The intrinsic nonlinear multiscale interactions among the mean flow, low frequency variability and mesoscale eddies in the Kuroshio region

  • Yang Yang
  • X. San LiangEmail author
Research Paper


Using a new functional analysis tool, multiscale window transform (MWT), and the MWT-based localized multiscale energetics analysis and canonical transfer theory, this study reconstructs the Kuroshio system on three scale windows, namely, the mean flow window, the interannual-scale (low-frequency) window, and the transient eddy window, and investigates the climatological characteristics of the intricate nonlinear interactions among these windows. Significant upscale energy transfer is observed east of Taiwan, where the mean Kuroshio current extracts kinetic energy from both the interannual and eddy windows. It is found that the canonical transfer from the interannual variability is an intrinsic source that drives the eddy activities in this region. The multiscale variabilities of the Kuroshio in the East China Sea (ECS) are mainly controlled by the interaction between the mean flow and the eddies.The mean flow undergoes mixed instabilities (i.e., both barotropic and baroclinic instabilities) in the southern ECS, while it is barotropically stable but baroclinically unstable to the north. The multiscale interactions are found to be most intense south of Japan, where strong mixed instabilities occur; both the canonical transfers from the mean flow and the interannual scale are important mechanisms to fuel the eddies. It is also found that the interannual-scale energy mainly comes from the barotropically unstable jet, rather than the upscale energy transfer from the high frequency eddies.


Kuroshio Multiscale window transform Canonical transfer Multiscale energetics analysis Multiscale interaction Barotropic instability Baroclinic instability 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the National Natural Science Foundation of China (Grant Nos. 41806023 and 41276032), the National Program on Global Change and Air-Sea Interaction (Grant No. GASI-IPOVAI-06), the 2015 Jiangsu Program of Entrepreneurship and Innovation Group, the Jiangsu Chair Professorship, the NUIST Startup Program (Grant No. 2017r054), and the Natural Science Foundation of the Higher Education Institutions of Jiangsu Province (Grant No. 18KJB170019).


  1. Andres M, Park J H, Wimbush M, Zhu X H, Nakamura H, Kim K, Chang K I. 2009. Manifestation of the Pacific decadal oscillation in the Kuroshio. Geophys Res Lett, 36: L16602CrossRefGoogle Scholar
  2. Chang Y L, Miyazawa Y, Guo X. 2015. Effects of the STCC eddies on the Kuroshio based on the 20–year JCOPE2 reanalysis results. Prog Oceanogr, 135: 64–76CrossRefGoogle Scholar
  3. Chang Y L, Oey L Y. 2011. Interannual and seasonal variations of Kuroshio transport east of Taiwan inferred from 29 years of tide–gauge data. Geophys Res Lett, 38: L08603Google Scholar
  4. Chen R, Flierl G R, Wunsch C. 2014. A description of local and nonlocal eddy–mean flow interaction in a global eddy–permitting state estimate. J Phys Oceanogr, 44: 2336–2352CrossRefGoogle Scholar
  5. Cheng Y H, Ho C R, Zheng Q, Kuo N J. 2014. Statistical characteristics of mesoscale eddies in the North Pacific derived from satellite altimetry. Remote Sens, 6: 5164–5183CrossRefGoogle Scholar
  6. Cheng Y H, Ho C R, Zheng Q, Qiu B, Hu J, Kuo N J. 2017. Statistical features of eddies approaching the Kuroshio east of Taiwan Island and Luzon Island. J Oceanogr, 73: 427–438CrossRefGoogle Scholar
  7. Ebuchi N, Hanawa K. 2000. Mesoscale eddies observed by TOLEX–ADCP and TOPEX/POSEIDON altimeter in the Kuroshio recirculation region south of Japan. J Oceanogr, 56: 43–57CrossRefGoogle Scholar
  8. Guo J, Zhang Z, Xia C, Guo B, Yuan Y. 2018. Topographic–baroclinic instability and formation of Kuroshio current loop. Dyn Atmos Oceans, 81: 15–29CrossRefGoogle Scholar
  9. Harrison D E, Robinson A R. 1978. Energy analysis of open regions of turbulent flows—Mean eddy energetics of a numerical ocean circulation experiment. Dyn Atmos Oceans, 2: 185–211CrossRefGoogle Scholar
  10. Holliday D, McIntyre M E. 1981. On potential energy density in an incompressible, stratified fluid. J Fluid Mech, 107: 221–225CrossRefGoogle Scholar
  11. Holopainen E. 1978. A Diagnostic study of the kinetic energy balance of the long–term mean flow and the associated transient fluctuations in the atmosphere. Geophysica, 15: 125–145Google Scholar
  12. Hsin Y C, Qiu B, Chiang T L, Wu C R. 2013. Seasonal to interannual variations in the intensity and central position of the surface Kuroshio east of Taiwan. J Geophys Res–Oceans, 118: 4305–4316CrossRefGoogle Scholar
  13. Huang R X. 2005. Available potential energy in the world’s oceans. J Mar Res, 63: 141–158CrossRefGoogle Scholar
  14. Hwang C, Kao R. 2002. TOPEX/POSEIDON–derived space–time variations of the Kuroshio Current: Applications of a gravimetric geoid and wavelet analysis. Geophys J Int, 151: 835–847CrossRefGoogle Scholar
  15. Jan S, Mensah V, Andres M, Chang M H, Yang Y J. 2017. Eddy–Kuroshio interactions: Local and remote effects. J Geophys Res–Oceans, 122: 9744–9764CrossRefGoogle Scholar
  16. Jia Y, Liu Q, Liu W. 2005. Primary study of the mechanism of eddy shedding from the Kuroshio Bend in Luzon Strait. J Oceanogr, 61: 1017–1027CrossRefGoogle Scholar
  17. Jia Y, Liu Q, Liu W, Lin X. 2004. The Interannual Variation of the Kuroshio Transport East of Taiwan (in Chinese). Oceanol Limnol Sin, 35: 507–512Google Scholar
  18. Kang D, Curchitser E N. 2015. Energetics of eddy–mean flow interactions in the Gulf Stream region. J Phys Oceanogr, 45: 1103–1120CrossRefGoogle Scholar
  19. Kawabe M. 1995. Variations of current path, velocity, and volume transport of the Kuroshio in relation with the large meander. J Phys Oceanogr, 25: 3103–3117CrossRefGoogle Scholar
  20. Kurogi M, Akitomo K. 2003. Stable paths of the Kuroshio south of Japan determined by the wind stress field. J Geophys Res, 108: 3332CrossRefGoogle Scholar
  21. Lee I H, Ko D S, Wang Y H, Centurioni L, Wang D P. 2013. The mesoscale eddies and Kuroshio transport in the western North Pacific east of Taiwan from 8–year (2003–2010) model reanalysis. Ocean Dyn, 63: 1027–1040CrossRefGoogle Scholar
  22. Liang X S. 2016. Canonical transfer and multiscale energetics for primitive and quasigeostrophic atmospheres. J Atmos Sci, 73: 4439–4468CrossRefGoogle Scholar
  23. Liang X S, Anderson D G M. 2007. Multiscale window transform. Multiscale Model Simul, 6: 437–467CrossRefGoogle Scholar
  24. Liang X S, Robinson A R. 2005. Localized multiscale energy and vorticity analysis: I. Fundamentals. Dyn Atmos Oceans, 38: 195–230CrossRefGoogle Scholar
  25. Liang X S, Robinson A R. 2007. Localized multi–scale energy and vorticity analysis: II. Finite–amplitude instability theory and validation. Dyn Atmos Oceans, 44: 51–76CrossRefGoogle Scholar
  26. Liu Z, Gan J. 2012. Variability of the Kuroshio in the East China Sea derived from satellite altimetry data. Deep–Sea Res Part I–Oceanogr Res Pap, 59: 25–36CrossRefGoogle Scholar
  27. Lorenz E N. 1955. Available potential energy and the maintenance of the general circulation. Tellus, 7: 157–167CrossRefGoogle Scholar
  28. Ma L, Wang Q. 2014. Interannual variations in energy conversion and interaction between the mesoscale eddy field and mean flow in the Kuroshio south of Japan. Chin J Ocean Limnol, 32: 210–222CrossRefGoogle Scholar
  29. Ma J, Liang X S. 2017. Multiscale dynamical processes underlying the wintertime Atlantic blockings. J Atmos Sci, 74: 3815–3831CrossRefGoogle Scholar
  30. Menemenlis D, Fukumori I, Lee T. 2005. Using Green’s functions to calibrate an ocean general circulation model. Mon Weather Rev, 133: 1224–1240CrossRefGoogle Scholar
  31. Miyazawa Y, Guo X, Yamagata T. 2004. Roles of mesoscale eddies in the Kuroshio paths. J Phys Oceanogr, 34: 2203–2222CrossRefGoogle Scholar
  32. Na H, Wimbush M, Park J H, Nakamura H, Nishina A. 2014. Observations of flow variability through the Kerama gap between the East China Sea and the Northwestern Pacific. J Geophys Res–Oceans, 119: 689–703CrossRefGoogle Scholar
  33. Oort A H, Ascher S C, Levitus S, Peixóto J P. 1989. New estimates of the available potential energy in the world ocean. J Geophys Res, 94: 3187–3200CrossRefGoogle Scholar
  34. Pedlosky J. 1987. Geophysical Fluid Dynamics. 2nd ed. New York: Springer–Verlag. 710Google Scholar
  35. Plumb R A. 1983. A new look at the energy cycle. J Atmos Sci, 40: 1669–1688CrossRefGoogle Scholar
  36. Qiu B, Chen S. 2010. Eddy–mean flow interaction in the decadally modulating Kuroshio extension system. Deep–Sea Res Part II–Top Stud Oceanogr, 57: 1098–1110CrossRefGoogle Scholar
  37. Qiu B, Miao W. 2000. Kuroshio path variations south of Japan: Bimodality as a self–sustained internal oscillation. J Phys Oceanogr, 30: 2124–2137CrossRefGoogle Scholar
  38. Roullet G, Capet X, Maze G. 2014. Global interior eddy available potential energy diagnosed from Argo floats. Geophys Res Lett, 41: 1651–1656CrossRefGoogle Scholar
  39. Shen M L, Tseng Y H, Jan S, Young C C, Chiou M D. 2014. Long–term variability of the Kuroshio transport east of Taiwan and the climate it conveys. Prog Oceanogr, 121: 60–73CrossRefGoogle Scholar
  40. Soeyanto E, Guo X, Ono J, Miyazawa Y. 2014. Interannual variations of Kuroshio transport in the East China Sea and its relation to the Pacific Decadal Oscillation and mesoscale eddies. J Geophys Res–Oceans, 119: 3595–3616CrossRefGoogle Scholar
  41. Strang G, Nguyen T. 1996. Wavelets and Filter Banks. 2nd ed. Wellesley: Wellesley–Cambridge Press. 520Google Scholar
  42. Tailleux R. 2013. Available potential energy and exergy in stratified fluids. Annu Rev Fluid Mech, 45: 35–58CrossRefGoogle Scholar
  43. Tseng Y H, Shen M L, Jan S, Dietrich D E, Chiang C P. 2012. Validation of the Kuroshio current system in the dual–domain Pacific Ocean Model framework. Prog Oceanogr, 105: 102–124CrossRefGoogle Scholar
  44. Usui T, McSween Jr H Y, Clark III B C. 2008. Petrogenesis of highphosphorous Wishstone Class rocks in Gusev Crater, Mars. J Geophys Res, 113: C08047CrossRefGoogle Scholar
  45. Usui N, Tsujino H, Nakano H, Matsumoto S. 2013. Long–term variability of the Kuroshio path south of Japan. J Oceanogr, 69: 647–670CrossRefGoogle Scholar
  46. Storch J S, Eden C, Fast I, Haak H, Hernández–Deckers D, Maier–Reimer E, Marotzke J, Stammer D. 2012. An estimate of the Lorenz energy cycle for the world ocean based on the STORM/NCEP simulation. J Phys Oceanogr, 42: 2185–2205CrossRefGoogle Scholar
  47. Wang J, Oey L Y. 2014. Inter–annual and decadal fluctuations of the Kuroshio in East China Sea and connection with surface fluxes of momentum and heat. Geophys Res Lett, 41: 8538–8546CrossRefGoogle Scholar
  48. Wang X, Li C, Wang G. 2014. A study on the surface current variation within half–year time scale in active region of the Kuroshio in East China Sea (in Chinese). Acta Oceanol Sin, 36: 1–11Google Scholar
  49. Waseda T, Mitsudera H, Taguchi B, Yoshikawa Y. 2002. On the eddy–Kuroshio interaction: Evolution of the mesoscale eddy. J Geophys Res, 107: 3CrossRefGoogle Scholar
  50. Wu C R. 2013. Interannual modulation of the Pacific Decadal Oscillation (PDO) on the low–latitude western North Pacific. Prog Oceanogr, 110: 49–58CrossRefGoogle Scholar
  51. Wu L, Liu Q, Hu D, Li C, Zuo J, Yu Y, Sun C, Wang Q. 2007. Variability of the subtropical gyre in North Pacific and its impacts on dynamic environment of China marginal seas (in Chinese). Adv Earth Sci, 22: 1224–1230Google Scholar
  52. Wunsch C, Heimbach P, Ponte R, Fukumori I. 2009. The global general circulation of the ocean estimated by the ECCO–consortium. Oceanography, 22: 88–103CrossRefGoogle Scholar
  53. Xu F, Liang X S. 2017. On the generation and maintenance of the 2012/13 sudden stratospheric warming. J Atmos Sci, 74: 3209–3228CrossRefGoogle Scholar
  54. Xu L, Qi J, Yin B, Yang D, Chen H. 2017. Low frequency variability and machanism of the Kuroshio in the east of Taiwan (in Chinese). Acta Oceanol Sin, 39: 15–25Google Scholar
  55. Yan X, Zhu X H, Pang C, Zhang L. 2016. Effects of mesoscale eddies on the volume transport and branch pattern of the Kuroshio east of Taiwan. J Geophys Res–Oceans, 121: 7683–7700CrossRefGoogle Scholar
  56. Yang G, Wang F, Li Y, Lin P. 2013. Mesoscale eddies in the northwestern subtropical Pacific Ocean: Statistical characteristics and three–dimensional structures. J Geophys Res–Oceans, 118: 1906–1925CrossRefGoogle Scholar
  57. Yang Y, San Liang X. 2016. The instabilities and multiscale energetics underlying the mean–interannual–eddy interactions in the Kuroshio extension region. J Phys Oceanogr, 46: 1477–1494CrossRefGoogle Scholar
  58. Yang Y, San Liang X, Qiu B, Chen S. 2017. On the decadal variability of the eddy kinetic energy in the Kuroshio extension. J Phys Oceanogr, 47: 1169–1187CrossRefGoogle Scholar
  59. Yang Y, Liang X S. 2018. On the seasonal eddy variability in the Kuroshio extension. J Phys Oceanogr, 48: 1675–1689CrossRefGoogle Scholar
  60. Yin Y, Lin X, He R, Hou Y. 2017. Impact of mesoscale eddies on Kuroshio intrusion variability northeast of Taiwan. J Geophys Res–Oceans, 122: 3021–3040CrossRefGoogle Scholar
  61. Yuan Y, Guan B. 2007. Overview of studies on some eddies in the China seas and their adjacent seas II. The East China Sea and the region east of the Ryukyu Islands (in Chinese). Acta Oceanol Sin, 29: 1–17Google Scholar
  62. Yuan D, Hao J, Li J, He L. 2018. Cross–shelf carbon transport under different greenhouse gas emission scenarios in the East China Sea during winter. Sci China Earth Sci, 61: 659–667CrossRefGoogle Scholar
  63. Zemskova V E, White B L, Scotti A. 2015. Available potential energy and the general circulation: Partitioning wind, buoyancy forcing, and diapycnal mixing. J Phys Oceanogr, 45: 1510–1531CrossRefGoogle Scholar
  64. Zhang D, Lee T N, Johns W E, Liu C T, Zantopp R. 2001. The Kuroshio east of Taiwan: Modes of variability and relationship to interior ocean mesoscale eddies. J Phys Oceanogr, 31: 1054–1074CrossRefGoogle Scholar
  65. Zhang Q, Hou Y, Yan T. 2012. Inter–annual and inter–decadal variability of Kuroshio heat transport in the East China Sea. Int J Climatol, 32: 481–488CrossRefGoogle Scholar
  66. Zhao Y B, Liang X S. 2018. On the inverse relationship between the boreal wintertime Pacific jet strength and storm–track intensity. J Clim, 31: 9545–9564CrossRefGoogle Scholar
  67. Zheng Q, Tai C K, Hu J, Lin H, Zhang R H, Su F C, Yang X. 2011. Satellite altimeter observations of nonlinear Rossby eddy–Kuroshio interaction at the Luzon Strait. J Oceanogr, 67: 365–376CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Marine SciencesNanjing University of Information Science and TechnologyNanjingChina
  2. 2.School of Atmospheric SciencesNanjing University of Information Science and TechnologyNanjingChina

Personalised recommendations