Advertisement

Science China Earth Sciences

, Volume 62, Issue 5, pp 853–862 | Cite as

Elevational patterns of abundant and rare bacterial diversity and composition in mountain streams in the southeast of the Tibetan Plateau

  • Keshao Liu
  • Tandong Yao
  • Yongqin LiuEmail author
  • Baiqing Xu
  • Anyi Hu
  • Yuying Chen
Research Paper
  • 24 Downloads

Abstract

Elevational gradients are powerful ‘natural laboratory’ for testing the responses of microbes to geophysical influences. Microbial communities are normally composed of a few abundant and many rare taxa. Abundant and rare taxa play different ecological roles in kinds of environments, but how their diversity and composition patterns response to elevation gradients is still poorly elucidated. In this study, we investigated the elevational patterns of abundant and rare bacterial diversity and composition in a mountain stream from 712 to 3435 m at Gangrigabu Mountain on the Tibetan Plateau, China. Our results revealed abundant and rare bacteria had similar decreasing elevation trend of alpha diversity, and both of them showed a significant elevational distance-decay relationship. However, the turnover rate of the elevational distance-decay of rare bacteria was higher than that of abundant bacteria. The species-abundance distribution patterns of rare taxonomic composition were associated with the elevational gradient, while most of abundant bacterial clades did not display any relationships with elevation. Our results suggested that rare bacteria were more sensitive to changes in elevation gradient.

Keywords

Rare bacteria Diversity patterns Elevation gradients Mountain stream 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was financially supported by the International Partnership Program of Chinese Academy of Sciences (Grant No. 131C11KYSB20160061) and the National Natural Science Foundation of China (Grant No. 41425004).

Supplementary material

11430_2018_9316_MOESM1_ESM.pdf (387 kb)
Supplementary material, approximately 387 KB.

References

  1. Antwis R E, Griffiths S M, Harrison X A, Aranega-Bou P, Arce A, Bettridge A S, Brailsford F L, de Menezes A, Devaynes A, Forbes K M, Fry E L, Goodhead I, Haskell E, Heys C, James C, Johnston S R, Lewis G R, Lewis Z, Macey M C, McCarthy A, McDonald J E, Mejia-Florez N L, O'Brien D, Orland C, Pautasso M, Reid W D K, Robinson H A, Wilson K, Sutherland W J. 2017. Fifty important research questions in microbial ecology. FEMS Microbiol Ecol, 93: 1–10CrossRefGoogle Scholar
  2. Bryant J A, Lamanna C, Morlon H, Kerkhoff A J, Enquist B J, Green J L. 2008. Microbes on mountainsides: Contrasting elevational patterns of bacterial and plant diversity. Proc Natl Acad Sci USA, 105: 11505–11511CrossRefGoogle Scholar
  3. Caporaso J G, Kuczynski J, Stombaugh J, Bittinger K, Bushman F D, Costello E K, Fierer N, Peña A G, Goodrich J K, Gordon J I, Huttley G A, Kelley S T, Knights D, Koenig J E, Ley R E, Lozupone C A, McDonald D, Muegge B D, Pirrung M, Reeder J, Sevinsky J R, Turnbaugh P J, Walters W A, Widmann J, Yatsunenko T, Zaneveld J, Knight R. 2010. QIIME allows analysis of high-throughput community sequencing data. Nat Methods, 7: 335–336CrossRefGoogle Scholar
  4. Caporaso J G, Lauber C L, Walters W A, Berg-Lyons D, Huntley J, Fierer N, Owens S M, Betley J, Fraser L, Bauer M, Gormley N, Gilbert J A, Smith G, Knight R. 2012. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J, 6: 1621–1624CrossRefGoogle Scholar
  5. Chao A. 1984. Nonparametric estimation of the number of classes in a population. Scand J Stat, 11: 265–270Google Scholar
  6. Chu H, Sun H, Tripathi B M, Adams J M, Huang R, Zhang Y, Shi Y. 2016. Bacterial community dissimilarity between the surface and subsurface soils equals horizontal differences over several kilometers in the western Tibetan Plateau. Environ Microbiol, 18: 1523–1533CrossRefGoogle Scholar
  7. DeSantis T Z, Hugenholtz P, Larsen N, Rojas M, Brodie E L, Keller K, Huber T, Dalevi D, Hu P, Andersen G L. 2006. Greengenes, a chimerachecked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol, 72: 5069–5072CrossRefGoogle Scholar
  8. Dray S, Blanchet G, Borcard D, Guenard G, Jombart T, Legendre P, Wagner H. 2017. adespatial: Multivariate multiscale spatial analysis. R package version 00–8 Retrieved from https://doi.org/CRANR-project.org/package=adespatial Google Scholar
  9. Edgar R C. 2010. Search and clustering orders of magnitude faster than BLAST. Bioinformatics, 26: 2460–2461CrossRefGoogle Scholar
  10. Faith D P. 1992. Conservation evaluation and phylogenetic diversity. Biol Conservation, 61: 1–10CrossRefGoogle Scholar
  11. Galand P E, Casamayor E O, Kirchman D L, Lovejoy C. 2009. Ecology of the rare microbial biosphere of the Arctic Ocean. Proc Natl Acad Sci USA, 106: 22427–22432CrossRefGoogle Scholar
  12. Gibbons S M, Caporaso J G, Pirrung M, Field D, Knight R, Gilbert J A. 2013. Evidence for a persistent microbial seed bank throughout the global ocean. Proc Natl Acad Sci USA, 110: 4651–4655CrossRefGoogle Scholar
  13. Gobet A, Quince C, Ramette A. 2010. Multivariate Cutoff Level Analysis (MultiCoLA) of large community data sets. Nucleic Acids Res, 38: e155CrossRefGoogle Scholar
  14. Greenberg Arnold E, Clesceri Lenore S. 1992. Standard Methods for the Examination of Water and Wastewater. USA: American Public Health AssociationGoogle Scholar
  15. Hayden C J, Beman J M. 2016. Microbial diversity and community structure along a lake elevation gradient in Yosemite National Park, California, USA. Environ Microbiol, 18: 1782–1791CrossRefGoogle Scholar
  16. Jones S E, Lennon J T. 2010. Dormancy contributes to the maintenance of microbial diversity. Proc Natl Acad Sci USA, 107: 5881–5886CrossRefGoogle Scholar
  17. Kembel S W, Cowan P D, Helmus M R, Cornwell W K, Morlon H, Ackerly D D, Blomberg S P, Webb C O. 2010. Picante: R tools for integrating phylogenies and ecology. Bioinformatics, 26: 1463–1464CrossRefGoogle Scholar
  18. Lear G, Washington V, Neale M, Case B, Buckley H, Lewis G. 2013. The biogeography of stream bacteria. Glob Ecol Biogeogr, 22: 544–554CrossRefGoogle Scholar
  19. Legendre P, De Cáceres M. 2013. Beta diversity as the variance of community data: Dissimilarity coefficients and partitioning. Ecol Lett, 16: 951–963CrossRefGoogle Scholar
  20. Li H, Zeng J, Ren L, Wang J, Xing P, Wu Q L. 2017. Contrasting patterns of diversity of abundant and rare bacterioplankton in freshwater lakes along an elevation gradient. Limnol Oceanogr, 62: 1570–1585CrossRefGoogle Scholar
  21. Liao J, Cao X, Wang J, Zhao L, Sun J, Jiang D, Huang Y. 2017. Similar community assembly mechanisms underlie similar biogeography of rare and abundant bacteria in lakes on Yungui Plateau, China. Limnol Oceanogr, 62: 723–735CrossRefGoogle Scholar
  22. Liu L, Yang J, Yu Z, Wilkinson D M. 2015. The biogeography of abundant and rare bacterioplankton in the lakes and reservoirs of China. ISME J, 9: 2068–2077CrossRefGoogle Scholar
  23. Liu Y, Priscu J C, Yao T, Vick-Majors T J, Michaud A B, Jiao N, Hou J, Tian L, Hu A, Chen Z Q. 2014. A comparison of pelagic, littoral, and riverine bacterial assemblages in Lake Bangongco, Tibetan Plateau. FEMS Microbiol Ecol, 89: 211–221CrossRefGoogle Scholar
  24. Logares R, Audic S, Bass D, Bittner L, Boutte C, Christen R, Claverie J M, Decelle J, Dolan J R, Dunthorn M, Edvardsen B, Gobet A, Kooistra W H C F, Mahé F, Not F, Ogata H, Pawlowski J, Pernice M C, Romac S, Shalchian-Tabrizi K, Simon N, Stoeck T, Santini S, Siano R, Wincker P, Zingone A, Richards T A, de Vargas C, Massana R. 2014. Patterns of rare and abundant marine microbial eukaryotes. Curr Biol, 24: 813–821CrossRefGoogle Scholar
  25. Logares R, Lindström E S, Langenheder S, Logue J B, Paterson H, Laybourn-Parry J, Rengefors K, Tranvik L, Bertilsson S. 2013. Biogeography of bacterial communities exposed to progressive long-term environmental change. ISME J, 7: 937–948CrossRefGoogle Scholar
  26. Magoc T, Salzberg S L. 2011. FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics, 27: 2957–2963CrossRefGoogle Scholar
  27. Mason C H, Perreault Jr W D. 1991. Collinearity, power, and interpretation of multiple regression analysis. J Marketing Res, 28: 268–280CrossRefGoogle Scholar
  28. McArdle B H, Anderson M J. 2001. Fitting multivariate models to community data: A comment on distance-based redundancy analysis. Ecology, 82: 290–297CrossRefGoogle Scholar
  29. Pedrós-Alió C. 2006. Marine microbial diversity: Can it be determined? Trends MicroBiol, 14: 257–263CrossRefGoogle Scholar
  30. Pedrós-Alió C. 2012. The rare bacterial biosphere. Annu Rev Mar Sci, 4: 449–466CrossRefGoogle Scholar
  31. Shen C, Ni Y, Liang W, Wang J, Chu H. 2015. Distinct soil bacterial communities along a small-scale elevational gradient in alpine tundra. Front Microbiol, 6: 582Google Scholar
  32. Sogin M L, Morrison H G, Huber J A, Mark Welch D, Huse S M, Neal P R, Arrieta J M, Herndl G J. 2006. Microbial diversity in the deep sea and the underexplored “rare biosphere”. Proc Natl Acad Sci USA, 103: 12115–12120CrossRefGoogle Scholar
  33. Sutherland W J, Freckleton R P, Godfray H C J, Beissinger S R, Benton T, Cameron D D, Carmel Y, Coomes D A, Coulson T, Emmerson M C. 2013. Identification of 100 fundamental ecological questions. J Ecol, 101: 58–67CrossRefGoogle Scholar
  34. R Core Team. 2014. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing, 2013Google Scholar
  35. Wang J, Meier S, Soininen J, Casamayor E O, Pan F, Tang X, Yang X, Zhang Y, Wu Q, Zhou J, Shen J. 2017. Regional and global elevational patterns of microbial species richness and evenness. Ecography, 40: 393–402CrossRefGoogle Scholar
  36. Wang J, Soininen J, He J, Shen J. 2012. Phylogenetic clustering increases with elevation for microbes. Environ Microbiol Rep, 4: 217–226CrossRefGoogle Scholar
  37. Wang J, Soininen J, Zhang Y, Wang B, Yang X, Shen J. 2011. Contrasting patterns in elevational diversity between microorganisms and macroorganisms. J Biogeogr, 38: 595–603CrossRefGoogle Scholar
  38. Wilhelm L, Singer G A, Fasching C, Battin T J, Besemer K. 2013. Microbial biodiversity in glacier-fed streams. ISME J, 7: 1651–1660CrossRefGoogle Scholar
  39. Xiong J, Chen H, Hu C, Ye X, Kong D, Zhang D. 2015. Evidence of bacterioplankton community adaptation in response to long-term mariculture disturbance. Sci Rep, 5: 15274CrossRefGoogle Scholar
  40. Xiong J, Xiong S, Qian P, Zhang D, Liu L, Fei Y. 2016. Thermal discharge-created increasing temperatures alter the bacterioplankton composition and functional redundancy. AMB Expr, 6: 68CrossRefGoogle Scholar
  41. Yang J, Jiang H, Wu G, Liu W, Zhang G. 2016. Distinct factors shape aquatic and sedimentary microbial community structures in the lakes of western china. Front Microbiol, 7: 1782Google Scholar
  42. Zeng J, Zhao D, Li H, Huang R, Wang J, Wu Q L. 2016. A monotonically declining elevational pattern of bacterial diversity in freshwater lake sediments. Environ Microbiol, 18: 5175–5186CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Keshao Liu
    • 1
    • 4
  • Tandong Yao
    • 1
    • 2
    • 3
    • 4
  • Yongqin Liu
    • 1
    • 2
    • 3
    • 4
    Email author
  • Baiqing Xu
    • 1
    • 2
    • 3
    • 4
  • Anyi Hu
    • 5
  • Yuying Chen
    • 3
    • 4
  1. 1.Key Laboratory of Tibetan Environment Changes and Land Surface ProcessesChinese Academy of SciencesBeijingChina
  2. 2.CAS Center for Excellence in Tibetan Plateau Earth SciencesChinese Academy of SciencesBeijingChina
  3. 3.Key Laboratory of Alpine Ecology and BiodiversityChinese Academy of SciencesBeijingChina
  4. 4.University of Chinese Academy of SciencesBeijingChina
  5. 5.Key Laboratory of Urban Pollutant Conversion, Institute of Urban EnvironmentChinese Academy of SciencesXiamenChina

Personalised recommendations