Grain-size reduction of feldspar and flow of deformed granites within the Gaoligong shear zone, southwestern Yunnan, China

  • Yanlong Dong
  • Shuyun CaoEmail author
  • Xuemei Cheng
  • Junlai Liu
  • Hanchen Cao
Research Paper


Mineral deformation and rock flow mechanism in the lithosphere are related to the rheological behavior and weakening mechanism of the continent. Natural deformation behaviors of feldspars are not well understood due to the complexity of their mineral compositions, crystal structures, as well as changing deformation conditions. The refined microstructure, fabric and composition of major minerals in the deformed granitic rocks within the Gaoligong shear zone (GLGSZ), southwestern Yunnan, China, were studied. With increasing mylonitization, two fabric types of end-members have been distinguished (type-I banded granitic mylonite and type-II banded ultramylonite). The two types of deformed granitic rocks have the same mineral assemblage, but different mineral modes. The type-I banded granitic mylonite has a greater proportion of K-feldspar (mostly present as porphyroclasts)>plagioclase>quartz±biotite, however, the type-II banded ultramylonite has a greater proportion of fine-grained plagioclase>K-feldspar>quartz±biotite. The crystallographic preferred orientation (CPO) patterns of quartz combined with two-feldspar geothermometer, confirm that the quartz grains in the type-I and type-II granitic rock have undergone high-temperature dislocation creep deformation. The K-feldspar grains in the matrix of type-II banded ultramylonite show a dominant (100) [010] slip system with dislocation creep recrystallization, while the fine-grained plagioclase grains present a weak CPO pattern with superplastic flow. The K-feldspar porphyroclasts show grain-size reduction associated with mineral composition and fabric transformation. The myrmekite formation with the fine-grained neocrystallization of plagioclase and quartz significally replaced the K-feldspar porphyroclasts. Finally, the fine-grained neocrystallization plagioclases were formed further into the high strain localized ultramylonites with superplastic flow.


Feldspar Grain-size reduction EBSD fabric Fluid Myrmekite Mylonite Ultramylonite 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We are grateful to Prof. Giorgio Pennacchioni from Department of Geosciences, University of Padova for his great field survey together and a lot of discussion. We also gratefully acknowledge the reviewers and Prof. Chunjing Wei for their valuable comments, which have greatly improved the manuscript. This work was supported by the Excellent Youth Fund of National Natural Science Foundation of China (Grant No. 41722207), the National Key Research and Development Program (Grant No. 2017YFC0602401), and the National Natural Science Foundation of China (Grant Nos. 41472188 & 41430211).


  1. Abart R, Heuser D, Habler G. 2014. Mechanisms of myrmekite formation: Case study from the Weinsberg granite, Moldanubian zone, Upper Austria. Contrib Mineral Petrol, 168: 1074CrossRefGoogle Scholar
  2. Akciz S O. 2004. Structural and geochronological constraints on the ductile deformation observed along the Gaoliong Shan and Chong Shan shear zones, Yunnan (China). Dissertation for Doctoral Degree. Turkey: Istanbul Technical University. 1–211Google Scholar
  3. Allison I, Barnett R L, Kerrich R. 1979. Superplastic flow and changes in crystal chemistry of feldspars. Tectonophysics, 53: T41–T46CrossRefGoogle Scholar
  4. Altenberger U, Wilhelm S. 2000. Ductile deformation of K-feldspar in dry eclogite facies shear zones in the Bergen Arcs, Norway. Tectonophysics, 320: 107–121CrossRefGoogle Scholar
  5. Amiguet E, Cordier P, Raterron P. 2010. Deformation of diopside single crystals at mantle pressure. TEM characterization of dislocation microstructures. Eur J Mineral, 22: 181–187CrossRefGoogle Scholar
  6. Behr W M, Platt J P. 2011. A naturally constrained stress profile through the middle crust in an extensional terrane. Earth Planet Sci Lett, 303: 181–192CrossRefGoogle Scholar
  7. Bestmann M, Prior D J, Grasemann B. 2006. Characterisation of deformation and flow mechanics around porphyroclasts in a calcite marble ultramylonite by means of EBSD analysis. Tectonophysics, 413: 185–200CrossRefGoogle Scholar
  8. Bhattacharya A R, Weber K. 2004. Fabric development during shear deformation in the Main Central Thrust Zone, NW-Himalaya, India. Tectonophysics, 387: 23–46CrossRefGoogle Scholar
  9. BGMRYP (Bureau of Geology and Mineral Resources of Yunnan Province). 1990. Regional Geology of Yunnan Province. Beijing: Geological Publishing HouseGoogle Scholar
  10. Cai Z H, Xu Z Q, Duan X D, Li H Q, Cao H, Huang X M. 2013. Early stage of Early Paleozoic orogenic event in west Yunnan Province, southeastern margin of Tibet Plateau. Acta Petrol Sin, 29: 2123–2140Google Scholar
  11. Cao S Y. 2007. Microstructures and deformation mechanisms of high temperature mylonites in Diancangshan, western Yunnan. Dissertation for Master’s Degree. Beijing: China University of Geosciences. 1–67Google Scholar
  12. Cao S Y, Liu L J. 2006. Moeden techniques for the analysis of rock microstructure: EBSD and its application. Adv Earth Sci, 21: 1091–1096Google Scholar
  13. Cao S Y, Liu J L, Leiss B. 2010. Orientation-related deformation mechanisms of naturally deformed amphibole in amphibolite mylonites from the Diancang Shan, SW Yunnan, China. J Struct Geol, 32: 606–622CrossRefGoogle Scholar
  14. Cao S Y, Neubauer F. 2016. Deep crustal expressions of exhumed strike-slip fault systems: Shear zone initiation on rheological boundaries. Earth-Sci Rev, 162: 155–176CrossRefGoogle Scholar
  15. Cao S Y, Neubauer F, Bernroider M, Genser J, Liu J L, Friedl G. 2017. Low-grade retrogression of a high-temperature metamorphic core complex: Naxos, Cyclades, Greece. Geol Soc Am Bull, 129: 93–117CrossRefGoogle Scholar
  16. Chen F K, Li Q L, Wang X L, Li X H. 2006. Zircon age and Sr-Nd-Hf isotopic composition of migmatite in the eastern Tengchong block, western Yannan. Acta Petrol Sin, 22: 439–448Google Scholar
  17. Czaplińska D, Piazolo S, Zibra I. 2015. The influence of phase and grain size distribution on the dynamics of strain localization in polymineralic rocks. J Struct Geol, 72: 15–32CrossRefGoogle Scholar
  18. Derez T, Pennock G, Drury M, Sintubin M. 2015. Low-temperature intracrystalline deformation microstructures in quartz. J Struct Geol, 71: 3–23CrossRefGoogle Scholar
  19. De Toni G B, Bitencourt M F, Nardi L V S. 2014. Strain partitioning into dry and wet zones and the formation of Ca-rich myrmekite in syntectonic syenites: A case for melt-assisted dissolution-replacement creep under granulite facies conditions. J Struct Geol, 91: 88–101CrossRefGoogle Scholar
  20. Ding L. 1991. The characteristics of deformation and tectonic implications in south Gaoligong, western Yunnan, China. Dissertation for Master’s Degree. Beijing: Institute of Geology, Chinese Academy of Science. 1–88Google Scholar
  21. Dong Y L. 2013. Gaoligong metamorphic complex: Rock formation and tectonic evolution, western Yunnan. Master Dissertation. Beijing: China University of Geosciences. 1–67Google Scholar
  22. Dornbush H J. 1994. Development of microstructure and texture in high-temperature mylonites from the Ivrea zone. In: Bunge H J, Siegesmund S, Skrotzki W, Weber K, eds. Textures of Geological Materials. Cambridge: Cambridge Univeristy Press. 187–201Google Scholar
  23. Ferrill D A, Morris A P, Evans M A, Burkhard M, Groshong Jr. R H, Onasch C M. 2004. Calcite twin morphology: A low-temperature deformation geothermometer. J Struct Geol, 26: 1521–1529CrossRefGoogle Scholar
  24. Franëk J, Schulmann K, Lexa O. 2006. Kinematic and rheological model of exhumation of high pressure granulites in the Variscan orogenic root: Example of the Blanský les granulite, Bohemian Massif, Czech Republic. Mineral Petrol, 86: 253–276CrossRefGoogle Scholar
  25. Fukuda J, Okudaira T. 2013. Grain-size-sensitive creep of plagioclase accompanied by solution-precipitation and mass transfer under mid-crustal conditions. J Struct Geol, 51: 61–73CrossRefGoogle Scholar
  26. Gandais M, Willaime C. 1984. Mechanical Properties of Feldspars. Dordrecht: Springer Netherlands. 207–246Google Scholar
  27. Getsinger A J, Hirth G, Stünitz H, Goergen E T. 2013. Influence of water on rheology and strain localization in the lower continental crust. Geochem Geophys Geosyst, 14: 2247–2264CrossRefGoogle Scholar
  28. Goodwin L B, Tikoff B. 2002. Competency contrast, kinematics, and the development of foliations and lineations in the crust. J Struct Geol, 24: 1065–1085CrossRefGoogle Scholar
  29. Gower R J W, Simpson C. 1992. Phase boundary mobility in naturally deformed, high-grade quartzofeldspathic rocks: Evidence for diffusional creep. J Struct Geol, 14: 301–313CrossRefGoogle Scholar
  30. Götze J, Schertl H P, Neuser R D, Kempe U, Hanchar J M. 2013. Optical microscope-cathodoluminescence (OM-CL) imaging as a powerful tool to reveal internal textures of minerals. Mineral Petrol, 107: 373–392CrossRefGoogle Scholar
  31. Grieve RAF, Langenhorst F, Stöffler D. 1996. Shock metamorphism of quartz in nature and experiment: II. Significance in geoscience. Meteorit Planet Sci, 31: 6–35CrossRefGoogle Scholar
  32. Hansen L N, Cheadle M J, John B E, Swapp S M, Dick H J B, Tucholke B E, Tivey M A. 2013. Mylonitic deformation at the Kane oceanic core complex: Implications for the rheological behavior of oceanic detachment faults. Geochem Geophys Geosyst, 14: 3085–3108CrossRefGoogle Scholar
  33. Heidelbach F, Kunze K, Wenk H R. 2000a. Texture analysis of a recrystallized quartzite using electron diffraction in the scanning electron microscope. J Struct Geol, 22: 91–104CrossRefGoogle Scholar
  34. Heidelbach F, Post A, Tullis J. 2000b. Crystallographic preferred orientation in albite samples deformed experimentally by dislocation and solution precipitation creep. J Struct Geol, 22: 1649–1661CrossRefGoogle Scholar
  35. Higgins M D. 2017. Quantitative investigation of felsic rock textures using cathodoluminescence images and other techniques. Lithos, 277: 259–268CrossRefGoogle Scholar
  36. Hobbs B E, Heard H C. 2013. Complete fabric analysis of some commonly observed quartz C-axis patterns. Am Geophys Union, 36: 263–286Google Scholar
  37. Holyoke C W, Tullis J. 2006. Formation and maintenance of shear zones. Geology, 34: 105–108CrossRefGoogle Scholar
  38. Ishii K, Kanagawa K, Shigematsu N, Okudaira T. 2007. High ductility of K-feldspar and development of granitic banded ultramylonite in the Ryoke metamorphic belt, SW Japan. J Struct Geol, 29: 1083–1098CrossRefGoogle Scholar
  39. Jensen L N, Starkey J. 1985. Plagioclase microfabrics in a ductile shear zone from the Jotun Nappe, Norway. J Struct Geol, 7: 527–539CrossRefGoogle Scholar
  40. Ji J Q, Zhong D L, Sang H, Zhang L S. 2000a. The western boundary of extrusion blocks in the southeastern Tibetan Plateau. Chin Sci Bull, 45: 876–881CrossRefGoogle Scholar
  41. Ji J Q, Zhong D L, Sang H Q, Qiu J, Hu S L. 2000b. Dating of two metamorphic events on the basalt granulite from Nabang area on the border of China and Burma. Acta Petrol Sin, 16: 227–232Google Scholar
  42. Ji S C, Mainprice D. 1990. Recrystallization and fabric development in plagioclase. J Geol, 98: 65–79CrossRefGoogle Scholar
  43. Kirby S H. 1985. Rock mechanics observations pertinent to the rheology of the continental lithosphere and the localization of strain along shear zones. Tectonophysics, 119: 1–27CrossRefGoogle Scholar
  44. Kogure T, Raimbourg H, Kumamoto A, Fujii E, Ikuhara Y. 2014. Subgrain boundary analyses in deformed orthopyroxene by TEM/STEM with EBSD-FIB sample preparation technique. Earth Planet Space, 66: 84CrossRefGoogle Scholar
  45. Kruhl J H. 1987. Preferred lattice orientations of plagioclase from amphibolite and greenschist facies rocks near the Insubric Line (Western Alps). Tectonophysics, 135: 233–242CrossRefGoogle Scholar
  46. Kruse R, Stünitz H, Kunze K. 2001. Dynamic recrystallization processes in plagioclase porphyroclasts. J Struct Geol, 23: 1781–1802CrossRefGoogle Scholar
  47. Kushnir A R L, Kennedy L A, Misra S, Benson P, White J C. 2015. The mechanical and microstructural behaviour of calcite-dolomite composites: An experimental investigation. J Struct Geol, 70: 200–216CrossRefGoogle Scholar
  48. Langille J M, Jessup M J, Cottle J M, Newell D, Seward G. 2010. Kinematic evolution of the Ama Drime detachment: Insights into orogenparallel extension and exhumation of the Ama Drime Massif, TibetNepal. J Struct Geol, 32: 900–919CrossRefGoogle Scholar
  49. Lin T H, Chung S L, Chiu H Y, Wu F Y, Yeh M W, Searle M P, Iizuka Y. 2012. Zircon U-Pb and Hf isotope constraints from the Ailao Shan-Red River shear zone on the tectonic and crustal evolution of southwestern China. Chem Geol, 291: 23–37CrossRefGoogle Scholar
  50. Lin T H, Lo C H, Chung S L, Hsu F J, Yeh M W, Lee T Y, Ji J Q, Wang Y Z, Liu D. 2009. 40Ar/39Ar dating of the Jiali and Gaoligong shear zones: Implications for crustal deformation around the Eastern Himalayan Syntaxis. J Asian Earth Sci, 34: 674–685CrossRefGoogle Scholar
  51. Liu F L, Wang F, Liu P H, Yang H, Meng E. 2015. Multiple partial melting events in the Ailao Shan-Red River and Gaoligong Shan complex belts, SE Tibetan Plateau: Zircon U-Pb dating of granitic leucosomes within migmatites. J Asian Earth Sci, 110: 151–169CrossRefGoogle Scholar
  52. Liu J L, Liu Z H, Xu Z Y, Chen H. 2000a. The deformation of rocks in the upper crustal level and the mechanisms of low temperature flow of calcite rocks. World Geol, 19: 209–216Google Scholar
  53. Liu J L, Weber K, Walter J. 2000b. Fluid flow and low temperature plasticity of marble in the upper crustal level. Acta Petrol Sin, 16: 499–505Google Scholar
  54. Liu J L, Walter J M, Weber K. 2002. Fluid-enhanced low-temperature plasticity of calcite marble: Microstructures and mechanisms. Geology, 30: 787–790CrossRefGoogle Scholar
  55. Liu J L, Cao S Y, Zou Y X, Song Z J. 2008. EBSD analysis of rock fabrics and its application. Geol Bull China, 27: 1638–1645Google Scholar
  56. Liu J L, Tang Y, Tran M D, Cao S Y, Zhao L, Zhang Z C, Zhao Z D, Chen W. 2012. The nature of the Ailao Shan-Red River (ASRR) shear zone: Constraints from structural, microstructural and fabric analyses of metamorphic rocks from the Diancang Shan, Ailao Shan and Day Nui Con Voi massifs. J Asian Earth Sci, 47: 231–251CrossRefGoogle Scholar
  57. Liu Z H, Xu Z Y, Wang K Y. 2007. Evidence of microstructures and fluid inclusions for the origin of polycrystalline quartz ribbons in high-grade metamorphic rocks in Daqingshan region. Sci China Ser D-Earth Sci, 50: 496–504CrossRefGoogle Scholar
  58. Ma N, Deng J, Wang Q F, Wang C M, Zhang J, Li G J. 2013. Geochronology of the Dasongpo tin deposit, Yunnan Province: Evidence from zircon LA-ICP-MS U-Pb ages and cassiterite LA-ICP-MS U-Pb age. Acta Petrol Sin, 29: 1223–1235Google Scholar
  59. Mainprice D, Bouchez J L, Blumenfeld P, Tubià J M. 1986. Dominant c slip in naturally deformed quartz: Implications for dramatic plastic softening at high temperature. Geology, 14: 812–822CrossRefGoogle Scholar
  60. Marques F O, Burlini L, Burg J. 2010. Rheology and microstructure of synthetic halite/calcite porphyritic aggregates in torsion. J Struct Geol, 32: 342–349CrossRefGoogle Scholar
  61. Martelat J E, Schulmann K, Lardeaux J M, Nicollet C, Cardon H. 1999. Granulite microfabrics and deformation mechanisms in southern Madagascar. J Struct Geol, 21: 671–687CrossRefGoogle Scholar
  62. Menegon L, Pennacchioni G, Stünitz H. 2006. Nucleation and growth of myrmekite during ductile shear deformation in metagranites. J Metamorph Geol, 24: 553–568CrossRefGoogle Scholar
  63. Menegon L, Pennacchioni G, Spiess R. 2008. Dissolution-precipitation creep of K-feldspar in mid-crustal granite mylonites. J Struct Geol, 30: 565–579CrossRefGoogle Scholar
  64. Miranda E A, Hirth G, John B E. 2016. Microstructural evidence for the transition from dislocation creep to dislocation-accommodated grain boundary sliding in naturally deformed plagioclase. J Struct Geol, 92: 30–45CrossRefGoogle Scholar
  65. Montardi Y, Mainprice D. 1987. A transmission electron microscopic study of the natural plastic deformation of calcific plagioclases (An 68±70). Bull Mineral, 110: 1–14Google Scholar
  66. Morley C K. 2007. Variations in Late Cenozoic-Recent strike-slip and oblique-extensional geometries, within Indochina: The influence of preexisting fabrics. J Struct Geol, 29: 36–58CrossRefGoogle Scholar
  67. Olsen T S, Kohlstedt D L. 1984. Analysis of dislocations in some naturally deformed plagioclase feldspars. Phys Chem Miner, 11: 153–160CrossRefGoogle Scholar
  68. Olsen T S, Kohlstedt D L. 1985. Natural deformation and recrystallization of some intermediate plagioclase feldspars. Tectonophysics, 111: 107–131CrossRefGoogle Scholar
  69. Passchier C W, Trouw R A. 2005. Microtectonics. 2nd ed. Berlin: Springer Science & Business MediaGoogle Scholar
  70. Paterson M S. 1982. The determination of hydroxyl by infrared absorption in quartz, silicate glasses and similar materials. Bull Mineral, 105: 20–29Google Scholar
  71. Prior D J, Boyle A P, Brenker F, Cheadle M C, Day A, Lopez G, Peruzzi L, Potts G, Reddy S, Spiess R, Timms N E, Trimby P, Wheeler J, Zetterstrom L. 1999. The application of electron backscatter diffraction and orientation contrast imaging in the SEM to textural problems in rocks. Am Miner, 84: 1741–1759CrossRefGoogle Scholar
  72. Qi X X, Zhu L H, Grimmer J C, Hu Z C. 2015. Tracing the Transhimalayan magmatic belt and the Lhasa block southward using zircon U-Pb, Lu-Hf isotopic and geochemical data: Cretaceous-Cenozoic granitoids in the Tengchong block, Yunnan, China. J Asian Earth Sci, 110: 170–188CrossRefGoogle Scholar
  73. Rahl J M, Skemer P. 2016. Microstructural evolution and rheology of quartz in a mid-crustal shear zone. Tectonophysics, 680: 129–139CrossRefGoogle Scholar
  74. Raimbourg H, Kogure T, Toyoshima T. 2011. Crystal bending, subgrain boundary development, and recrystallization in orthopyroxene during granulite-facies deformation. Contrib Mineral Petrol, 162: 1093–1111CrossRefGoogle Scholar
  75. Shigematsu N. 1999. Dynamic recrystallization in deformed plagioclase during progressive shear deformation. Tectonophysics, 305: 437–452CrossRefGoogle Scholar
  76. Simpson C, Wintsch R P. 1989. Evidence for deformation-induced K-feldspar replacement by myrmekite. J Metamorph Geol, 7: 261–275CrossRefGoogle Scholar
  77. Słaby E, Götze J, Wörner G, Simon K, Wrzalik R, Śmigielski M. 2008. K-feldspar phenocrysts in microgranular magmatic enclaves: A cathodoluminescence and geochemical study of crystal growth as a marker of magma mingling dynamics. Lithos, 105: 85–97CrossRefGoogle Scholar
  78. Słaby E, De Campos C P, Majzner K, Simon K, Gros K, Moszumańska I, Jokubauskas P. 2017. Feldspar megacrysts from the Santa Angelica composite pluton—Formation/transformation path revealed by combined CL, Raman and LA-ICP-MS data. Lithos, 277: 269–283CrossRefGoogle Scholar
  79. Socquet A, Pubellier M. 2005. Cenozoic deformation in western Yunnan (China-Myanmar border). J Asian Earth Sci, 24: 495–515CrossRefGoogle Scholar
  80. Song S G, Niu Y L, Wei C J, Ji J Q, Su L. 2010. Metamorphism, anatexis, zircon ages and tectonic evolution of the Gongshan block in the northern Indochina continent—An eastern extension of the Lhasa Block. Lithos, 120: 327–346CrossRefGoogle Scholar
  81. Stünitz H, Tullis J. 2001. Weakening and strain localization produced by syn-deformational reaction ofplagioclase. Int J Earth Sci, 90: 136–148CrossRefGoogle Scholar
  82. Stünitz H, Fitz Gerald J D, Tullis J. 2003. Dislocation generation, slip systems, and dynamic recrystallization in experimentally deformed plagioclase single crystals. Tectonophysics, 372: 215–233CrossRefGoogle Scholar
  83. Stipp M, Stünitz H, Heilbronner R, Schmid S M. 2002. The eastern Tonale fault zone: A ‘natural laboratory’ for crystal plastic deformation of quartz over a temperature range from 250 to 700°C. J Struct Geol, 24: 1861–1884CrossRefGoogle Scholar
  84. Stormer Jr J. 1975. Practical two-feldspar geothermometer. Am Miner, 60: 667–674Google Scholar
  85. Tang Y, Wang D B, Liao S Y, Wang B D, Yin F G, Wang L Q. 2016. Geochronological characterization and regional tectonic implication of the leucogranites in the southern segment of Gaoligong metamorphic zone, western Yunnan. Acta Petrol Sin, 32: 2347–2366Google Scholar
  86. ten Grotenhuis S M, Trouw R A J, Passchier C W. 2003. Evolution of mica fish in mylonitic rocks. Tectonophysics, 372: 1–21CrossRefGoogle Scholar
  87. Tullis J, Yund R A. 1987. Transition from cataclastic flow to dislocation creep of feldspar: Mechanisms and microstructures. Geology, 15: 606–609CrossRefGoogle Scholar
  88. Tullis J, Yund R A. 1991. Diffusion creep in feldspar aggregates: Experimental evidence. J Struct Geol, 13: 987–1000CrossRefGoogle Scholar
  89. Vauchez A, Tommasi A, Barruol G. 1998. Rheological heterogeneity, mechanical anisotropy and deformation of the continental lithosphere. Tectonophysics, 296: 61–86CrossRefGoogle Scholar
  90. Viti C, Collettini C, Tesei T, Tarling M, Smith S. 2018. Deformation processes, textural evolution and weakening in retrograde serpentinites. Minerals, 8: 241CrossRefGoogle Scholar
  91. Wang E, Burchfiel B C. 1997. Interpretation of Cenozoic tectonics in the right-lateral accommodation zone between the Ailao Shan shear zone and the eastern Himalayan syntaxis. Int Geol Rev, 39: 191–219CrossRefGoogle Scholar
  92. Wang Y J, Fan W M, Zhang Y H, Peng T P, Chen X Y, Xu Y G. 2006. Kinematics and 40Ar/39Ar geochronology of the Gaoligong and Chongshan shear systems, western Yunnan, China: Implications for early Oligocene tectonic extrusion of SE Asia. Tectonophysics, 418: 235–254CrossRefGoogle Scholar
  93. Wang Y S, Yang B F, Wang H F, Yu D J. 2016. A discussion on influence factors of quartz c-axis fabrics: An example from mylonite in the Tan-Lu fault zone. Acta Petrol Sin, 32: 965–975Google Scholar
  94. Wells R K, Newman J, Wojtal S. 2014. Microstructures and rheology of a calcite-shale thrust fault. J Struct Geol, 65: 69–81CrossRefGoogle Scholar
  95. Whitney J A, Stormer Jr J. 1977. The distribution of NaAlSi3O8 between coexisting microcline and plagioclase and its effect on geothermometric calculations. Am Miner, 62: 687–691Google Scholar
  96. Wintsch R P, Yi K. 2002. Dissolution and replacement creep: A significant deformation mechanism in mid-crustal rocks. J Struct Geol, 24: 1179–1193CrossRefGoogle Scholar
  97. Xia H R, Liu J L. 2011. The crystallographic preferred orientation of quartz and its applications. Geol Bull China, 30: 58–70Google Scholar
  98. Xu H J, Jin S Y, Zheng B R. 2007. New technique of petro fabric: Electron Back scatter diffraction (EBSD). Geoscience, 22: 213–225Google Scholar
  99. Xu Y G, Yang Q J, Lan J B, Luo Z Y, Huang X L, Shi Y R, Xie LW. 2012. Temporal-spatial distribution and tectonic implications of the batholiths in the Gaoligong-Tengliang-Yingjiang area, western Yunnan: Constraints from zircon U-Pb ages and Hf isotopes. J Asian Earth Sci, 53: 151–175CrossRefGoogle Scholar
  100. Xu Z Q, Wang Q, Cai Z H, Dong H W, Li H Q, Chen X J, Duan X D, Cao H, Li J, Burg J P. 2015. Kinematics of the Tengchong Terrane in SE Tibet from the late Eocene to early Miocene: Insights from coeval midcrustal detachments and strike-slip shear zones. Tectonophysics, 665: 127–148CrossRefGoogle Scholar
  101. Yang Q J, Xu Y G, Huang X L, Luo Z Y. 2006. Geochronology and geochemistry of granites in the Gaoligong tectonic belt, western Yunnan: Tectonic implications (in Chinese). Acta Petrol Sin, 22: 2123–2140Google Scholar
  102. Yin C Y, Zhang B, Han B F, Zhang J J, Wang Y, Ai S. 2017. Structural analysis and deformation characteristics of the Yingba metamorphic core complex, northwestern margin of the North China craton, NE Asia. J Struct Geol, 94: 195–212CrossRefGoogle Scholar
  103. Zhang B, Chai Z, Yin C Y, Huang W T, Wang Y, Zhang J J, Wang X X, Cao K. 2017. Intra-continental transpression and gneiss doming in an obliquely convergent regime in SE Asia. J Struct Geol, 97: 48–70CrossRefGoogle Scholar
  104. Zhang B, Zhang J J, Zhong D L, Yang L K, Yue Y H, Yan S Y. 2012a. Polystage deformation of the Gaoligong metamorphic zone: Structures, 40Ar/39Ar mica ages, and tectonic implications. J Struct Geol, 37: 1–18CrossRefGoogle Scholar
  105. Zhang B, Zhang J J, Chang Z F, Wang X X, Cai F L, Lai Q Z. 2012b. The Biluoxueshan transpressive deformation zone monitored by synkinematic plutons, around the Eastern Himalayan Syntaxis. Tectonophysics, 574–575: 158–180CrossRefGoogle Scholar
  106. Zhang B, Zhang J J, Liu J, Wang Y, Yin C Y, Guo L, Zhong D L, Lai Q Z, Yue Y H. 2014. The Xuelongshan high strain zone: Cenozoic structural evolution and implications for fault linkages and deformation along the Ailao Shan-Red River shear zone. J Struct Geol, 69: 209–233CrossRefGoogle Scholar
  107. Zhu R Z, Lai S C, Qin J F, Zhao S W. 2015. Early-Cretaceous highly fractionated I-type granites from the northern Tengchong block, western Yunnan, SW China: Petrogenesis and tectonic implications. J Asian Earth Sci, 100: 145–163CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Yanlong Dong
    • 1
  • Shuyun Cao
    • 1
    Email author
  • Xuemei Cheng
    • 1
  • Junlai Liu
    • 2
  • Hanchen Cao
    • 1
  1. 1.State Key Laboratory of Geological Processes and Mineral Resources, School of Earth SciencesChina University of GeosciencesWuhanChina
  2. 2.State Key Laboratory of Geological Processes and Mineral ResourcesChina University of GeosciencesBeijingChina

Personalised recommendations