Li Y. 2012. Restriction of H-O iostopes for alteration and mineralization ssytem of Tongchang Cu (-Mo-Au) porphyric deposit, Jiangxi Province (in Chinese). Mineral Deposits, 31: 850–860Google Scholar
  25. Parendo C A, Jacobsen S B, Wang K. 2017. K isotopes as a tracer of seafloor hydrothermal alteration. Proc Natl Acad Sci USA, 114: 1827–1831CrossRefGoogle Scholar
  26. Pirajno F. 2009. Hydrothermal Processes and Mineral Systems. Springer Netherlands. 1241CrossRefGoogle Scholar
  27. Putnis A. 2009. Mineral replacement reactions. Rev Mineral Geochem, 70: 87–124CrossRefGoogle Scholar
  28. Reed M H. 1997. Hydrothermal alteration and its relationship to ore fluid composition. In: Barnes H L, ed. Geochemistry of Hydrothermal Ore Deposits. 3rd ed. New York: Wiley. 303–366Google Scholar
  29. Ryu J S, Vigier N, Decarreau A, Lee S W, Lee K S, Song H, Petit S. 2016. Experimental investigation of Mg isotope fractionation during mineral dissolution and clay formation. Chem Geol, 445: 135–145CrossRefGoogle Scholar
  30. Santiago-Ramos D P, Morgan L E, Lloyd N S, Higgins J A. 2018. Reverse weathering in marine sediments and the geochemical cycle of potassium in seawater: Insights from the K isotopic composition (41K/39K) of deep-sea pore-fluids. Geochim Cosmochim Acta, 236: 99–120CrossRefGoogle Scholar
  31. Schauble E A. 2004. Applying stable isotope fractionation theory to new systems. Rev Mineral Geochem, 55: 65–111CrossRefGoogle Scholar
  32. Schott J, Mavromatis V, Fujii T, Pearce C R, Oelkers E H. 2016. The control of carbonate mineral Mg isotope composition by aqueous speciation: Theoretical and experimental modeling. Chem Geol, 445: 120–134CrossRefGoogle Scholar
  33. Seedorff E, Dilles J H, Proffett J M, Einaudi M T, Zurcher L, Stavast W J A, Johnson D A, Darton M D. 2005. Porphyry deposits: Characteristics and origin of hypogene features. Econ Geol 100th Anniversary Volume. 251–298Google Scholar
  34. Seo J H, Lee S K, Lee I. 2007. Quantum chemical calculations of equilibrium copper (I) isotope fractionations in ore-forming fluids. Chem Geol, 243: 225–237CrossRefGoogle Scholar
  35. Sillitoe R H. 2010. Porphyry copper systems. Econ Geol, 105: 3–41CrossRefGoogle Scholar
  36. Teng F Z. 2017. Magnesium isotope geochemistry. Rev Mineral Geochem, 82: 219–287CrossRefGoogle Scholar
  37. Teng F Z, Dauphas N, Watkins J M. 2017. Non-traditional stable isotopes: Retrospective and prospective. Rev Mineral Geochem, 82: 1–26CrossRefGoogle Scholar
  38. Teng F Z, Li W Y, Ke S, Marty B, Dauphas N, Huang S C, Wu F Y, Pourmand A. 2010. Magnesium isotopic composition of the Earth and chondrites. Geochim Cosmochim Acta, 74: 4150–4166CrossRefGoogle Scholar
  39. Teng F Z, McDonough W F, Rudnick R L, Walker R J. 2006. Diffusion-driven extreme lithium isotopic fractionation in country rocks ofthe Tin Mountain pegmatite. Earth Planet Sci Lett, 243: 701–710CrossRefGoogle Scholar
  40. Wang G G, Ni P, Yao J, Wang X L, Zhao K D, Zhu R Z, Xu Y F, Pan J Y, Li L, Zhang Y H. 2015. The link between subduction-modified lithosphere and the giant Dexing porphyry copper deposit, South China: Constraints from high-Mg adakitic rocks. Ore Geol Rev, 67: 109–126CrossRefGoogle Scholar
  41. Wang K, Jacobsen S B. 2016. An estimate of the Bulk Silicate Earth potassium isotopic composition based on MC-ICPMS measurements of basalts. Geochim Cosmochim Acta, 178: 223–232CrossRefGoogle Scholar
  42. Wang Y, Zhu X K, Cheng Y B. 2015. Fe isotope behaviours during sulfide-dominated skarn-type mineralisation. J Asian Earth Sci, 103: 374–392CrossRefGoogle Scholar
  43. Wang Y, Zhu X K, Mao J W, Li Z H, Cheng Y B. 2011. Iron isotope fractionation during skarn-type metallogeny: A case study of Xinqiao Cu-S-Fe-Au deposit in the Middle-Lower Yangtze valley. Ore Geol Rev, 43: 194–202CrossRefGoogle Scholar
  44. Weiss Z, Wiewiora A. 1986. Polytypism of micas. III. X-ray diffraction identification. Clays Clay Miner, 34: 53–68Google Scholar
  45. Xu Y K, Hu Y, Chen X Y, Huang T Y, Sletten R S, Zhu D, Teng F Z. 2019. Potassium isotopic compositions of international geological reference materials. Chem Geol, 513: 101–107CrossRefGoogle Scholar
  46. Yao J M, Mathur R, Sun W D, Song W L, Chen H Y, Mutti L, Xiang X K, Luo X H. 2016. Fractionation of Cu and Mo isotopes caused by vapor-liquid partitioning, evidence from the Dahutang W-Cu-Mo ore field. Geochem Geophys Geosyst, 17: 1725–1739CrossRefGoogle Scholar
  47. Zhu X, Huang C K, Rui Z Y, Zhou Y H, Zhu X J, Hu C S, Mei Z K. 1983. Dexing Porphyry Copper Deposit (in Chinese). Beijing: Geological Publishing HouseGoogle Scholar
  48. Zhu X K, O’Nions R K, Guo Y, Belshaw N S, Rickard D. 2000. Determination of natural Cu-isotope variation by plasma-source mass spectrometry: Implications for use as geochemical tracers. Chem Geol, 163: 139–149CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Weiqiang Li
    • 1
    Email author
  • Shugao Zhao
    • 1
  • Xiaomin Wang
    • 1
  • Shilei Li
    • 1
  • Guoguang Wang
    • 1
  • Tao Yang
    • 1
  • Zhangdong Jin
    • 2
  1. 1.State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and EngineeringNanjing UniversityNanjingChina
  2. 2.State Key Laboratory of Loess and Quaternary Geology, Institute of Earth EnvironmentChinese Academy of SciencesXi’anChina

Personalised recommendations