Science China Earth Sciences

, Volume 62, Issue 2, pp 349–364 | Cite as

Dissolved organic carbon in permafrost regions: A review

  • Qiang Ma
  • Huijun JinEmail author
  • Congrong Yu
  • Victor F. BenseEmail author


A large quantity of organic carbon (C) is stored in northern and elevational permafrost regions. A portion of this large terrestrial organic C pool will be transferred by water into soil solution (~0.4 Pg C yr−1) (1 Pg=1015 g), rivers (~0.06 Pg C yr−1), wetlands, lakes, and oceans. The lateral transport of dissolved organic carbon (DOC) is the primary pathway, impacting river biogeochemistry and ecosystems. However, climate warming will substantially alter the lateral C shifts in permafrost regions. Vegetation, permafrost, precipitation, soil humidity and temperature, and microbial activities, among many other environmental factors, will shift substantially under a warming climate. It remains uncertain as to what extent the lateral C cycle is responding, and will respond, to climate change. This paper reviews recent studies on terrestrial origins of DOC, biodegradability, transfer pathways, and modelling, and on how to forecast of DOC fluxes in permafrost regions under a warming climate, as well as the potential anthropogenic impacts on DOC in permafrost regions. It is concluded that: (1) surface organic layer, permafrost soils, and vegetation leachates are the main DOC sources, with about 4.72 Pg C DOC stored in the topsoil at depths of 0–1 m in permafrost regions; (2) in-stream DOC concentrations vary spatially and temporally to a relatively small extent (1–60 mg C L−1) and annual export varies from 0.1–10 g C m–2 yr–1; (3) biodegradability of DOC from the thawing permafrost can be as high as 71%, with a median at 52%; (4) DOC flux is controlled by multiple factors, mainly including vegetation, soil properties, permafrost occurrence, river discharge and other related environmental factors, and (5) many statistical and process-based models have been developed, but model predictions are inconsistent with observational results largely dependent on the individual watershed characteristics and future discharge trends. Thus, it is still difficult to predict how future lateral C flux will respond to climate change, but changes in the DOC regimes in individual catchments can be predicted with a reasonable reliability. It is advised that sampling protocols and preservation and analysis methods should be standardized, and analytical techniques at molecular scales and numerical modeling on thermokarsting processes should be prioritized.


Dissolved organic carbon (DOC) Aquatic ecosystem Carbon biodegradability DOC export Permafrost degradation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors also would like to express the sincere gratitude to the two unidentified reviewers for their generous efforts in reviewing and improving the manuscript. This work was financially supported by the National Natural Science Foundation of China (Grant No. 41472229), the Chinese Academy of Sciences (CAS) Strategic Priority Research Program (Grant No. XDA20100103), and the CAS Key Research Program of Frontier Sciences (Grant No. QYZDY-SSW-DQC021).


  1. Abbott B W, Jones J B, Schuur E A G, Chapin III F S, Bowden W B, Bret-Harte M S, Epstein H E, Flannigan M D, Harms T K, Hollingsworth T N, Mack M C, McGuire A D, Natali S M, Rocha A V, Tank S E, Turetsky M R, Vonk J E, Wickland K P, Aiken G R, Alexander H D, Amon R M W, Benscoter B W, Bergeron Y, Bishop K, Blarquez O, Ben Bond-Lamberty O, Breen A L, Buffam I, Cai Y, Carcaillet C, Carey S K, Chen J M, Chen H Y H, Christensen T R, Cooper L W, Cornelissen J H C, de Groot W J, DeLuca T H, Dorrepaal E, Fetcher N, Finlay J C, Forbes B C, French N H F, Gauthier S, Girardin M P, Goetz S J, Goldammer J G, Gough L, Grogan P, Guo L, Higuera P E, Hinzman L, Hu F S, Hugelius G, Jafarov E E, Jandt R, Johnstone J F, Jan Karlsson J F, Kasischke E S, Kattner G, Kelly R, Keuper F, Kling G W, Kortelainen P, Kouki J, Kuhry P, Laudon H, Laurion I, Macdonald R W, Mann P J, Martikainen P J, McClelland J W, Molau U, Oberbauer S F, Olefeldt D, Paré D, Parisien M A, Payette S, Peng C, Pokrovsky O S, Rastetter E B, Raymond P A, Raynolds M K, Rein G, Reynolds J F, Robards M, Rogers B M, Schädel C, Schaefer K, Schmidt I K, Shvidenko A, Sky J, Spencer R G M, Starr G, Striegl R G, Teisserenc R, Tranvik L J, Virtanen T, Welker J M, Zimov S. 2016. Biomass offsets little or none of permafrost carbon release from soils, streams, and wildfire: An expert assessment. Environ Res Lett, 11: 034014Google Scholar
  2. Abbott B W, Larouche J R, Jones Jr. J B, Bowden W B, Balser A W. 2014. Elevated dissolved organic carbon biodegradability from thawing and collapsing permafrost. J Geophys Res-Biogeosci, 119: 2049–2063Google Scholar
  3. Aiken G R, McKnight D M, Thorn K A, Thurman E M. 1992. Isolation of hydrophilic organic acids from water using nonionic macroporous resins. Org Geochem, 18: 567–573Google Scholar
  4. Aitkenhead J A, McDowell W H. 2000. Soil C:N ratio as a predictor of annual riverine DOC flux at local and global scales. Global Biogeochem Cy, 14: 127–138Google Scholar
  5. Aitkenhead-Peterson J A. 2000. Source, production and export of dissolved organic carbon and nitrogen. Doctoral Dissertation. New Hampshire: University of New HampshireGoogle Scholar
  6. Amon R M W, Rinehart A J, Duan S, Louchouarn P, Prokushkin A, Guggenberger G, Bauch D, Stedmon C, Raymond P A, Holmes R M, McClelland J W, Peterson B J, Walker S A, Zhulidov A V. 2012. Dissolved organic matter sources in large Arctic rivers. Geochim Cosmochim Acta, 94: 217–237Google Scholar
  7. Battin T J. 1999. Hydrologic flow paths control dissolved organic carbon fluxes and metabolism in an alpine stream hyporheic zone. Water Resour Res, 35: 3159–3169Google Scholar
  8. Bense V F, Kooi H, Ferguson G, Read T. 2012. Permafrost degradation as a control on hydrogeological regime shifts in a warming climate. J Geophys Res, 117: F03036Google Scholar
  9. Betts E F, Jones Jr J B. 2009. Impact of wildfire on stream nutrient chemistry and ecosystem metabolism in boreal forest catchments of interior Alaska. Arct Antarct Alp Res, 41: 407–417Google Scholar
  10. Bishop K H, Lundström U S, Giesler R. 1993. Transfer of organic C from forest soils to surface waters: Example from northern Sweden. Appl Geochem, 8: 11–15Google Scholar
  11. Bond T C, Doherty S J, Fahey D W, Forster P M, Berntsen T, DeAngelo B J, Flanner M G, Ghan S, Kärcher B, Koch D, Kinne S, Kondo Y, Quinn P K, Sarofim M C, Schultz M G, Schulz M, Venkataraman C, Zhang H, Zhang S, Bellouin N, Guttikunda S K, Hopke P K, Jacobson M Z, Kaiser J W, Klimont Z, Lohmann U, Schwarz J P, Shindell D, Storelvmo T, Warren S G, Zender C S. 2013. Bounding the role of black carbon in the climate system: A scientific assessment. J Geophys Res-Atmos, 118: 5380–5552Google Scholar
  12. Boyer E W, Hornberger G M, Bencala K E, McKnight D M. 2000. Effects of asynchronous snowmelt on flushing of dissolved organic carbon: A mixing model approach. Hydrol Process, 14: 3291–3308Google Scholar
  13. Brooks P D, McKnight D M, Bencala K E. 1999. The relationship between soil heterotrophic activity, soil dissolved organic carbon (DOC) leachate, and catchment-scale DOC export in headwater catchments. Water Resour Res, 35: 1895–1902Google Scholar
  14. Carey S K. 2003. Dissolved organic carbon fluxes in a discontinuous permafrost subarctic alpine catchment. Permafrost Periglac Process, 14: 161–171Google Scholar
  15. Chapin III F S, Woodwell G M, Randerson J T, Rastetter E B, Lovett G M, Baldocchi D D, Clark D A, Harmon M E, Schimel D S, Valentini R, Wirth C, Aber J D, Cole J J, Goulden M L, Harden J W, Heimann M, Howarth R W, Matson P A, McGuire A D, Melillo J M, Mooney H A, Neff J C, Houghton R A, Pace M L, Ryan M G, Running S W, Sala O E, Schlesinger W H, Schulze E D. 2006. Reconciling carbon-cycle concepts, terminology, and methods. Ecosystems, 9: 1041–1050Google Scholar
  16. Cole J J, Prairie Y T, Caraco N F, McDowell W H, Tranvik L J, Striegl R G, Duarte C M, Kortelainen P, Downing J A, Middelburg J J, Melack J. 2007. Plumbing the global carbon cycle: Integrating inland waters into the terrestrial carbon budget. Ecosystems, 10: 172–185Google Scholar
  17. Cory R M, Ward C P, Crump B C, Kling G W. 2014. Sunlight controls water column processing of carbon in arctic fresh waters. Science, 345: 925–928Google Scholar
  18. Christophersen N, Rustad S, Seip H M, Rosenqvist I T, Thrush B A, Sorensen N A, Chester P F. 1984. Modelling streamwater chemistry with snowmelt (and discussion). Philos Trans R Soc B-Biol Sci, 305: 427–439Google Scholar
  19. Dai M, Yin Z, Meng F, Liu Q, Cai W J. 2012. Spatial distribution of riverine DOC inputs to the ocean: An updated global synthesis. Curr Opin Environ Sust, 4: 170–178Google Scholar
  20. De March L. 1975. Nutrient budgets and sedimentation in Char Lake, N. W. T., 72°42′N, 94°50′W. Master Thesis. Manitoba: The University of ManitobaGoogle Scholar
  21. De Wit H A, Mulder J, Hindar A, Hole L. 2007. Long-term increase in dissolved organic carbon in streamwaters in Norway is response to reduced acid deposition. Environ Sci Technol, 41: 7706–7713Google Scholar
  22. Drake T W, Wickland K P, Spencer R G M, McKnight D M, Striegl R G. 2015. Ancient low-molecular-weight organic acids in permafrost fuel rapid carbon dioxide production upon thaw. Proc Natl Acad Sci USA, 112: 13946–13951Google Scholar
  23. Druffel E R M. 2004. Comments on the importance of black carbon in the global carbon cycle. Mar Chem, 92: 197–200Google Scholar
  24. Ewing S A, O’Donnell J A, Aiken G R, Butler K, Butman D, Windham-Myers L, Kanevskiy M Z. 2015. Long-term anoxia and release of ancient, labile carbon upon thaw of Pleistocene permafrost. Geophys Res Lett, 42: 10,730–10,738Google Scholar
  25. Felzer B, Kicklighter D, Melillo J, Wang C, Zhuang Q, Prinn R. 2004. Effects of ozone on net primary production and carbon sequestration in the conterminous united states using a biogeochemistry model. Tellus B, 56: 230–248Google Scholar
  26. Finlay J, Neff J, Zimov S, Davydova A, Davydov S. 2006. Snowmelt dominance of dissolved organic carbon in high-latitude watersheds: Implications for characterization and flux of river DOC. Geophys Res Lett, 33: L10401Google Scholar
  27. Ford T E, Ford S A, Lock M A, Naiman R J. 1990. Dissolved organic carbon concentrations and fluxes along the Moisie River, Quebec. Freshwater Biol, 24: 35–42Google Scholar
  28. Foster A, Jones D L, Cooper E J, Roberts P. 2016. Freeze-thaw cycles have minimal effect on the mineralisation of low molecular weight, dissolved organic carbon in Arctic soils. Polar Biol, 39: 2387–2401Google Scholar
  29. Freeman C, Fenner N, Ostle N J, Kang H, Dowrick D J, Reynolds B, Lock M A, Sleep D, Hughes S, Hudson J. 2004. Export of dissolved organic carbon from peatlands under elevated carbon dioxide levels. Nature, 430: 195–198Google Scholar
  30. Frey K E, McClelland J W. 2009. Impacts of permafrost degradation on arctic river biogeochemistry. Hydrol Process, 23: 169–182Google Scholar
  31. Frey K E, Smith L C. 2005. Amplified carbon release from vast West Siberian peatlands by 2100. Geophys Res Lett, 32: L09401Google Scholar
  32. Fritz M, Opel T, Tanski G, Herzschuh U, Meyer H, Eulenburg A, Lantuit H. 2015. Dissolved organic carbon (DOC) in Arctic ground ice. Cryosphere, 9: 737–752Google Scholar
  33. Futter M N, Butterfield D, Cosby B J, Dillon P J, Wade A J, Whitehead P G. 2007. Modeling the mechanisms that control in-stream dissolved organic carbon dynamics in upland and forested catchments. Water Resour Res, 43: W02424Google Scholar
  34. Giesler R, Lyon S W, Mörth C M, Karlsson J, Karlsson E M, Jantze E J, Destouni G, Humborg C. 2014. Catchment-scale dissolved carbon concentrations and export estimates across six subarctic streams in northern Sweden. Biogeosciences, 11: 525–537Google Scholar
  35. Grieve I C. 1991. A model of dissolved organic carbon concentrations in soil and stream waters. Hydrol Process, 5: 301–307Google Scholar
  36. Guo L, MacDonald R W. 2006. Source and transport of terrigenous organic matter in the upper Yukon River: Evidence from isotope (δ13C, Δ14C, and δ15N) composition of dissolved, colloidal, and particulate phases. Global Biogeochem Cy, 20: GB2011Google Scholar
  37. Guo Y D, Song C C, Tan W W, Wang X W, Lu Y Z. 2018. Hydrological processes and permafrost regulate magnitude, source and chemical characteristics of dissolved organic carbon export in a peatland catchment of northeastern China. Hydrol Earth Syst Sci, 22: 1081–1093Google Scholar
  38. Guo Y D, Song C C, Wan Z M, Lu Y Z, Qiao T H, Tan W W, Wang L L. 2015. Dynamics of dissolved organic carbon release from a permafrost wetland catchment in northeast China. J Hydrol, 531: 919–928Google Scholar
  39. Guo Y D, Song C C, Wan Z M, Tan W W, Lu Y Z, Qiao T H. 2014. Effects of long-term land use change on dissolved carbon characteristics in the permafrost streams of northeast China. Environ Sci-Processes Impacts, 16: 2496–2506Google Scholar
  40. Harms T K, Ludwig S M. 2016. Retention and removal of nitrogen and phosphorus in saturated soils of arctic hillslopes. Biogeochemistry, 127: 291–304Google Scholar
  41. Hausmann S, Pienitz R. 2009. Seasonal water chemistry and diatom changes in six boreal lakes of the Laurentian Mountains (Québec, Canada): Impacts of climate and timber harvesting. Hydrobiologia, 635: 1–14Google Scholar
  42. Hood E, McKnight D M, Williams M W. 2003. Sources and chemical character of dissolved organic carbon across an alpine/subalpine ecotone, Green Lakes Valley, Colorado Front Range, United States. Water Resour Res, 39: 1188Google Scholar
  43. Hope D, Billett M F, Cresser M S. 1994. A review of the export of carbon in river water: Fluxes and processes. Environ Pollut, 84: 301–324Google Scholar
  44. Huang T H, Fu Y H, Pan P Y, Chen C T A. 2012. Fluvial carbon fluxes in tropical rivers. Curr Opin Environ Sustainability, 4: 162–169Google Scholar
  45. Hudon C, Morin R, Bunch J, Harland R. 1996. Carbon and nutrient output from the Great Whale River (Hudson Bay) and a comparison with other rivers around Quebec. Can J Fish Aquat Sci, 53: 1513–1525Google Scholar
  46. Hugelius G, Strauss J, Zubrzycki S, Harden J W, Schuur E A G, Ping C L, Schirrmeister L, Grosse G, Michaelson G J, Koven C D, O’Donnell J A, Elberling B, Mishra U, Camill P, Yu Z, Palmtag J, Kuhry P. 2014. Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps. Biogeosciences, 11: 6573–6593Google Scholar
  47. Jin H, Luo D, Wang S, Lü L, Wu J. 2011. Spatiotemporal variability of permafrost degradation on the Qinghai-Tibet Plateau. Sci Cold Arid Reg, 112: F02S09Google Scholar
  48. Jenerette D G, Lal R. 2005. Hydrologic sources of carbon cycling uncertainty throughout the terrestrial-aquatic continuum. Global Change Biol, 11: 1873–1882Google Scholar
  49. Judd K E, Kling G W. 2002. Production and export of dissolved C in arctic tundra mesocosms: The roles of vegetation and water flow. Biogeochemistry, 60: 213–234Google Scholar
  50. Justi M, Schellekens J, de Camargo P B, Vidal-Torrado P. 2017. Long-term degradation effect on the molecular composition of black carbon in Brazilian Cerrado soils. Org Geochem, 113: 196–209Google Scholar
  51. Jutras M F, Nasr M, Castonguay M, Pit C, Pomeroy J H, Smith T P, Zhang C, Ritchie C D, Meng F R, Clair T A, Arp P A. 2011. Dissolved organic carbon concentrations and fluxes in forest catchments and streams: DOC-3 model. Ecol Model, 222: 2291–2313Google Scholar
  52. Juutinen S, Väliranta M, Kuutti V, Laine A M, Virtanen T, Seppä H, Weckström J, Tuittila E S. 2013. Short-term and long-term carbon dynamics in a northern peatland-stream-lake continuum: A catchment approach. J Geophys Res-Biogeosci, 118: 171–183Google Scholar
  53. Kicklighter D W, Hayes D J, McClelland J W, Peterson B J, McGuire A D, Melillo J M. 2013. Insights and issues with simulating terrestrial DOC loading of Arctic river networks. Ecol Appl, 23: 1817–1836Google Scholar
  54. Kindler R, Siemens J, Kaiser K, Walmsley D C, Bernhofer C, Buchmann N, Cellier P, Eugster W, Gleixner G, Grũnwald T, Heim A, Ibrom A, Jones S K, Jones M, Klumpp K, Kutsch W, Larsen K S, Lehuger S, Loubet B, Mckenzie R, Moors E, Osborne B, Pilegaard K, Rebmann C, Saunders M, Schmidt M W I, Schrumpf M, Seyfferth J, Skiba U, Soussana J F, Sutton M A, Tefs C, Vowinckel B, Zeeman M J, Kaupenjohann M. 2011. Dissolved carbon leaching from soil is a crucial component of the net ecosystem carbon balance. Global Change Biol, 17: 1167–1185Google Scholar
  55. Koprivnjak J F, Moore T R. 1992. Sources, sinks, and fluxes of dissolved organic carbon in subarctic fen catchments. Arctic Alpine Res, 24: 204–210Google Scholar
  56. Larouche J R, Abbott B W, Bowden W B, Jones J B. 2015. The role of watershed characteristics, permafrost thaw, and wildfire on dissolved organic carbon biodegradability and water chemistry in Arctic headwater streams. Biogeosciences, 12: 4221–4233Google Scholar
  57. Laudon H, Berggren M, Ågren A, Buffam I, Bishop K, Grabs T, Jansson M, Köhler S. 2011. Patterns and dynamics of dissolved organic carbon (DOC) in boreal streams: The role of processes, connectivity, and scaling. Ecosystems, 14: 880–893Google Scholar
  58. Laudon H, Hedtjärn J, Schelker J, Bishop K, Sørensen R, Ågren A. 2009. Response of dissolved organic carbon following forest harvesting in a Boreal forest. Ambio-A J Human Environ, 38: 381–386Google Scholar
  59. Lessels J S, Tetzlaff D, Carey S K, Smith P, Soulsby C. 2015. A coupled hydrology-biogeochemistry model to simulate dissolved organic carbon exports from a permafrost-influenced catchment. Hydrol Process, 29: 5383–5396Google Scholar
  60. Liao C. 2017. Three-dimensional water and carbon cycle modeling at high spatial-temporal resolutions. Dorctoral Dissertation. Indiana: Purdue UniversityGoogle Scholar
  61. Likens G E. 2013. Biogeochemistry of Forested Ecosystem. 3rd ed. New York: Springer-Verlag. 103–112Google Scholar
  62. Limpens J, Berendse F, Blodau C, Canadell J G, Freeman C, Holden J, Roulet N, Rydin H, Schaepman-Strub G. 2008. Peatlands and the carbon cycle: From local processes to global implications—A synthesis. Biogeosciences, 5: 1475–1491Google Scholar
  63. Lyon S W, Mörth M, Humborg C, Giesler R, Destouni G. 2010. The relationship between subsurface hydrology and dissolved carbon fluxes for a sub-arctic catchment. Hydrol Earth Syst Sci, 14: 941–950Google Scholar
  64. MacLean R, Oswood M W, Irons Iii J G, McDowell W H. 1999. The effect of permafrost on stream biogeochemistry: A case study of two streams in the Alaskan (U.S.A.) taiga. Biogeochemistry, 47: 239–267Google Scholar
  65. Mann P J, Eglinton T I, McIntyre C P, Zimov N, Davydova A, Jorien E. Vonk, Holmes R M, Spencer R G. 2015. Utilization of ancient permafrost carbon in headwaters of Arctic fluvial networks. Nat Commun, 6: 7856Google Scholar
  66. McClelland J W, Stieglitz M, Pan F, Holmes R M, Peterson B J. 2007. Recent changes in nitrate and dissolved organic carbon export from the upper Kuparuk River, North Slope, Alaska. J Geophys Res, 112: G04S60Google Scholar
  67. McGill W B, Cannon K R, Robertson J A, Cook F D. 1986. Dynamics of soil microbial biomass and water-soluble organic carbon in Berton L after 50 years of cropping to 2 rotations. Can J Soil Sci, 66: 1–19Google Scholar
  68. Meybeck M. 1981. River transport of organic carbon to the ocean. In: Likens G E, Mackenzie F T, Richey J E, Sedell J R, Turekian K K, eds. Flux of Organic Carbon by Rivers to the Oceans. Washington D C: United States Department of Energy. 219–269Google Scholar
  69. Michaelson G J, Ping C L, Kling G W, Hobbie J E. 1998. The character and bioactivity of dissolved organic matter at thaw and in the spring runoff waters of the arctic tundra north slope, Alaska. J Geophys Res, 103: 28939–28946Google Scholar
  70. Michalzik B, Tipping E, Mulder J, Lancho J F G, Matzner E, Bryant C L, Clarke N, Lofts S, Esteban M A V. 2003. Modelling the production and transport of dissolved organic carbon in forest soils. Biogeochemistry, 66: 241–264Google Scholar
  71. Mladenov N, Pulido-Villena E, Morales-Baquero R, Ortega-Retuerta E, Sommaruga R, Reche I. 2008. Spatiotemporal drivers of dissolved organic matter in high alpine lakes: Role of Saharan dust inputs and bacterial activity. J Geophys Res, 113: G00D01Google Scholar
  72. Molot L A, Dillon P J. 1996. Storage of terrestrial carbon in boreal lake sediments and evasion to the atmosphere. Glob Biochem Cy, 10: 483–492Google Scholar
  73. Monteith D T, Stoddard J L, Evans C D, de Wit H A, Forsius M, Høgåsen T, Wilander A, Skjelkvåle B L, Jeffries D S, Vuorenmaa J, Keller B, Kopácek J, Vesely J. 2007. Dissolved organic carbon trends resulting from changes in atmospheric deposition chemistry. Nature, 450: 537–540Google Scholar
  74. Moore T R. 1988. Dissolved iron and organic matter in northern peatlands. Soil Sci, 145: 70–76Google Scholar
  75. Moore T R. 1997. Dissolved organic carbon: Sources, sinks, and fluxes and role in the soil carbon cycle. In: Lal R, Kimble J M, Follett R F, Stewart B A, eds. Soil Processes and the Carbon Cycle. Boca Raton: CRC Press. 281–292Google Scholar
  76. Moore T R, Roulet N T, Waddington J M. 1998. Uncdertainty in predicting the effect of climatic change on the carbon cycling of Canadian peatlands. Clim Change, 40: 229–245Google Scholar
  77. Mu C C, Abbott B W, Wu X D, Zhao Q, Wang H J, Su H, Wang S F, Gao T G, Guo H, Peng X Q, Zhang T J. 2017. Thaw depth determines dissolved organic carbon concentration and biodegradability on the Northern Qinghai-Tibetan Plateau. Geophys Res Lett, 44: 9389–9399Google Scholar
  78. Mu C, Zhang T, Wu Q, Peng X, Cao B, Zhang X, Cao B, Cheng G. 2015. Editorial: Organic carbon pools in permafrost regions on the Qinghai-Xizang (Tibetan) Plateau. Cryosphere, 9: 479–486Google Scholar
  79. Mu C, Zhang T, Wu Q, Peng X, Zhang P, Yang Y, Hou Y, Zhang X, Cheng G. 2016. Dissolved organic carbon, CO2, and CH4 concentrations and their stable isotope ratios in thermokarst lakes on the Qinghai-Tibetan Plateau. J Limnol, 75: 313–319Google Scholar
  80. Neff J C, Asner G P. 2001. Dissolved organic carbon in terrestrial ecosystems: Synthesis and a model. Ecosystems, 4: 29–48Google Scholar
  81. Neff J C, Finlay J C, Zimov S A, Davydov S P, Carrasco J J, Schuur E A G, Davydova A I. 2006. Seasonal changes in the age and structure of dissolved organic carbon in Siberian rivers and streams. Geophys Res Lett, 33: L23401Google Scholar
  82. O′Donnell J A, Aiken G R, Swanson D K, Panda S, Butler K D, Baltensperger A P. 2016. Dissolved organic matter composition of Arctic rivers: Linking permafrost and parent material to riverine carbon. Global Biogeochem Cy, 30: 1811–1826Google Scholar
  83. O′Donnell J A, Aiken G R, Walvoord M A, Butler K D. 2012. Dissolved organic matter composition of winter flow in the Yukon River basin: Implications of permafrost thaw and increased groundwater discharge. Global Biogeochem Cy, 26: GB0E06Google Scholar
  84. Olefeldt D, Roulet N T. 2012. Effects of permafrost and hydrology on the composition and transport of dissolved organic carbon in a subarctic peatland complex. J Geophys Res, 117: G01005Google Scholar
  85. Olefeldt D, Roulet N T. 2014. Permafrost conditions in peatlands regulate magnitude, timing, and chemical composition of catchment dissolved organic carbon export. Global Change Biol, 20: 3122–3136Google Scholar
  86. Parker S R, Poulson S R, Smith M G, Weyer C L, Bates K M. 2010. Temporal variability in the concentration and stable carbon isotope composition of dissolved inorganic and organic carbon in two Montana, USA Rivers. Aquat Geochem, 16: 61–84Google Scholar
  87. Parker B R, Vinebrooke R D, Schindler D W. 2008. Recent climate extremes alter alpine lake ecosystems. Proc Natl Acad Sci USA, 105: 12927–12931Google Scholar
  88. Permafrost Subcommittee. 1988. Glossary of permafrost and related ground-ice terms. Ottawa: National Research Council of CanadaGoogle Scholar
  89. Peterson B J, Hobbie J E, Corliss T L. 1986. Carbon flow in a tundra stream ecosystem. Can J Fish Aquat Sci, 43: 1259–1270Google Scholar
  90. Petrone K C, Hinzman L D, Shibata H, Jones J B, Boone R D. 2007. The influence of fire and permafrost on sub-arctic stream chemistry during storms. Hydrol Process, 21: 423–434Google Scholar
  91. Petrone K C, Jones J B, Hinzman L D, Boone R D. 2006. Seasonal export of carbon, nitrogen, and major solutes from Alaskan catchments with discontinuous permafrost. J Geophys Res, 111: G02020Google Scholar
  92. Prokushkin A S, Gleixner G, McDowell W H, Ruehlow S, Schulze E D. 2007. Source-and substrate-specific export of dissolved organic matter from permafrost-dominated forested watershed in central Siberia. Global Biogeochem Cy, 21: GB4003Google Scholar
  93. Prokushkin A S, Hobara S, Prokushkin S G. 2010. Behavior of dissolved organic carbon in larch ecosystems. In: Osawa A, Zyryanova O A, Matsuura Y, Kajimoto T, Wein R W, eds. Permafrost Ecosystems Siberian Larch Forests. Springer. 205–228Google Scholar
  94. Prokushkin A S, Kawahigashi M, Tokareva I V. 2009. Global warming and dissolved organic carbon release from permafrost soils. In: Margesin R, ed. Permafrost Soils. Berlin: Springer-Verlag. 237–250Google Scholar
  95. Prokushkin A S, Pokrovsky O S, Shirokova L S, Korets M A, Viers J, Prokushkin S G, Amon R M W, Guggenberger G, McDowell W H. 2011. Sources and the flux pattern of dissolved carbon in rivers of the Yenisey basin draining the Central Siberian Plateau. Environ Res Lett, 6: 045212Google Scholar
  96. Prokushkin A S, Prokushkin S G, Shibata H, Matsuura Y, Abaimov A P. 2001. Dissolved organic carbon in coniferous forests of Central Siberia. Eur J Forest Res, 2: 45–58Google Scholar
  97. Qu B, Sillanpää M, Li C, Kang S, Stubbins A, Yan F, Aho K S, Zhou F, Raymond P A. 2017. Aged dissolved organic carbon exported from rivers of the Tibetan Plateau. PLoS ONE, 12: e0178166Google Scholar
  98. Raymond P A, McClelland J W, Holmes R M, Zhulidov A V, Mull K, Peterson B J, Striegl R G, Aiken G R, Gurtovaya T Y. 2007. Flux and age of dissolved organic carbon exported to the Arctic Ocean: A carbon isotopic study of the five largest arctic rivers. Global Biogeochem Cy, 21: GB4011Google Scholar
  99. Rodríguez-Jeangros N. 2018. Development of a high-resolution land cover product of the Rocky Mountain with application to carbon concentration in its streams: Assessing anthropgenic, climatological, and morphological contributions. Dorctoral Dissertation. Colorado: Colorado School of MinesGoogle Scholar
  100. Schindler D W, Curtis P J, Bayley S E, Parker B R, Beaty K G, Stainton M P. 1997. Climate-induced changes in the dissolved organic carbon budgets of boreal lakes. Biogeochemistry, 36: 9–28Google Scholar
  101. Schuur E A G, Abbott B W, Bowden W B, Brovkin V, Camill P, Canadell J G, Chanton J P, Chapin F S, Christensen T R, Ciais P, Crosby B T, Czimczik C I, Grosse G, Harden J, Hayes D J, Hugelius G, Jastrow J D, Jones J B, Kleinen T, Koven C D, Krinner G, Kuhry P, Lawrence D M, McGuire A D, Natali S M, O’Donnell J A, Ping C L, Riley W J, Rinke A, Romanovsky V E, Sannel A B K, Schädel C, Schaefer K, Sky J, Subin Z M, Tarnocai C, Turetsky M R, Waldrop M P, Walter Anthony K M, Wickland K P, Wilson C J, Zimov S A. 2013. Expert assessment of vulnerability of permafrost carbon to climate change. Clim Change, 119: 359–374Google Scholar
  102. Selvam B P, Lapierre J F, Guillemette F, Voigt C, Lamprecht R E, Biasi C, Christensen T R, Martikainen P J, Berggren M. 2017. Degradation potentials of dissolved organic carbon (DOC) from thawed permafrost peat. Sci Rep, 7: 45811Google Scholar
  103. Shirokova L S, Pokrovsky O S, Kirpotin S N, Desmukh C, Pokrovsky B G, Audry S, Viers J. 2013. Biogeochemistry of organic carbon, CO2, CH4, and trace elements in thermokarst water bodies in discontinuous permafrost zones of Western Siberia. Biogeochemistry, 113: 573–593Google Scholar
  104. Skopintsev B A. 1979. Organic matter. In: Mordukhai-Boltovskoi D D, ed. The River Volga and its Life. The Hague: Dr W Junk. 95–105Google Scholar
  105. Smith P, Smith J, Flynn H, Killham K, Rangel-Castro I, Foereid B, Aitkenhead M, Chapman S, Towers W, Bell J, Lumsdon D, Milne R, Thomson A, Simmons I, Skiba U, Reynolds B, Evans C, Frogbrook Z, Bradley I, Whitmore A, Falloon P. 2007. ECOSSE: Estimating Carbon in Organic Soils-sequestration and Emissions. Edinburgh: Scottish Executive. 27–34Google Scholar
  106. Sommaruga R, Psenner R, Schafferer E, Koinig K A, Sommaruga-Wögrath S. 1999. Dissolved organic carbon concentration and phytoplankton biomass in high-mountain lakes of the Austrian Alps: Potential effect of climatic warming on UV underwater attenuation. Arct Antarct Alp Res, 31: 247–253Google Scholar
  107. Spencer R G M, Mann P J, Dittmar T, Eglinton T I, McIntyre C, Holmes R M, Zimov N, Stubbins A. 2015. Detecting the signature of permafrost thaw in Arctic rivers. Geophys Res Lett, 42: 2830–2835Google Scholar
  108. Strack M, Waddington J M, Bourbonniere R A, Buckton E L, Shaw K, Whittington P, Price J S. 2008. Effect of water table drawdown on peatland dissolved organic carbon export and dynamics. Hydrol Process, 22: 3373–3385Google Scholar
  109. Striegl R G, Aiken G R, Dornblaser M M, Raymond P A, Wickland K P. 2005. A decrease in discharge-normalized DOC export by the Yukon River during summer through autumn. Geophys Res Lett, 32: L21413Google Scholar
  110. Stubbins A, Mann P J, Powers L, Bittar T B, Dittmar T, McIntyre C P, Eglinton T I, Zimov N, Spencer R G M. 2017. Low photolability of yedoma permafrost dissolved organic carbon. J Geophys Res-Biogeosci, 122: 200–211Google Scholar
  111. Sturm M, Racine C, Tape K. 2001. Increasing shrub abundance in the Arctic. Nature, 411: 546–547Google Scholar
  112. Sun H G, Han J T, Li D W, Lu X X, Zhang H B, Zhao W. 2017. Organic carbon transport in the Songhua River, NE China: Influence of land use. Hydrol Process, 31: 2062–2075Google Scholar
  113. Tank S E, Striegl R G, McClelland J W, Kokelj S V. 2016. Multi-decadal increases in dissolved organic carbon and alkalinity flux from the Mackenzie drainage basin to the Arctic Ocean. Environ Res Lett, 11: 054015Google Scholar
  114. Tanski G, Couture N, Lantuit H, Eulenburg A, Fritz M. 2016. Eroding permafrost coasts release low amounts of dissolved organic carbon (DOC) from ground ice into the nearshore zone of the Arctic Ocean. Global Biogeochem Cy, 30: 1054–1068Google Scholar
  115. Tate C M, Meyer J L. 1983. The influence of hydrologic conditions and successional state on dissolved organic carbon export from forested watersheds. Ecology, 64: 25–32Google Scholar
  116. Thies H, Nickus U, Psenner R. 1998. Response of discharge and water quality in headwater brooks on distinct hydroclimatic conditions in the Tyrolean Alps. In: Proceedings of the HeadWater’98 Conference. Meran/Merano: IAHS Publications. 491–500Google Scholar
  117. Thompson M S, Giesler R, Karlsson J, Klaminder J. 2015. Size and characteristics of the DOC pool in near-surface subarctic mire permafrost as a potential source for nearby freshwaters. Arct Antarct Alp Res, 47: 49–58Google Scholar
  118. Thurman E M. 1985. Organic Geochemistry of Natural Waters. Dordrecht, the Netherlands: Springer. 5–70Google Scholar
  119. Tokareva I V, Prokushkin S G, Prokushkin A S. 2006. Water-soluble organic carbon on a forested watershed underlain by continuous permafrost and its export to stream. For Sci Tech, 2: 92–101Google Scholar
  120. Vonk J E, Mann P J, Davydov S, Davydova A, Spencer R G M, Schade J, Sobczak W V, Zimov N, Zimov S, Bulygina E, Eglinton T I, Holmes R M. 2013a. High biolability of ancient permafrost carbon upon thaw. Geophys Res Lett, 40: 2689–2693Google Scholar
  121. Vonk J E, Mann P J, Dowdy K L, Davydova A, Davydov S P, Zimov N, Spencer R G M, Bulygina E B, Eglinton T I, Holmes R M. 2013b. Dissolved organic carbon loss from Yedoma permafrost amplified by ice wedge thaw. Environ Res Lett, 8: 035023Google Scholar
  122. Vonk J E, Tank S E, Mann P J, Spencer R G M, Treat C C, Striegl R G, Abbott B W, Wickland K P. 2015. Biodegradability of dissolved organic carbon in permafrost soils and aquatic systems: A meta-analysis. Biogeosciences, 12: 6915–6930Google Scholar
  123. Walvoord M A, Striegl R G. 2007. Increased groundwater to stream discharge from permafrost thawing in the Yukon River basin: Potential impacts on lateral export of carbon and nitrogen. Geophys Res Lett, 34: L12402Google Scholar
  124. Ward C P, Cory R M. 2016. Complete and partial photo-oxidation of dissolved organic matter draining permafrost soils. Environ Sci Technol, 50: 3545–3553Google Scholar
  125. Wang S, Sun Z Y, Hu Y L, Ge M Y, Chang Q X. 2017. Intra-annual variation of dissolved organic carbon export through stream from an typical alpine catchment in Qinghai-Tibet Plateau: Patterns and hydrological controls (in Chinese). Safety Environ Eng, 24: 1–15Google Scholar
  126. White D, Autier V, Yoshikawa K, Jones J, Seelen S. 2008. Using DOC to better understand local hydrology in a subarctic watershed. Cold Regions Sci Tech, 51: 68–75Google Scholar
  127. White W M. 2013. Geochemistry. Hoboken: John Wiley & Sons. 210Google Scholar
  128. Wickland K P, Waldrop M P, Aiken G R, Koch J C, Torre Jorgenson M, Striegl R G. 2018. Dissolved organic carbon and nitrogen release from boreal Holocene permafrost and seasonally frozen soils of Alaska. Environ Res Lett, 13: 065011Google Scholar
  129. Worrall F, Burt T. 2005. Predicting the future DOC flux from upland peat catchments. J Hydrol, 300: 126–139Google Scholar
  130. Xenopoulos M A, Lodge D M, Frentress J, Kreps T A, Bridgham S D, Grossman E, Jackson C J. 2003. Regional comparisons of watershed determinants of dissolved organic carbon in temperate lakes from the Upper Great Lakes region and selected regions globally. Limnol Oceanogr, 48: 2321–2334Google Scholar
  131. Yu X, Zhang Y, Zhao H, Lu X, Wang G. 2010. Freeze-thaw effects on sorption/desorption of dissolved organic carbon in wetland soils. Chin Geogr Sci, 20: 209–217Google Scholar
  132. Yurova A, Sirin A, Buffam I, Bishop K, Laudon H. 2008. Modeling the dissolved organic carbon output from a boreal mire using the convection-dispersion equation: Importance of representing sorption. Water Resour Res, 44: W07411Google Scholar
  133. Zhu D, Wu N, Chen H, Zhu Q’, Wu Y, Zhang Y. 2014. Spatial pattern of dissolved organic carbon and its specific ultraviolet absorbance under different scales in a wetland complex on the eastern Tibetan Plateau. Ekoloji, 23: 16–21Google Scholar
  134. Zimov S A, Schuur E A G, Chapin F S. 2006. Permafrost and the global carbon budget. Science, 312: 1612–1613Google Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Frozen Soils Engineering, Northwest Institute of Eco-Environment and ResourcesChinese Academy of SciencesLanzhouChina
  2. 2.College of Resources and Environment University of Chinese Academy of SciencesBeijingChina
  3. 3.School of Civil EngineeringHarbin Institute of TechnologyHarbinChina
  4. 4.State Key Laboratory of Hydrology-Water Resources and Hydraulic EngineeringHohai UniversityNanjingChina
  5. 5.Hydrology and Quantitative Water Management Group, Department of Environmental SciencesWageningen UniversityWageningenThe Netherlands

Personalised recommendations