Advertisement

Science China Earth Sciences

, Volume 62, Issue 1, pp 1–6 | Cite as

Preface: New advances in the integrative stratigraphy and timescale of China

  • Shuzhong ShenEmail author
  • Jiayu Rong
Progress

Abstract

A series of major geological and biological events which altered the evolutionary processes of whole biosphere occurred during the earth history. Establishing a high-resolution stratigraphic framework and timescale is essential to understand their tempo and causes. High-resolution biostratigraphy remains the most useful approach and forms the basis of dividing the chronostratigraphic system and making the inter-continental and regional correlation. China possesses nearly complete strata from Ediacaran to Quaternary covering wide palaeogeographic regions and containing abundant well-preserved fossils. Traditional biostratigraphy based on sytematic palaeontology of various fossil groups have played an important role in establishing the GSSPs and improving the International and Chinese Stratigraphic Charts. 11 out of 72 establised GSSPs are located in China. Recently, more high-precision geochronology, chemostratigraphy, cyclostrtatigraphy have been applied for stratigraphy and correlation and important advances have been made in some periods. This volume invited Chinese palaeontologists and stratigraphers to summarize the progresses of stratigraphy and timescale from Ediacaran to Quaternary and intercontinental and regional correlation during the last two decades.

Keywords

Biostratigraphy Chemostratigraphy GSSP Stratigraphic correlation Timescale 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 41290260, 41521061), the Strategic Priority Research Program of Chinese Academy Sciences (Grant Nos. XDB26000000, XDB18000000) and the Key Research Program of Frontier Sciences from the Chinese Academy of Sciences (Grant No. QYZDY-SSW-DQC023).

References

  1. Baresel B, Bucher H, Brosse M, Cordey F, Guodun K, Schaltegger U. 2017. Precise age for the Permian-Triassic boundary in South China from high-precision U-Pb geochronology and Bayesian age-depth modeling. Solid Earth, 8: 361–37.CrossRefGoogle Scholar
  2. Becker R T, Gradstein F M, Hammer O. 2012. Chapter 22—The Devonian period. In: Gradstein F M, Ogg J G, Schmitz M D, Ogg G, eds. The Geologic Time Scale. Boston: Elsevier. 559–60.Google Scholar
  3. Burgess S D, Bowring S A, Shen S Z. 2014. High-precision timeline for Earth’s most severe extinction. Proc Natl Acad Sci USA, 111: 3316–332.CrossRefGoogle Scholar
  4. Chen J Y. 2004. The Dawn of Animals (in Chinese). Nanjing: Jiangsu Science and Technology Press. 366Google Scholar
  5. Chen J, Xu Y G. 2018. Permian lareg igneous provinces and their impact on palaeonenvironment and biodiversity: Progresses and perspectives (in Chinese). Bull Mineral Petrol Geochem, 36: 374–39.Google Scholar
  6. Chen X, Fan J X, Wang W H, Wang H Y, Nie H K, Shi X W, Wen Z D, Chen D Y, Li W J. 2017. Stage-progressive distribution pattern of the Lungmachi black graptolitic shales from Guizhou to Chongqing, Central China. Sci China Earth Sci, 60: 1133–114.CrossRefGoogle Scholar
  7. Chen X, Fan J X, Chen Q, Tang L, Hou X D. 2014. Toward a stepwise Kwangsian orogeny. Sci China Earth Sci, 57: 379–38.CrossRefGoogle Scholar
  8. Chen X, Melchin M J, Sheets H D, Mitchell C E, Fan J X. 2005. Patterns and processes of latest Ordovician graptolite extinction and recovery based on data from south China. J Paleontol, 79: 842–86.CrossRefGoogle Scholar
  9. Chen Z, Zhou C M, Xiao S H, Wang W, Guan C G, Hua H, Yuan X L. 2014. New Ediacara fossils preserved in marine limestone and their ecological implications. Sci Rep, 4: 4180CrossRefGoogle Scholar
  10. Cocks L R M. 1985. The Ordovician-Silurian boundary. Episodes, 8: 98–10.Google Scholar
  11. Condon D, Zhu M Y, Bowring S A, Wang W, Yang A H, Jin Y G. 2005. UPb ages from the Neoproterozoic Doushantuo Formation, China. Science, 308: 95–9.CrossRefGoogle Scholar
  12. Deng C L, Hao Q Z, Guo Z T, Zhu R X. 2018. Quaternary integrative stratigraphy and timescale of China. Sci China Earth Sci, https://doi.org/10.1007/s11430-017-9195-4Google Scholar
  13. Deng T, Hou S K, Wang S Q. 2018. Neogene integrative stratigraphy and timescale of China. Sci China Earth Sci, https://doi.org/10.1007/s11430-017-9155-4Google Scholar
  14. Erwin D H, Laflamme M, Tweedt S M, Sperling E A, Pisani D, Peterson K J. 2011. The Cambrian conundrum: Early divergence and later ecological success in the early history of animals. Science, 334: 1091–109.CrossRefGoogle Scholar
  15. Finney S C. 2013. The reality of GSSPs. Ciêncies de Terra (UNL), 18: 9–1.Google Scholar
  16. Gingerich P D. 2006. Environment and evolution through the Paleocene-Eocene thermal maximum. Trends Ecol Evol, 21: 246–25.CrossRefGoogle Scholar
  17. Gradstein F M, Ogg J G, Schmitz M D, Ogg G M. 2012. The Geologic Time Scale 2012. Amsterdam: Elsevier: 1144Google Scholar
  18. Harper D A T, Zhan R B, Jin J. 2015. The Great Ordovician Biodiversification Event: Reviewing two decades of research on diversity’s big bang illustrated by mainly brachiopod data. Palaeoworld, 24: 75–8.CrossRefGoogle Scholar
  19. Huang D Y. 2015. Yanliao biota and Yashan Movement (in Chinese). Acta Palaeontol Sin, 54: 501–54.Google Scholar
  20. Huang D Y. 2018. Jurassic integrative stratigraphy and timescale of China. Sci China Earth Sci, https://doi.org/10.1007/s11430-017-9268-7Google Scholar
  21. Isozaki Y. 2009. Illawarra reversal: The fingerprint of a superplume that triggered Pangean breakup and the end-Guadalupian (Permian) mass extinction. Gondwana Res, 15: 421–43.CrossRefGoogle Scholar
  22. Kaiser S I. 2009. The Devonian/Carboniferous boundary stratotype section (La Serre, France) revisited. Newsl Stratigr, 43: 195–20.CrossRefGoogle Scholar
  23. Kenrick P, Crane P R. 1997. The origin and early evolution of plants on land. Nature, 389: 33–3.CrossRefGoogle Scholar
  24. Lehrmann D J, Stepchinski L, Altiner D, Orchard M J, Montgomery P, Enos P, Ellwood B B, Bowring S A, Ramezani J, Wang H, Wei J, Yu M, Griffiths J D, Minzoni M, Schaal E K, Li X, Meyer K M, Payne J L. 2015. An integrated biostratigraphy (conodonts and foraminifers) and chronostratigraphy (paleomagnetic reversals, magnetic susceptibility, elemental chemistry, carbon isotopes and geochronology) for the Permian-Upper Triassic strata of Guandao section, Nanpanjiang Basin, south China. J Asian Earth Sci, 108: 117–13.CrossRefGoogle Scholar
  25. Ma X P, Gong Y M, Chen D Z, Racki G, Chen X Q, Liao W H. 2016. The Late Devonian Frasnian-Famennian Event in South China—Patterns and causes of extinctions, sea level changes, and isotope variations. Palaeogeogr Palaeoclimatol Palaeoecol, 448: 224–24.CrossRefGoogle Scholar
  26. Martinsson A. 1977. The Silurian-Devonian Boundary. Stuttgart: E. Schweizerbart‘sche Verlagsbuchhandlung. 349Google Scholar
  27. Melchin M J, Williams S H. 2000. A restudy of the Akidograptine graptolites from Dob’s Linn and a proposed redefined zonation of the Silurian stratotype. In: Cockle P, Wilson G A, Brock G A, Engerbretsen M J, Simpson A, eds. Geol Soc Australia Abstracts, 61: 63Google Scholar
  28. Ovtcharova M, Bucher H, Schaltegger U, Galfetti T, Brayard A, Guex J. 2006. New Early to Middle Triassic U-Pb ages from South China: Calibration with ammonoid biochronozones and implications for the timing of the Triassic biotic recovery. Earth Planet Sci Lett, 243: 463–47.CrossRefGoogle Scholar
  29. Peng S C, Babcock L E, Copper R A. 2012. The Cambrian period. In: Gradstein F M, Ogg J G, Schmitz M D, Ogg G, eds. The Geologic Time Scale 2012, Vol. 1. Oxford, Amsterdam, Waltham: Elsevier. 437–48.Google Scholar
  30. Qie W K, Ma X P, Xu H H, Qiao L, Liang K, Guo W, Song J J, Chen B, Lu J F. 2018. Devonian integrative stratigraphy and timescale of China. Sci China Earth Sci, https://doi.org/10.1007/s11430-017-9259-9Google Scholar
  31. Rong J Y, Huang B. 2014. Study of mass extinction over the past thirty years: A synopsis (in Chinese). Sci Sin Terrae, 44: 377–40.Google Scholar
  32. Rong J Y, Melchin M J, Henry W S, Koren T N, Verniers J. 2008. Report of the restudy of the defined global stratotype of the base of the Silurian System. Episodes, 31: 315Google Scholar
  33. Rong J Y, Wang Y, Zhan R B, Fan J X, Huang B, Tang P, Li Y, Zhang X L, Wu R C, Wang G X, Wei X. 2018. Silurian integrative stratigraphy and timescale of China. Sci China Earth Sci, https://doi.org/10.1007/s11430-017-9258-0Google Scholar
  34. Schmitz M D, Kuiper K F. 2013. High-precision geochronology. Elements, 9: 25–3.CrossRefGoogle Scholar
  35. Shen S Z, Ramezani J, Chen J, Erwin D H, Zhang H, Xiang L, Schoepfer S D, Henderson C M, Zheng Q F, Bowring S A, Wang Y, Li X H, Wang X D, Yuan D X, Zhang Y C, Mu L, Wang J, Wu Y S. 2018a. A sudden end-Permian mass extinction in South China. GSA Bull, doi: 10.1130/B31909.1CrossRefGoogle Scholar
  36. Shen S Z, Crowley J L, Wang Y, Bowring S A, Erwin D H, Sadler P M, Cao C Q, Rothman D H, Henderson C M, Ramezani J, Zhang H, Shen Y, Wang X D, Wang W, Mu L, Li W Z, Tang Y G, Liu X L, Liu L J, Zeng Y, Jiang Y F, Jin Y G. 2011. Calibrating the end-Permian mass extinction. Science, 334: 1367–137.CrossRefGoogle Scholar
  37. Shen S Z, Zhang H, Shi G R, Li W Z, Xie J F, Mu L, Fan J X. 2013. Early Permian (Cisuralian) global brachiopod palaeobiogeography. Gondwana Res, 24: 104–12.CrossRefGoogle Scholar
  38. Shen S Z, Zhang H, Zhang Y C, Yuan D X, Chen B, He W H, Mu L, Lin W, Wang W Q, Chen J, Wu Q, Cao C Q, Wang Y, Wang X D. 2018b. Permian integrative stratigraphy and timescale of China. Sci China Earth Sci, https://doi.org/10.1007/s11430-017-9228-4Google Scholar
  39. Shen S Z, Zhang H. 2017. What caused the five mass extinctions? (in Chinese) Chin Sci Bull, 62: 1119–113.Google Scholar
  40. Shen S Z, Zhu M Y, Wang X D, Li G X, Cao C Q, Zhang H. 2010. A comparison of the biological, geological events and environmental backgrounds between the Neoproterozoic-Cambrian and Permian-Triassic transitions. Sci China Earth Sci, 53: 1873–188.CrossRefGoogle Scholar
  41. Shu D G. 2008. Cambrian explosion: Birth of tree of animals. Gondwana Res, 14: 219–24.CrossRefGoogle Scholar
  42. Tong J N, Chu D L, Liang L, Shu W C, Song H J, Song T, Song H Y, Wu Y Y. 2018. Triassic integrative stratigraphy and time scale of China. Sci China Earth Sci, https://doi.org/10.1007/s11430-018-9278-0Google Scholar
  43. Tong J N, Zuo J X, Chen Z Q. 2007. Early Triassic carbon isotope excursions from South China: Proxies for devastation and restoration of marine ecosystems following the end-Permian mass extinction. Geol J, 42: 371–38.CrossRefGoogle Scholar
  44. Vandenberghe N, Hilgen F J, Speijer R P, Ogg J G, Gradstein F M, Hammer O, Hollis C J, Hooker J J. 2012. Chapter 28—The Paleogene Period. In: Gradstein F M, Ogg J G, Schmitz M D, Ogg G, eds. The Geologic Time Scale. Amsterdan: Elsevier. 855–92.Google Scholar
  45. Wang C S, Hu X M, Huang Y J H Y J, Wagreich M, Scott R, Hay W. 2011. Cretaceous oceanic red beds as possible consequence of oceanic anoxic events. Sediment Geol, 235: 27–3.CrossRefGoogle Scholar
  46. Wang W Q, Garbelli C, Zheng Q F, Chen J, Liu X C, Wang W, Shen S Z. 2018. Permian 87Sr/86Sr chemostratigraphy from carbonate sequences in South China. Palaeogeogr Palaeoclimatol Palaeoecol, 500: 84–9.CrossRefGoogle Scholar
  47. Wang X D, Hu K Y, Qie W K, Sheng Q Y, Chen B, Lin W, Yao L, Wang Q L, Qi Y P, Chen J T, Liao Z T, Song J J. 2018. Carboniferous integrative stratigraphy and timescale of China. Sci China Earth Sci, https://doi.org/10.1007/s11430-017-9253-7Google Scholar
  48. Wang X M, Flynn L J, Fortelius M. 2013. Fossil mammals of Asia: Neogene biostratigraphy and chronology. New York: Columbia University Press. 731CrossRefGoogle Scholar
  49. Wang Y Q, Li Q, Bai B, Jin X, Mao F Y, Meng J. 2018. Paleocene integrative stratigraphy and time scale of China. Sci China Earth Sci, https://doi.org/10.1007/s11430-018-9305-yGoogle Scholar
  50. Xi D P, Wan X Q, Li G B, Li G. 2018. Cretaceous integrative stratigraphy and timescale of China. Sci China Earth Sci, https://doi.org/10.1007/s11430-017-9262-yGoogle Scholar
  51. Xiao S H, Narbonne G M, Zhou C M, Laflamme M, Grazhdankin D V, Moczydłowska-Vidal M, Cui H. 2016. Towards an Ediacaran time scale: Problems, protocols, and prospects. Episodes, 39: 540–55.CrossRefGoogle Scholar
  52. Yu C M. 1988. Devonian-Carboniferous Boundary in Nanbiancun, Guilin, China. Beijing: Science Press. 379Google Scholar
  53. Yuan X L, Chen Z, Xiao S H, Zhou C M, Hua H. 2011. An early Ediacaran assemblage of macroscopic and morphologically differentiated eukaryotes. Nature, 470: 390–39.CrossRefGoogle Scholar
  54. Zhang M M, Wang Y Q, Wang Q F, Wang Y, Lu H N. 2001. The Jehol Biota (in Chinese). Shanghai: Shanghai Science and Technology Press. 150Google Scholar
  55. Zhang Q H, Wendler I, Xu X X, Willems H, Ding L. 2017. Structure and magnitude of the carbon isotope excursion during the Paleocene-Eocene thermal maximum. Gondwana Res, 46: 114–12.CrossRefGoogle Scholar
  56. Zhang Y D, Zhan R B, Zhen Y Y, Wang Z H, Yuan W W, Fang X, Ma X, Zhang J P. 2018. Ordovician integrative stratigraphy and timescale of China. Sci China Earth Sci, https://doi.org/10.1007/s11430-017-9279-0Google Scholar
  57. Zhao W J, Zhu M. 2014. A review of the Silurian fishes from China, with comments on the correlation of fish-bearing strata (in Chinese). Earth Sci Front, 21:185–20.Google Scholar
  58. Zhou C M, Yuan X L, Xiao S H, Chen Z, Hua H. 2018. Ediacaran integrative stratigraphy and timescale of China. Sci China Earth Sci, https://doi.org/10.1007/s11430-017-9216-2Google Scholar
  59. Zhou Z H. 2014. The Jehol Biota, an Early Cretaceous terrestrial Lagerstätte: New discoveries and implications. Nat Sci Rev, 1: 543–55.CrossRefGoogle Scholar
  60. Zhu M, Zhao W J, Jia L T, Lu J, Qiao T, Qu Q M. 2009. The oldest articulated osteichthyan reveals mosaic gnathostome characters. Nature, 458: 469–47.CrossRefGoogle Scholar
  61. Zhu M Y, Li X H. 2017. Introduction: From snowball Earth to the Cambrian explosion-evidence from China. Geol Mag, 154: 1187–119.CrossRefGoogle Scholar
  62. Zhu M Y, Lu M, Zhang J M, Zhao F C, Li G X, Yang A H, Zhao X, Zhao M J. 2013. Carbon isotope chemostratigraphy and sedimentary facies evolution of the Ediacaran Doushantuo Formation in western Hubei, South China. Precambrian Res, 225: 7–2.CrossRefGoogle Scholar
  63. Zhu M Y, Strauss H, Shields G A. 2007. From snowball earth to the Cambrian bioradiation: Calibration of Ediacaran-Cambrian earth history in South China. Palaeogeogr Palaeoclimatol Palaeoecol, 254: 1–6CrossRefGoogle Scholar
  64. Zhu M Y, Yang A H, Yuan J L, Li G X, Zhang J M, Zhao F C, Soo-Yeun A, Miao L Y. 2018. Cambrian integrative stratigraphy and time scale of China. Sci China Earth Sci, https://doi.org/10.1007/s11430-017-9291-0Google Scholar

Copyright information

© Science in China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology and Center for Excellence in Life and PalaeoenvironmentChinese Academy of SciencesNanjingChina
  2. 2.Centre for Research and Education on Biological Evolution and EnvironmentNanjing UniversityNanjingChina

Personalised recommendations