Increased winter-spring precipitation from the last glaciation to the Holocene inferred from a δ13Corg record from Yili Basin (Xinjiang, NW China)

  • Keliang ZhaoEmail author
  • Xiaoqiang LiEmail author
  • Hai Xu
  • Xingying Zhou
  • John Dodson
  • Junchi Liu
Research Paper


The nature and dynamics of climate change in central Asia since the late Pleistocene are controversial. Moreover, most of the published studies focus mainly on the evolution of moisture conditions, and there have been few attempts to address changes in seasonality. In this study, records of δ13Corg, TOC, TN, C/N and grain size were obtained from lacustrine sediments at Yili Basin, Xinjiang, NW China. Our aim was to reconstruct the trend in seasonality of precipitation from the last glaciation to the Holocene. The organic matter content of the sediments is derived predominantly from terrestrial plants. The δ13Corg values vary from -19.4% to -24.8%, indicating that the vegetation was dominated by C3 plants. Winter-spring precipitation is identified as the factor determining the relative proportions of C3 and C4 plants in the region. A negative trend in δ13Corg corresponding to an increase in the relative abundance of C3 plants indicate a trend of increasing winter-spring precipitation from the last glaciation to the Holocene. The increased incidence of wintertime storms in the interior of Asia is suggested to result in the increase of winterspring precipitation in the Holocene.


Organic matter Central Asia C3 and C4 plants Seasonality changes Winter-spring precipitation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We thank Dr. Guilin Zhang for helpful discussions about the age model. This study was supported by the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB26000000), the National Natural Science Foundation of China (Grant Nos. 41772371, 41572161 & 41730319), the National Basic Research Program of China (Grant No. 2015CB953803), the Youth Innovation Promotion Association CAS, and the Australian Nuclear Science and Technology Organization.

Supplementary material

11430_2018_9333_MOESM1_ESM.pdf (133 kb)
Supplementary material, approximately 228 KB.


  1. Aizen V B, Aizen E M, Joswiak D R, Fujita K, Takeuchi N, Nikitin S A. 2006. Climatic and atmospheric circulation pattern variability from icecore isotope/geochemistry records (Altai, Tien Shan and Tibet). Ann Glaciol, 43: 49–60CrossRefGoogle Scholar
  2. Balesdent J, Girardin C, Mariotti A. 1993. Site-related δ13C of tree leaves and soil organic matter in a temperate forest. Ecology, 74: 1713–1721CrossRefGoogle Scholar
  3. Blaauw M, Christen J A. 2011. Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Anal, 6: 457–474Google Scholar
  4. Böhner J. 2006. General climatic controls and topoclimatic variations in central and high Asia. Boreas, 35: 279–295CrossRefGoogle Scholar
  5. Buchmann N, Kao W Y, Ehleringer J. 1997. Influence of stand structure on carbon-13 of vegetation, soils, and canopy air within deciduous and evergreen forests in Utah, United States. Oecologia, 110: 109–119CrossRefGoogle Scholar
  6. Cai Y J, Chiang J H, Breitenbach S M, Tan L C, Cheng H, Edwards R L, An Z S. 2017. Holocene moisture changes in western China, Central Asia, inferred from stalagmites. Quat Sci Rev, 158: 15–28CrossRefGoogle Scholar
  7. Chen F H, Jia J, Chen J H, Li G Q, Zhang X J, Xie H C, Xia D S, Huang W, An C B. 2016. A persistent Holocene wetting trend in arid central Asia, with wettest conditions in the late Holocene, revealed by multi-proxy analyses of loess-paleosol sequences in Xinjiang, China. Quat Sci Rev, 146: 134–146CrossRefGoogle Scholar
  8. Chen F H, Yu Z C, Yang M L, Ito E, Wang S M, Madsen B D, Huang X Z, Zhao Y, Sato T, Birks J H, Boomer I, Chen J H, An C B, Wunnemann B. 2008. Holocene moisture evolution in arid central Asia and its out-of-phase relationship with Asian monsoon history. Quat Sci Rev, 27: 351–364CrossRefGoogle Scholar
  9. Chen T, Ma J, Feng H Y, He Y Q, Xu S J, Qiang W Y, An L Z. 2002. Environmental analysis of stable carbon isotope values in typical desert C3 plants of the Fukang, Xinjiang. Arid Land Geogr, 25: 342–345Google Scholar
  10. Cheng H, Zhang P Z, Spotl C, Edwards R L, Cai Y J, Zhang D Z, Sang W C, Tan M, An Z S. 2012. The climatic cyclicity in semiarid-arid central Asia over the past 500,000 years. Geophys Res Lett, 39: L01705CrossRefGoogle Scholar
  11. Deines P. 1980. The isotopic composition of reduced organic carbon. In: Fritz P, Fontes J C, eds. Handbook of Environmental Isotope Geochemistry I, The Terrestrial Environment. Amsterdam: Elsevier. 339–345Google Scholar
  12. Dormoy I, Peyron O, Nebout N C, Goring S, Kotthoff U, Magny M, Pross J. 2009. Terrestrial climate variability and seasonality changes in the Mediterranean region between 15000 and 4000 years BP deduced from marine pollen records. Clim Past, 5: 615–632CrossRefGoogle Scholar
  13. Fang X M, Lu L Q, Yang S L, Li J J, An Z S, Jiang P G, Chen X L. 2002. Loess in Kunlun Mountains and its implications on desert development and Tibetan Plateau uplift in west China. Sci China Ser D-Earth Sci, 45: 289CrossRefGoogle Scholar
  14. Farquhar G D, Ehleringer J R, Hubick K T. 1989. Carbon isotope discrimination and photosynthesis. Annu Rev Plant Physiol Plant Mol Biol, 40: 503–537CrossRefGoogle Scholar
  15. Feng Y, Duan S M, Mu S Y, Zhao L, Zhao X H. 2012. Geographic distribution and ecology of C4 plants in Xinjiang. Arid Land Geogr, 35: 145–153Google Scholar
  16. Giresse P, Maley J, Brenac P. 1994. Late Quaternary palaeoenvironments in the Lake Barombi Mbo (West Cameroon) deduced from pollen and carbon isotopes of organic matter. Palaeogeogr Palaeoclimatol Palaeoecol, 107: 65–78CrossRefGoogle Scholar
  17. Gouveia S E M, Pessenda L C R, Aravena R, Boulet R, Scheel-Ybert R, Bendassoli J A, Ribeiro A S, Freitas H A. 2002. Carbon isotopes in charcoal and soils in studies of paleovegetation and climate changes during the late Pleistocene and the Holocene in the southeast and centerwest regions of Brazil. Glob Planet Change, 33: 95–106CrossRefGoogle Scholar
  18. Grootes P M, Stuiver M. 1997. Oxygen 18/16 variability in Greenland snow and ice with 103- to 105-year time resolution. J Geophys Res, 102: 26455–26470CrossRefGoogle Scholar
  19. Gu Z Y, Liu Q, Xu B, Han J M, Yang S L, Ding Z L, Liu D S. 2003. Climate as the dominant control on C3 and C4 plant abundance in the Loess Plateau: Organic carbon isotope evidence from the last glacial-interglacial loess-soil sequences. Chin Sci Bull, 48: 1271CrossRefGoogle Scholar
  20. Guo Z T, Ruddiman W F, Hao Q Z, Wu H B, Qiao Y S, Zhu R X, Peng S Z, Wei J J, Yuan B Y, Liu T S. 2002. Onset of Asian desertification by 22 Myr ago inferred from loess deposits in China. Nature, 416: 159–163CrossRefGoogle Scholar
  21. Haug G H, Ganopolski A, Sigman D M, Rosell-Mele A, Swann G E A, Tiedemann R, Jaccard S L, Bollmann J, Maslin M A, Leng M J, Eglinton G. 2005. North Pacific seasonality and the glaciation of North America 2.7 million years ago. Nature, 433: 821–825CrossRefGoogle Scholar
  22. He S L, Lu G H, Yang X D, Wang Y S, Liu X X, Yang J. 2010. Study on the main families and genera of vegetation in Aibi Lake wetland nature reserve using δ13Corg. Xinjiang Agr Sci, 47: 1421–1426Google Scholar
  23. Hennissen J A I, Head M J, De Schepper S, Groeneveld J. 2015. Increased seasonality during the intensification of Northern Hemisphere glaciation at the Pliocene-Pleistocene boundary ~2.6 Ma. Quat Sci Rev, 129: 321–332CrossRefGoogle Scholar
  24. Herzschuh U. 2006. Palaeo-moisture evolution in monsoonal Central Asia during the last 50000 years. Quat Sci Rev, 25: 163–178CrossRefGoogle Scholar
  25. Hewitt C D, Mitchell J F B. 1996. Gcm simulations of the climate of 6 kyr BP: Mean changes and interdecadal variability. J Clim, 9: 3505–3529CrossRefGoogle Scholar
  26. Hong B, Gasse F, Uchida M, Hong Y T, Leng X T, Shibata Y, An N, Zhu Y X, Wang Y. 2014. Increasing summer rainfall in arid eastern-Central Asia over the past 8500 years. Sci Rep, 4: 5279CrossRefGoogle Scholar
  27. Huang X Z, Chen F H, Fan Y X, Yang M L. 2009. Dry late-glacial and early Holocene climate in arid Central Asia indicated by lithological and palynological evidence from Bosten Lake, China. Quat Int, 194: 19–27CrossRefGoogle Scholar
  28. Huang Y S, Street-Perrott F A, Metcalfe S E, Brenner M, Moreland M, Freeman K H. 2001. Climate change as the dominant control on glacial-interglacial variations in C3 and C4 plant abundance. Science, 293: 1647–1651CrossRefGoogle Scholar
  29. Kutzbach J E, Chen G, Cheng H, Edwards R L, Liu Z. 2013. Potential role of winter rainfall in explaining increased moisture in the Mediterranean and Middle East during periods of maximum orbitally-forced insolation seasonality. Clim Dyn, 42: 1079–1095CrossRefGoogle Scholar
  30. Lee X Q, Feng Z D, Guo L L, Wang L X, Jin L Y, Huang Y S, Chopping M, Huang D K, Jiang W, Jiang Q, Cheng H G. 2005. Carbon isotope of bulk organic matter: A proxy for precipitation in the arid and semiarid central East Asia. Glob Biogeochem Cycle, 19: GB4010CrossRefGoogle Scholar
  31. Li J F. 1991. Climate in Xinjiang. Beijing: China Meteorological Press. 74–124Google Scholar
  32. Li X Q, Zhao K L, Dodson J, Zhou X Y. 2011. Moisture dynamics in central Asia for the last 15 kyr: New evidence from Yili Valley, Xinjiang, NW China. Quat Sci Rev, 30: 3457–3466CrossRefGoogle Scholar
  33. Liu W G, Huang Y S, An Z S, Clemens S C, Li L, Prell W L, Ning Y F. 2005a. Summer monsoon intensity controls C4/C3 plant abundance during the last 35 ka in the Chinese Loess Plateau: Carbon isotope evidence from bulk organic matter and individual leaf waxes. Palaeogeogr Palaeoclimatol Palaeoecol, 220: 243–254CrossRefGoogle Scholar
  34. Liu W G, Ning Y F, An Z S, Wu Z H, Lu H Y, Cao Y N. 2005b. Carbon isotopic composition of modern soil and paleosol as a response to vegetation change on the Chinese Loess Plateau. Sci China Ser D-Earth Sci, 48: 93–99CrossRefGoogle Scholar
  35. Liu W G, Li X Z, An Z S, Xu L M, Zhang Q L. 2013. Total organic carbon isotopes: A novel proxy of lake level from Lake Qinghai in the Qinghai-Tibet Plateau, China. Chem Geol, 347: 153–160CrossRefGoogle Scholar
  36. Liu W G, Liu Z H, An Z S, Sun J M, Chang H, Wang N, Dong J B, Wang H Y. 2014. Late Miocene episodic lakes in the arid Tarim Basin, western China. Proc Natl Acad Sci USA, 111: 16292–16296CrossRefGoogle Scholar
  37. Liu X Q, Herzschuh U, Shen J, Jiang Q F, Xiao X Y. 2008. Holocene environmental and climatic changes inferred from Wulungu Lake in northern Xinjiang, China. Quat Res, 70: 412–425CrossRefGoogle Scholar
  38. Long H, Shen J, Chen J H, Tsukamoto S, Yang L H, Cheng H Y, Frechen M. 2017. Holocene moisture variations over the arid central Asia revealed by a comprehensive sand-dune record from the central Tian Shan, NW China. Quat Sci Rev, 174: 13–32CrossRefGoogle Scholar
  39. Long H, Shen J, Tsukamoto S, Chen J H, Yang L H, Frechen M. 2014. Dry early Holocene revealed by sand dune accumulation chronology in Bayanbulak Basin (Xinjiang, NW China). Holocene, 24: 614–626CrossRefGoogle Scholar
  40. Lu H Y, Zhang H Y, Zeng L, Lu A Q, Zhang Z H, Chen Y Y, Yi S W. 2015. Temperature forced vegetation variations in glacial-interglacial cycles in northeastern China revealed by loess-laleosol deposit. Quat Sci, 35: 828–836Google Scholar
  41. Luo C, Liu W G, Peng Z C, Yang D, He J F, Liu G J, Zhang P X. 2008. Stable carbon isotope record of organic matter from the Lop-nurl acustrine sediment in Xinjiang, northweat China. Quat Sci, 28: 621–628Google Scholar
  42. Mackay A W, Bezrukova E V, Leng M J, Meaney M, Nunes A, Piotrowska N, Self A, Shchetnikov A, Shilland E, Tarasov P, Wang L, White D. 2012. Aquatic ecosystem responses to Holocene climate change and biome development in boreal, central Asia. Quat Sci Rev, 41: 119–131CrossRefGoogle Scholar
  43. Mathis M, Sorrel P, Klotz S, Huang X T, Oberhansli H. 2014. Regional vegetation patterns at lake Son Kul reveal Holocene climatic variability in central Tien Shan (Kyrgyzstan, Central Asia). Quat Sci Rev, 89: 169–185CrossRefGoogle Scholar
  44. Meyers P A. 2003. Applications of organic geochemistry to paleolimnological reconstructions: A summary of examples from the Laurentian Great Lakes. Org Geochem, 34: 261–289CrossRefGoogle Scholar
  45. Meyers P A, Horie S. 1993. An organic carbon isotopic record of glacial-postglacial change in atmospheric pCO2 in the sediments of Lake Biwa, Japan. Palaeogeogr Palaeoclimatol Palaeoecol, 105: 171–178CrossRefGoogle Scholar
  46. Meyers P A, Ishiwatari R. 1993. Lacustrine organic geochemistry—An overview of indicators of organic matter sources and diagenesis in lake sediments. Org Geochem, 20: 867–900CrossRefGoogle Scholar
  47. Meyers P A, Lallier-Verges E. 1999. Lacustrine sedimentary organic matter records of Late Quaternary paleoclimates. J Paleolimnol, 21: 345–372CrossRefGoogle Scholar
  48. Monnin E, Indermuhle A, Dallenbach A, Fluckiger J, Stauffer B, Stocker T F, Raynaud D, Barnola J M. 2001. Atmospheric CO2 concentrations over the last glacial termination. Science, 291: 112–114CrossRefGoogle Scholar
  49. Nordt L C, Boutton T W, Jacob J S, Mandel R D. 2002. C4 plant productivity and climate-CO2 variations in South-Central Texas during the Late Quaternary. Quat Res, 58: 182–188CrossRefGoogle Scholar
  50. O’Leary M H. 1981. Carbon isotope fractionation in plants. Phytochemistry, 20: 553–567CrossRefGoogle Scholar
  51. O’Leary M H. 1988. Carbon isotope in photosynthesis. BioScience, 38: 328–336CrossRefGoogle Scholar
  52. Petit J R, Jouzel J, Raynaud D, Barkov N I, Barnola J M, Basile I, Bender M, Chappellaz J, Davis M, Delaygue G, Delmotte M, Kotlyakov V M, Legrand M, Lipenkov V Y, Lorius C, PEpin L, Ritz C, Saltzman E, Stievenard M. 1999. Climate and atmospheric history of the past 420000 years from the Vostok ice core, Antarctica. Nature, 399: 429–436CrossRefGoogle Scholar
  53. Peyron O, Goring S, Dormoy I, Kotthoff U, Pross J, de Beaulieu J L, Drescher-Schneider R, Vanniere B, Magny M. 2011. Holocene seasonality changes in the central Mediterranean region reconstructed from the pollen sequences of Lake Accesa (Italy) and Tenaghi Philippon (Greece). Holocene, 21: 131–146CrossRefGoogle Scholar
  54. Ran M, Feng Z D. 2014. Variation in carbon isotopic composition over the past ca. 46000 yr in the loess-paleosol sequence in central Kazakhstan and paleoclimatic significance. Org Geochem, 73: 47–55CrossRefGoogle Scholar
  55. Rao Z G, Xu Y B, Xia D S, Xie L H, Chen F H. 2013. Variation and paleoclimatic significance of organic carbon isotopes of Ili loess in arid Central Asia. Org Geochem, 63: 56–63CrossRefGoogle Scholar
  56. Rao Z G, Chen F H, Cheng H, Liu W G, Wang G A, Lai Z P, Blomental J. 2013. High-resolution summer precipitation variations in the western Chinese Loess Plateau during the last glacial. Sci Rep, 3: 2785CrossRefGoogle Scholar
  57. Rea D K, Snoeckx H, Joseph L H. 1998. Late Cenozoic eolian deposition in the North Pacific: Asian drying, Tibetan uplift, and cooling of the northern hemisphere. Paleoceanography, 13: 215-224CrossRefGoogle Scholar
  58. Reimer P J, Bard E, Bayliss A, Beck J W, Blackwell P G, Ramsey C B, Buck C E, Cheng H, Edwards R L, Friedrich M, Grootes P M, Guilderson T P, Haflidason H, Hajdas I, Hatte C, Heaton T J, Hoffmann D L, Hogg A G, Hughen K A, Kaiser K F, Kromer B, Manning S W, Niu M, Reimer R W, Richards D A, Scott E M, Southon J R, Staff R A, Turney C S M, van der Plicht J. 2013. IntCal13 and Marine13 radiocarbon age calibration curves 0.50000 years cal BP. Radiocarbon, 55: 1869–1887CrossRefGoogle Scholar
  59. Rudaya N, Li H C. 2013. A new approach for reconstruction of the Holocene climate in the Mongolian Altai: The high-resolution δ13C records of TOC and pollen complexes in Hoton-Nur Lake sediments. J Asian Earth Sci, 69: 185–195CrossRefGoogle Scholar
  60. Rudaya N, Tarasov P, Dorofeyuk N, Solovieva N, Kalugin I, Andreev A, Daryin A, Diekmann B, Riedel F, Tserendash N, Wagner M. 2009. Holocene environments and climate in the Mongolian Altai reconstructed from the Hoton-Nur pollen and diatom records: A step towards better understanding climate dynamics in Central Asia. Quat Sci Rev, 28: 540–554CrossRefGoogle Scholar
  61. Sage R F, Wedin D A, Li M. 1999. The biogeography of C4 photosynthesis: Patterns and controlling factors. In: Sage R F, Monson R K, eds. C4 Plant Biology. San Diego: Academic Press. 313–373CrossRefGoogle Scholar
  62. Schubert B A, Jahren A H. 2012. The effect of atmospheric CO2 concentration on carbon isotope fractionation in C3 land plants. Geochim Cosmochim Acta, 96: 29–43CrossRefGoogle Scholar
  63. Shen J, Wang S M, Zhang G. 1998a. Dissolvable organic composition and its paleoclimatte and enviromental significance in sediments of Gucheng Lake. J Lake Sci, 10: 63–70CrossRefGoogle Scholar
  64. Shen J, Wu R J, An Z S. 1998b. Characters of the organic δ13C and paleoenvironment in the section of Dubusu Lake. J Lake Sci, 10: 8–12CrossRefGoogle Scholar
  65. Song Y G, Shi Z T, Fang X M, Nie J S, Naoto I, Qiang X K, Wang X L. 2010. Loess magnetic properties in the Ili Basin and their correlation with the Chinese Loess Plateau. Sci China Earth Sci, 53: 419–431CrossRefGoogle Scholar
  66. Stuiver M, Grootes P M, Braziunas T F. 1995. The GISP2 δ18O climate record of the past 16,500 years and the role of the sun, ocean, and volcanoes. Quat Res, 44: 341–354CrossRefGoogle Scholar
  67. Sun B Y, Yue L P, Lai Z P, Liu W G. 2014. Paleoclimate change recorded by sediment organic carbon isotope of Lake Barkol since 14 ka BP. Quat Sci, 34: 418–424Google Scholar
  68. Sun H L, Ma J Y, Wang S M, Zhang X. 2007. The study of stable carbon isotope composition in desert plants of Junggar Basin. J Desert Res, 27: 972–976Google Scholar
  69. Sun J M, Ye J, Wu W Y, Ni X J, Bi S D, Zhang Z Q, Liu W M, Meng J. 2010. Late Oligocene-Miocene mid-latitude aridification and wind patterns in the Asian interior. Geology, 38: 515–518CrossRefGoogle Scholar
  70. Sun X J, Du N Q, Weng C Y, Lin R F, Wei K Q. 1994. Paleovegetation and paleoenvironment of Manas Lake, Xinjiang, Northwestern China during the last 14000 years. Quat Sci, 3: 239–248Google Scholar
  71. Wang G A, Feng X, Han J M, Zhou L P, Tan W, Su F. 2008. Paleovegetation reconstruction using δ13C of Soil Organic Matter. Biogeosciences, 5: 1325–1337CrossRefGoogle Scholar
  72. Wang G A, Li J Z, Liu X Z, Li X Y. 2013. Variations in carbon isotope ratios of plants across a temperature gradient along the 400 mm isoline of mean annual precipitation in north China and their relevance to paleovegetation reconstruction. Quat Sci Rev, 63: 83–90CrossRefGoogle Scholar
  73. Wang G A, Zhang L L, Zhang X Y, Wang Y H, Xu Y P. 2014. Chemical and carbon isotopic dynamics of grass organic matter during litter decompositions: A litterbag experiment. Org Geochem, 69: 106–113CrossRefGoogle Scholar
  74. Wang Y, Zhu L P, Wang J B, Ju J T, Lin X. 2012. The spatial distribution and sedimentary processes of organic matter in surface sediments of Nam Co, Central Tibetan Plateau. Chin Sci Bull, 57: 4753–4764CrossRefGoogle Scholar
  75. Woszczyk M, Bechtel A, Gratzer R, Kotarba M J, Kokociński M, Fiebig J, Cieśliński R. 2011. Composition and origin of organic matter in surface sediments of Lake Sarbsko: A highly eutrophic and shallow coastal lake (northern Poland). Org Geochem, 42: 1025–1038CrossRefGoogle Scholar
  76. Wynn J G. 2007. Carbon isotope fractionation during decomposition of organic matter in soils and paleosols: Implications for paleoecological interpretations of paleosols. Palaeogeogr Palaeoclimatol Palaeoecol, 251: 437–448CrossRefGoogle Scholar
  77. Xinjiang Expedition Team, Chinese Academy of Sciences. 1978. Vegetation and its Utilization in Xinjiang. Beijing: Sciences Press. 1–266Google Scholar
  78. Yang S L, Ding Z L. 2006. Winter-spring precipitation as the principal control on predominance of C3 plants in Central Asia over the past 1.77 Myr: Evidence from δ13C of loess organic matter in Tajikistan. Palaeogeogr Palaeoclimatol Palaeoecol, 235: 330–339CrossRefGoogle Scholar
  79. Yang S L, Ding Z L, Li Y Y, Wang X, Jiang W Y, Huang X F. 2015. Warming-induced northwestward migration of the East Asian monsoon rain belt from the Last Glacial Maximum to the mid-Holocene. Proc Natl Acad Sci USA, 112: 13178–13183CrossRefGoogle Scholar
  80. Yang X P, Zhu Z D, Jaekel D, Owen L A, Han J M. 2002. Late Quaternary palaeoenvironment change and landscape evolution along the Keriya River, Xinjiang, China: The relationship between high mountain glaciation and landscape evolution in foreland desert regions. Quat Int, 97-98: 155–166CrossRefGoogle Scholar
  81. Ye W. 1999. Characteristics of physical environment and conditions of loess formation in Yili area, Xijing. Arid Land Geogr, 22: 9–16Google Scholar
  82. Zhang Y, Meyers P A, Liu X T, Wang G P, Ma X H, Li X Y, Yuan Y X, Wen B L. 2016. Holocene climate changes in the central Asia mountain region inferred from a peat sequence from the Altai Mountains, Xinjiang, northwestern China. Quat Sci Rev, 152: 19–30CrossRefGoogle Scholar
  83. Zhao K L, Li X Q, Dodson J, Zhou X Y, Atahanc P. 2013. Climate instability during the last deglaciation in central Asia, reconstructed by pollen data from Yili Valley, NW China. Rev Palaeobot Palynol, 189: 8–17CrossRefGoogle Scholar
  84. Zhao Y, Liu Y L, Guo Z T, Fang K Y, Li Q, Cao X Y. 2017. Abrupt vegetation shifts caused by gradual climate changes in central Asia during the Holocene. Sci China Earth Sci, 60: 1317–1327CrossRefGoogle Scholar
  85. Zheng H B, Wei X C, Tada R, Clift P D, Wang B, Jourdan F, Wang P, He M Y. 2015. Late Oligocene-early Miocene birth of the Taklimakan Desert. Proc Natl Acad Sci USA, 112: 7662–7667CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and PaleoanthropologyChinese Academy of SciencesBeijingChina
  2. 2.CAS Center for Excellence in Life and PaleoenvironmentBeijingChina
  3. 3.Institute of Surface-Earth System ScienceTianjin UniversityTianjingChina
  4. 4.School of Earth, Atmospheric and Life SciencesUniversity of WollongongNSWAustralia
  5. 5.Institute of Earth EnvironmentChinese Academy of SciencesXi’anChina

Personalised recommendations