Advertisement

Application of Avaatech X-ray fluorescence core-scanning in Sr/Ca analysis of speleothems

  • Dong Li
  • Liangcheng TanEmail author
  • Fei Guo
  • Yanjun Cai
  • Youbin Sun
  • Gang Xue
  • Xing Cheng
  • Hong Yan
  • Hai Cheng
  • R. Lawrence Edwards
  • Yongli Gao
  • Jessica Kelley
Research Paper
  • 5 Downloads

Abstract

Application of X-ray fluorescence core-scanning (XRF-CS) on both marine and lake sediments has achieved remarkable results. However, its application has not been widely extended to the research on speleothems. In this study, we measure the Sr abundance and the Sr/Ca ratios of three stalagmites (two aragonite stalagmites, one calcite stalagmite) using the state-of-the-art fourth-generation Avaatech high-resolution XRF core scanner. Through comparisons among different scan paths and among different scan resolutions, as well as comparisons with inductively coupled plasma optical emission spectrometer (ICP-OES), Itrax XRF, and Artax XRF results, we confirm that the Avaatech XRF core scanner could precisely, quickly, and non-destructively analyze the high-resolution Sr abundance of speleothems. Furthermore, we combine the stalagmite δ18O records to explore the paleoclimatic significance of the measured stalagmite Sr/Ca.

Keywords

Avaatech XRF Speleothem Sr/Ca Paleoclimate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

We thank the two reviewers for their constructive comments. This work was supported by the National Key Research and Development Program of China (Grant No. 2017YFA0603401), Shaanxi Science Fund for Distinguished Young Scholars (Grant No. 2018JC-023), Youth Innovation Promotion Association (Grant No. 2012295) and West Light Foundation of Chinese Academy of Sciences. This work is a part of The “Belt & Road” Project of the Institute of Earth Environment, Chinese Academy of Sciences.

References

  1. Badertscher S, Borsato A, Frisia S, Cheng H, Edwards R L, Tüysüz O, Fleitmann D. 2014. Speleothems as sensitive recorders of volcanic eruptions-the Bronze Age Minoan eruption recorded in a stalagmite from Turkey. Earth Planet Sci Lett, 392: 58–66CrossRefGoogle Scholar
  2. Baumgarten H, Wonik T, Kwiecien O. 2014. Facies characterization based on physical properties from downhole logging for the sediment record of Lake Van, Turkey. Quat Sci Rev, 104: 85–96CrossRefGoogle Scholar
  3. Buckles J, Rowe H D. 2016. Development and optimization of microbeam X-ray fluorescence analysis of Sr in speleothems. Chem Geol, 426: 28–32CrossRefGoogle Scholar
  4. Cai Y J, Chiang J C H, Breitenbach S F M, Tan L C, Cheng H, Edwards R L, An Z S. 2017. Holocene moisture changes in western China, Central Asia, inferred from stalagmites. Quat Sci Rev, 158: 15–28CrossRefGoogle Scholar
  5. Cai Y J, Fung I Y, Edwards R L, An Z S, Cheng H, Lee J E, Tan L C, Shen C C, Wang X F, Day J A, Zhou W J, Kelly M J, Chiang J C H. 2015. Variability of stalagmite-inferred Indian monsoon precipitation over the past 252000 y. Proc Natl Acad Sci USA, 112: 2954–2959CrossRefGoogle Scholar
  6. Cai Y J, Tan L C, Cheng H, An Z S, Edwards R L, Kelly M J, Kong X G, Wang X F. 2010. The variation of summer monsoon precipitation in central China since the last deglaciation. Earth Planet Sci Lett, 291: 21–31CrossRefGoogle Scholar
  7. Caley T, Malaizé B, Zaragosi S, Rossignol L, Bourget J, Eynaud F, Martinez P, Giraudeau J, Charlier K, Ellouz-Zimmermann N. 2011. New Arabian Sea records help decipher orbital timing of Indo-Asian monsoon. Earth Planet Sci Lett, 308: 433–444CrossRefGoogle Scholar
  8. Chen Y L, Zheng H B. 2014. The application of XRF core scanning to Quaternary sediments (in Chinese). Mar Geol Front, 30: 51–59Google Scholar
  9. Cheng H, Edwards R L, Broecker W S, Denton G H, Kong X G, Wang Y J, Zhang R, Wang X F. 2009. Ice age terminations. Science, 326: 248–252CrossRefGoogle Scholar
  10. Cheng H, Edwards R L, Sinha A, Spötl C, Yi L, Chen S T, Kelly M, Kathayat G, Wang X F, Li X L, Kong X G, Wang Y J, Ning Y F, Zhang H W. 2016a. The Asian monsoon over the past 640000 years and ice age terminations. Nature, 534: 640–646CrossRefGoogle Scholar
  11. Cheng H, Spötl C, Breitenbach S F M, Sinha A, Wassenburg J A, Jochum K P, Scholz D, Li X L, Yi L, Peng Y B, Lv Y B, Zhang P Z, Votintseva A, Loginov V, Ning Y F, Kathayat G, Edwards R L. 2016b. Climate variations of Central Asia on orbital to millennial timescales. Sci Rep, 6: 36975CrossRefGoogle Scholar
  12. Clemens S C, Prell W L, Sun Y B. 2010. Orbital-scale timing and mechanisms driving Late Pleistocene Indo-Asian summer monsoons: Reinterpreting cave speleothem δ 18O. Paleoceanography, 25: PA4207CrossRefGoogle Scholar
  13. Croudace I W, Rindby A, Rothwell R G. 2006. ITRAX: Description and evaluation of a new multi-function X-ray core scanner. Geol Soc Lond Spec Publ, 267: 51–63CrossRefGoogle Scholar
  14. Cruz Jr F W, Burns S J, Jercinovic M, Karmann I, Sharp W D, Vuille M. 2007. Evidence of rainfall variations in Southern Brazil from trace element ratios (Mg/Ca and Sr/Ca) in a Late Pleistocene stalagmite. Geochim Cosmochim Acta, 71: 2250–2263CrossRefGoogle Scholar
  15. Cui Y F, Wang Y J, Cheng H, Zhao K, Kong X G. 2012. Isotopic and lithologic variations of one precisely-dated stalagmite across the Medieval/LIA period from Heilong Cave, central China. Clim Past, 8: 1541–1550CrossRefGoogle Scholar
  16. Fairchild I J, Treble P C. 2009. Trace elements in speleothems as recorders of environmental change. Quat Sci Rev, 28: 449–468CrossRefGoogle Scholar
  17. Finné M, Kylander M, Boyd M, Sundqvist H, Löwemark L. 2015. Can XRF scanning of speleothems be used as a non-destructive method to identify paleoflood events in caves? Inter J Speleol, 44: 17–23CrossRefGoogle Scholar
  18. Fleitmann D, Burns S J, Mudelsee M, Neff U, Kramers J, Mangini A, Matter A. 2003. Holocene forcing of the Indian monsoon recorded in a stalagmite from Southern Oman. Science, 300: 1737–1739CrossRefGoogle Scholar
  19. Fleitmann D, Cheng H, Badertscher S, Edwards R L, Mudelsee M, Göktürk O M, Fankhauser A, Pickering R, Raible C C, Matter A, Kramers J, Tüysüz O. 2009. Timing and climatic impact of Greenland interstadials recorded in stalagmites from northern Turkey. Geophys Res Lett, 36: L19707CrossRefGoogle Scholar
  20. Francus P, Lamb H, Nakagawa T, Marshall M, Brown E. 2009. The potential of high-resolution X-ray fluorescence core scanning: Applications in paleolimnology. Pages News, 17: 93–95CrossRefGoogle Scholar
  21. Genty D, Blamart D, Ouahdi R, Gilmour M, Baker A, Jouzel J, Van-Exter S. 2003. Precise dating of Dansgaard-Oeschger climate oscillations in western Europe from stalagmite data. Nature, 421: 833–837CrossRefGoogle Scholar
  22. Hertzberg J E, Black D E, Peterson L C, Thunell R C, Haug G H. 2012. Decadal- to centennial-scale tropical Atlantic climate variability across a Dansgaard-Oeschger cycle. Paleoceanography, 27: PA3218CrossRefGoogle Scholar
  23. Jenkins R. 1999. X-ray Fluorescence Spectroscopy. 2nd ed. New York: Wiley. 207CrossRefGoogle Scholar
  24. Jenkins R, De Vries J L. 1970. Practical X-Ray Spectrometry. London: MacMillan. 190CrossRefGoogle Scholar
  25. Lebreiro S M, Voelker A H L, Vizcaino A, Abrantes F G, Alt-Epping U, Jung S, Thouveny N, Gràcia E. 2009. Sediment instability on the Portuguese continental margin under abrupt glacial climate changes (last 60 kyr). Quat Sci Rev, 28: 3211–3223CrossRefGoogle Scholar
  26. Li H C, Zhao M, Tsai C H, Mii H S, Chang Q, Wei K Y. 2015. The first high-resolution stalagmite record from Taiwan: Climate and environmental changes during the past 1300 years. J Asian Earth Sci, 114: 574–587CrossRefGoogle Scholar
  27. Liu X T, Rendle-Bühring R, Kuhlmann H, Li A C. 2017. Two phases of the Holocene East African Humid Period: Inferred from a high-resolution geochemical record off Tanzania. Earth Planet Sci Lett, 460: 123–134CrossRefGoogle Scholar
  28. Löwemark L, Chen H F, Yang T N, Kylander M, Yu E F, Hsu Y W, Lee T Q, Song S R, Jarvis S. 2011. Normalizing XRF-scanner data: A cautionary note on the interpretation of high-resolution records from organic-rich lakes. J Asian Earth Sci, 40: 1250–1256CrossRefGoogle Scholar
  29. Maher B A. 2008. Holocene variability of the East Asian summer monsoon from Chinese cave records: A re-assessment. Holocene, 18: 861–866CrossRefGoogle Scholar
  30. Maher B A, Thompson R. 2012. Oxygen isotopes from Chinese caves: Records not of monsoon rainfall but of circulation regime. J Quat Sci, 27: 615–624CrossRefGoogle Scholar
  31. Mohtadi M, Lückge A, Steinke S, Groeneveld J, Hebbeln D, Westphal N. 2010. Late Pleistocene surface and thermocline conditions of the eastern tropical Indian Ocean. Quat Sci Rev, 29: 887–896CrossRefGoogle Scholar
  32. Ortega R, Maire R, Devès G, Quinif Y. 2005. High-resolution mapping of uranium and other trace elements in recrystallized aragonite-calcite speleothems from caves in the Pyrenees (France): Implication for U-series dating. Earth Planet Sci Lett, 237: 911–923CrossRefGoogle Scholar
  33. Oster J L, Montañez I P, Santare L R, Sharp W D, Wong C, Cooper K M. 2015. Stalagmite records of hydroclimate in central California during termination 1. Quat Sci Rev, 127: 199–214CrossRefGoogle Scholar
  34. Parker A O, Schmidt M W, Jobe Z R, Slowey N C. 2016. A new perspective on West African hydroclimate during the last deglaciation. Earth Planet Sci Lett, 449: 79–88CrossRefGoogle Scholar
  35. Pausata F S R, Battisti D S, Nisancioglu K H, Bitz C M. 2011. Chinese stalagmite δ 18O controlled by changes in the Indian monsoon during a simulated Heinrich event. Nat Geosci, 4: 474–480CrossRefGoogle Scholar
  36. Ramsey M H, Potts P J, Webb P C, Watkins P, Watson J S, Coles B J. 1995. An objective assessment of analytical method precision: Comparison of ICP-AES and XRF for the analysis of silicate rocks. Chem Geol, 124: 1–19CrossRefGoogle Scholar
  37. Richter T O, van der Gaast S, Koster B, Vaars A, Gieles R, de Stigter H C, De Haas H, van Weering T C E. 2006. The Avaatech XRF core scanner: Technical description and applications to NE Atlantic sediments. Geol Soc Lond Spec Publ, 267: 39–50CrossRefGoogle Scholar
  38. Röhl U, Abrams L J. 2000. High-resolution, downhole, and nondestructive core measurements from Sites 999 and 1001 in the Caribbean Sea: Application to the Late Paleocene Thermal Maximum. Proc Ocean Drilling Program Scientific Results, 165: 191–203Google Scholar
  39. Romero O E, Kim J H, Donner B. 2008. Submillennial-to-millennial variability of diatom production off Mauritania, NW Africa, during the last glacial cycle. Paleoceanography, 23: PA3218CrossRefGoogle Scholar
  40. Scroxton N, Burns S, Dawson P, Rhodes J M, Brent K, McGee D, Heijnis H, Gadd P, Hantoro W, Gagan M. 2018. Rapid measurement of strontium in speleothems using core-scanning micro X-ray fluorescence. Chem Geol, 487: 12–22CrossRefGoogle Scholar
  41. Tan L C, Cai Y J, An Z S, Cheng H, Shen C C, Breitenbach S F M, Gao Y L, Edwards R L, Zhang H W, Du Y J. 2015. A Chinese cave links climate change, social impacts, and human adaptation over the last 500 years. Sci Rep, 5: 12284CrossRefGoogle Scholar
  42. Tan L C, Cai Y J, An Z S, Cheng H, Shen C C, Gao Y L, Edwards R L. 2017. Decreasing monsoon precipitation in southwest China during the last 240 years associated with the warming of tropical ocean. Clim Dyn, 48: 1769–1778CrossRefGoogle Scholar
  43. Tan L C, Cai Y J, Cheng H, Edwards L R, Gao Y L, Xu H, Zhang H W, An Z S. 2018. Centennial- to decadal-scale monsoon precipitation variations in the upper Hanjiang River region, China over the past 6650 years. Earth Planet Sci Lett, 482: 580–590CrossRefGoogle Scholar
  44. Tan L C, Shen C C, Cai Y J, Lo L, Cheng H, An Z S. 2014. Trace-element variations in an annually layered stalagmite as recorders of climatic changes and anthropogenic pollution in Central China. Quat Res, 81: 181–188CrossRefGoogle Scholar
  45. Tan M, Hou J Z, Cheng H. 2002. Methodology of quantitatively reconstructing paleoclimate from annualy laminated stalagmites (in Chinese). Quat Sci, 22: 209–219Google Scholar
  46. Tjallingii R, Röhl U, Kölling M, Bickert T. 2007. Influence of the water content on X-ray fluorescence core-scanning measurements in soft marine sediments. Geochem Geophys Geosyst, 8: Q02004CrossRefGoogle Scholar
  47. Wang X F, Auler A S, Edwards R L, Cheng H, Cristalli P S, Smart P L, Richards D A, Shen C C. 2004. Wet periods in northeastern Brazil over the past 210 kyr linked to distant climate anomalies. Nature, 432: 740–743CrossRefGoogle Scholar
  48. Wang X F, Edwards R L, Auler A S, Cheng H, Kong X G, Wang Y J, Cruz F W, Dorale J A, Chiang H W. 2017. Hydroclimate changes across the Amazon lowlands over the past 45000 years. Nature, 541: 204–207CrossRefGoogle Scholar
  49. Wang Y J, Cheng H, Edwards R L, An Z S, Wu J Y, Shen C C, Dorale J A. 2001. A high-resolution absolute-dated Late Pleistocene monsoon record from Hulu Cave, China. Science, 294: 2345–2348CrossRefGoogle Scholar
  50. Wang Y J, Cheng H, Edwards R L, He Y Q, Kong X G, An Z S, Wu J Y, Kelly M J, Dykoski C A, Li X D. 2005. The Holocene Asian monsoon: Links to solar changes and North Atlantic climate. Science, 308: 854–857CrossRefGoogle Scholar
  51. Wang Y J, Cheng H, Edwards R L, Kong X G, Shao X H, Chen S T, Wu J Y, Jiang X Y, Wang X F, An Z S. 2008. Millennial- and orbital-scale changes in the East Asian monsoon over the past 224,000 years. Nature, 451: 1090–1093CrossRefGoogle Scholar
  52. Wassenburg J A, Immenhauser A, Richter D K, Niedermayr A, Riechelmann S, Fietzke J, Scholz D, Jochum K P, Fohlmeister J, Schröder-Ritzrau A, Sabaoui A, Riechelmann D F C, Schneider L, Esper J. 2013. Moroccan speleothem and tree ring records suggest a variable positive state of the North Atlantic Oscillation during the Medieval Warm Period. Earth Planet Sci Lett, 375: 291–302CrossRefGoogle Scholar
  53. Wassenburg J A, Scholz D, Jochum K P, Cheng H, Oster J, Immenhauser A, Richter D K, Häger T, Jamieson R A, Baldini J U L, Hoffmann D, Breitenbach S F M. 2016. Determination of aragonite trace element distribution coefficients from speleothem calcite-aragonite transitions. Geochim Cosmochim Acta, 190: 347–367CrossRefGoogle Scholar
  54. Weltje G J, Tjallingii R. 2008. Calibration of XRF core scanners for quantitative geochemical logging of sediment cores: Theory and application. Earth Planet Sci Lett, 274: 423–438CrossRefGoogle Scholar
  55. Wong C I, Banner J L, Musgrove M L. 2011. Seasonal dripwater Mg/Ca and Sr/Ca variations driven by cave ventilation: Implications for and modeling of speleothem paleoclimate records. Geochim Cosmochim Acta, 75: 3514–3529CrossRefGoogle Scholar
  56. Wong C I, Breecker D O. 2015. Advancements in the use of speleothems as climate archives. Quat Sci Rev, 127: 1–18CrossRefGoogle Scholar
  57. Yancheva G, Nowaczyk N R, Mingram J, Dulski P, Schettler G, Negendank J F W, Liu J Q, Sigman D M, Peterson L C, Haug G H. 2007. Influence of the intertropical convergence zone on the East Asian monsoon. Nature, 445: 74–77CrossRefGoogle Scholar
  58. Yuan D X, Cheng H, Edwards R L, Dykoski C A, Kelly M J, Zhang M L, Qing J M, Lin Y S, Wang Y J, Wu J Y, Dorale J A, An Z S, Cai Y J. 2004. Timing, duration, and transitions of the Last Interglacial Asian Monsoon. Science, 304: 575–578CrossRefGoogle Scholar
  59. Zhang H B, Griffiths M L, Chiang J C H, Kong W W, Wu S T, Atwood A, Huang J H, Cheng H, Ning Y F, Xie S C. 2018. East Asian hydroclimate modulated by the position of the westerlies during Termination I. Science, 362: 580–583CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Dong Li
    • 1
    • 2
  • Liangcheng Tan
    • 1
    • 3
    • 4
    • 5
    Email author
  • Fei Guo
    • 1
    • 2
  • Yanjun Cai
    • 1
    • 3
    • 4
    • 5
  • Youbin Sun
    • 1
    • 3
  • Gang Xue
    • 1
    • 2
  • Xing Cheng
    • 1
    • 2
  • Hong Yan
    • 1
    • 3
  • Hai Cheng
    • 4
    • 6
  • R. Lawrence Edwards
    • 6
  • Yongli Gao
    • 7
  • Jessica Kelley
    • 7
  1. 1.State Key Laboratory of Loess and Quaternary Geology, Institute of Earth EnvironmentChinese Academy of SciencesXi’anChina
  2. 2.University of Chinese Academy of SciencesBeijingChina
  3. 3.Center for Excellence in Quaternary Science and Global ChangeChinese Academy of SciencesXi’anChina
  4. 4.Institute of Global Environmental ChangeXi’an Jiaotong UniversityXi’anChina
  5. 5.Open Studio for Oceanic-Continental Climate and Environment ChangesPilot National Laboratory for Marine Science and TechnologyQingdaoChina
  6. 6.Department of Earth SciencesUniversity of MinnesotaMinneapolisUSA
  7. 7.Department of Geological SciencesUniversity of Texas at San AntonioSan AntonioUSA

Personalised recommendations