Advertisement

Science China Earth Sciences

, Volume 62, Issue 5, pp 771–782 | Cite as

Relationship between sea surface salinity and ocean circulation and climate change

  • Yan DuEmail author
  • Yuhong Zhang
  • Jiancheng Shi
Progress
  • 63 Downloads

Abstract

Based on Argo sea surface salinity (SSS) and the related precipitation (P), evaporation (E), and sea surface height data sets, the climatological annual mean and low-frequency variability in SSS in the global ocean and their relationship with ocean circulation and climate change were analyzed. Meanwhile, together with previous studies, a brief retrospect and prospect of seawater salinity were given in this work. Freshwater flux (E-P) dominated the mean pattern of SSS, while the dynamics of ocean circulation modulated the spatial structure and low-frequency variability in SSS in most regions. Under global warming, the trend in SSS indicated the intensification of the global hydrological cycle, and featured a decreasing trend at low and high latitudes and an increasing trend in subtropical regions. In the most recent two decades, global warming has slowed down, which is called the “global warming hiatus”. The trend in SSS during this phase, which was different to that under global warming, mainly indicated the response of the ocean surface to the decadal and multi-decadal variability in the climate system, referring to the intensification of the Walker Circulation. The significant contrast of SSS trends between the western Pacific and the southeastern Indian Ocean suggested the importance of oceanic dynamics in the cross-basin interaction in recent decades. Ocean Rossby waves and the Indonesian Throughflow contributed to the freshening trend in SSS in the southeastern Indian Ocean, while the increasing trend in the southeastern Pacific and the decreasing trend in the northern Atlantic implied a long-term linear trend under global warming. In the future, higher resolution SSS data observed by satellites, together with Argo observations, will help to extend our knowledge on the dynamics of mesoscale eddies, regional oceanography, and climate change.

Keywords

Sea surface salinity Ocean circulation Climate change Multi-scale interaction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

We thank Water Cycle Observation Mission (WCOM) group and PhD Student Qiwei SUN for their helps. Argo salinity data is available at (http://www.argo.ucsd.edu), EN4salinity data is obtained from (http://hadobs.metoffice.com/en4/index.html), CCMP wind data is provided by RSS (http://www.remss.com), sea surface height data is provided by AVISO (https://www.aviso.altimetry.fr), GPCP precipitation data is obtained from NASA/GSFC, evaporation data is provided by OAFlux (http://oaflux.whoi.edu), and ERA Interim sea level pressure data is provided by ECMWF (http://apps.ecmwf.int/datasets). This work was supported by the Chinese Academy of Sciences (Grant No. XDA19060501), the State Oceanic Administration of China (Grant No. GASI-IPOV AI-02), and the National Natural Science Foundation of China (Grant Nos. 41525019, 41506019 & 41830538).

References

  1. Adler R F, Huffman G J, Chang A, Ferraro R, Xie P P, Janowiak J, Rudolf B, Schneider U, Curtis S, Bolvin D, Gruber A, Susskind J, Arkin P, Nelkin E. 2003. The version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979–present). J Hydrometeorol, 4: 1147–1167CrossRefGoogle Scholar
  2. Atlas R, Hoffman R N, Ardizzone J, Leidner S M, Jusem J C, Smith D K, Gombos D. 2011. A cross-calibrated, multiplatform ocean surface wind velocity product for meteorological and oceanographic applications. Bull Amer Meteorol Soc, 92: 157–174CrossRefGoogle Scholar
  3. Boyer T P, Levitus S, Antonov J I, Locarnini R A, Garcia H E. 2005. Linear trends in salinity for the World Ocean, 1955–1998. Geophys Res Lett, 32: L01604CrossRefGoogle Scholar
  4. Bo Y Y, Yeh S W, Noh Y, Moon B K, Park Y G. 2008. Sea surface salinity variability and its relation to El Niño in a CGCM. Asia-Pac J Atmos Sci, 44: 173–189Google Scholar
  5. Chakraborty A, Sharma R, Kumar R, Basu S. 2014. A SEEK filter assimilation of sea surface salinity from Aquarius in an OGCM: Implication for surface dynamics and thermohaline structure. J Geophys Res-Oceans, 119: 4777–4796CrossRefGoogle Scholar
  6. Chen X Y, Tung K K. 2014. Varying planetary heat sink led to global-warming slowdown and acceleration. Science, 345: 897–903CrossRefGoogle Scholar
  7. Collins M, An S I, Cai W, Ganachaud A, Guilyardi E, Jin F F, Jochum M, Lengaigne M, Power S, Timmermann A, Vecchi G, Wittenberg A. 2010. The impact of global warming on the tropical Pacific Ocean and El Niño. Nat Geosci, 3: 391–397CrossRefGoogle Scholar
  8. Cravatte S, Delcroix T, Zhang D, McPhaden M, Leloup J. 2009. Observed freshening and warming of the western Pacific warm pool. Clim Dyn, 33: 565–589CrossRefGoogle Scholar
  9. Dee D P, Uppala S M, Simmons A J, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda M A, Balsamo G, Bauer P, Bechtold P, Beljaars A C M, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer A J, Haimberger L, Healy S B, Hersbach H, Hólm E V, Isaksen L, Kållberg P, Köhler M, Matricardi M, McNally A P, Monge-Sanz B M, Morcrette J J, Park B K, Peubey C, de Rosnay P, Tavolato C, Thépaut J N, Vitart F. 2011. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q J R Meteorol Soc, 137: 553–597CrossRefGoogle Scholar
  10. Delcroix T, Alory G, Cravatte S, Corrège T, McPhaden M J. 2011. A gridded sea surface salinity data set for the tropical Pacific with sample applications (1950–2008). Deep-Sea Res Part I-Oceanogr Res Pap, 58: 38–48CrossRefGoogle Scholar
  11. Delcroix T, Cravatte S, McPhaden M J. 2007. Decadal variations and trends in tropical Pacific sea surface salinity since 1970. J Geophys Res, 112: C03012CrossRefGoogle Scholar
  12. Delcroix T, Hénin C. 1991. Seasonal and interannual variations of sea surface salinity in the tropical Pacific Ocean. J Geophys Res, 96: 22135–22150CrossRefGoogle Scholar
  13. Du Y, Zhang Y H. 2015. Satellite and Argo observed surface salinity variations in the tropical Indian Ocean and their association with the Indian Ocean dipole mode. J Clim, 28: 695–713CrossRefGoogle Scholar
  14. Du Y, Zhang Y H, Feng M, Wang T Y, Zhang N, Wijffels S. 2015. Decadal trends of the upper ocean salinity in the tropical Indo-Pacific since mid-1990s. Sci Rep, 5: 16050CrossRefGoogle Scholar
  15. Durack P. 2015. Ocean salinity and the global water cycle. Oceanography, 28: 20–31CrossRefGoogle Scholar
  16. Durack P J, Wijffels S E, Matear R J. 2012. Ocean salinities reveal strong global water cycle intensification during 1950 to 2000. Science, 336: 455–458CrossRefGoogle Scholar
  17. Durand F, Alory G, Dussin R, Reul N. 2013. Smos reveals the signature of Indian Ocean dipole events. Ocean Dyn, 63: 1203–1212CrossRefGoogle Scholar
  18. England M H, McGregor S, Spence P, Meehl G A, Timmermann A, Cai W, Gupta A S, McPhaden M J, Purich A, Santoso A. 2014. Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus. Nat Clim Change, 4: 222–227CrossRefGoogle Scholar
  19. Feng M, McPhaden M J, Lee T. 2010. Decadal variability of the Pacific subtropical cells and their influence on the southeast Indian Ocean. Geophys Res Lett, 37: L09606Google Scholar
  20. Gao S, Qu T, Nie X. 2014. Mixed layer salinity budget in the tropical Pacific Ocean estimated by a global GCM. J Geophys Res-Oceans, 119: 8255–8270CrossRefGoogle Scholar
  21. Good S A, Martin M J, Rayner N A. 2013. EN4: Quality controlled ocean temperature and salinity profiles and monthly objective analyses with uncertainty estimates. J Geophys Res-Oceans, 118: 6704–6716CrossRefGoogle Scholar
  22. Gordon A, Giulivi C. 2008. Sea surface salinity trends over fifty years within the subtropical North Atlantic. Oceanography, 21: 20–29CrossRefGoogle Scholar
  23. Gordon A L, Susanto R D, Vranes K. 2003. Cool Indonesian Throughflow as a consequence of restricted surface layer flow. Nature, 425: 824–828CrossRefGoogle Scholar
  24. Gordon A L, Susanto R D, Ffield A, Huber B A, Pranowo W, Wirasantosa S. 2008. Makassar Strait throughflow, 2004 to 2006. Geophys Res Lett, 35: L24605CrossRefGoogle Scholar
  25. Grunseich G, Subrahmanyam B, Wang B. 2013. The Madden-Julian oscillation detected in Aquarius salinity observations. Geophys Res Lett, 40: 5461–5466CrossRefGoogle Scholar
  26. Guerrero R A, Piola A R, Fenco H, Matano R P, Combes V, Chao Y, James C, Palma E D, Saraceno M, Strub P T. 2014. The salinity signature of the cross-shelf exchanges in the Southwestern Atlantic Ocean: Satellite observations. J Geophys Res-Oceans, 119: 7794–7810CrossRefGoogle Scholar
  27. Hartmann J, West A J, Renforth P, Köhler P, De La Rocha C L, Wolf-Gladrow D A, Dürr H H, Scheffran J. 2013. Enhanced chemical weathering as a geoengineering strategy to reduce atmospheric carbon dioxide, supply nutrients, and mitigate ocean acidification. Rev Geophys, 51: 113–149CrossRefGoogle Scholar
  28. Held I M, Soden B J. 2006. Robust responses of the hydrological cycle to global warming. J Clim, 19: 5686–5699CrossRefGoogle Scholar
  29. Hosoda S, Ohira T, Nakamura T. 2008. A monthly mean dataset of global oceanic temperature and salinity derived from Argo float observations. JAMSTEC-R, 8: 47–59CrossRefGoogle Scholar
  30. Huffman G J, Adler R F, Bolvin D T, Gu G. 2009. Improving the global precipitation record: GPCP version 2.1. Geophys Res Lett, 36: L17808CrossRefGoogle Scholar
  31. Hu S, Sprintall J. 2017. Observed strengthening of interbasin exchange via the Indonesian Seas due to rainfall intensification. Geophys Res Lett, 44: 1448–1456CrossRefGoogle Scholar
  32. IPCC. 2014. Climate Change 2014. In: Edenhofer O, Pichs-Madruga R, Sokona Y, Farahani E, Kadner S, Seyboth K, Adler A, Baum I, Brunner S, Eickemeier P, Kriemann B, Savolainen J, Schlömer S, von Stechow C, Zwickel T, Minx J C, eds. Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University PressGoogle Scholar
  33. Jackson T J, Hsu A Y, Van de Griend A, Eagleman J R. 2004. Skylab Lband microwave radiometer observations of soil moisture revisited. Int J Remote Sens, 25: 2585–2606CrossRefGoogle Scholar
  34. Kim S, Lee J H, de Matthaeis P, Yueh S, Hong C S, Lee J H, Lagerloef G. 2014. Sea surface salinity variability in the East China Sea observed by the Aquarius instrument. J Geophys Res-Oceans, 119: 7016–7028CrossRefGoogle Scholar
  35. Köhl A, Sena Martins M, Stammer D. 2014. Impact of assimilating surface salinity from SMOS on ocean circulation estimates. J Geophys Res-Oceans, 119: 5449–5464CrossRefGoogle Scholar
  36. Kosaka Y, Xie S P. 2013. Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature, 501: 403–407CrossRefGoogle Scholar
  37. Lagerloef G, Wentz F, Yueh S, Kao H Y, Johnson G C, Lyman J M. 2012. Aquarius satellitemission provides new, detailed view of sea surface salinity. Bull Amer Meteorol Soc, 93: S70–S71Google Scholar
  38. Li J, Liang C, Tang Y, Dong C, Chen D, Liu X, Jin W. 2016. A new dipole index of the salinity anomalies of the tropical Indian Ocean. Sci Rep, 6: 24260CrossRefGoogle Scholar
  39. Li M, Gordon A L, Wei J, Gruenburg L K, Jiang G. 2018. Multi-decadal timeseries of the Indonesian Throughflow. Dyn Atmos Oceans, 81: 84–95CrossRefGoogle Scholar
  40. Li Y, Han W, Lee T. 2015. Intraseasonal sea surface salinity variability in the equatorial Indo-Pacific Ocean induced by Madden-Julian oscillations. J Geophys Res-Oceans, 120: 2233–2258CrossRefGoogle Scholar
  41. Li Y, Han W, Wang W, Ravichandran M, Lee T, Shinoda T. 2017. Bay of Bengal salinity stratification and Indian summer monsoon intraseasonal oscillation: 2. Impact on SST and convection. J Geophys Res-Oceans, 122: 4312–4328CrossRefGoogle Scholar
  42. Lukas R, Santiago-Mandujano F. 2008. Interannual to interdecadal salinity variations observed near hawaii: Local and remote forcing by surface freshwater fluxes. Oceanography, 21: 46–55CrossRefGoogle Scholar
  43. Maes C, Picaut J, Belamari S. 2002. Salinity barrier layer and onset of El Niño in a Pacific coupled model. Geophys Res Lett, 29: 59-1–59-4CrossRefGoogle Scholar
  44. Masson S, Delecluse P, Boulanger J P, Menkes C. 2002. A model study of the seasonal variability and formation mechanisms of the barrier layer in the eastern equatorial Indian Ocean. J Geophys Res, 107: SRF 18-1–SRF 18-20Google Scholar
  45. Masson S, Menkes C, Delecluse P, Boulanger J P. 2003. Impacts of salinity on the eastern Indian Ocean during the termination of the fall Wyrtki Jet. J Geophys Res, 108: 3067CrossRefGoogle Scholar
  46. Masson S, Boulanger J P, Menkes C, Delecluse P, Yamagata T. 2004. Impact of salinity on the 1997 Indian Ocean dipole event in a numerical experiment. J Geophys Res, 109: C02002CrossRefGoogle Scholar
  47. Meehl G A, Arblaster J M, Fasullo J T, Hu A, Trenberth K E. 2011. Model-based evidence of deep-ocean heat uptake during surface-temperature hiatus periods. Nat Clim Change, 1: 360–364CrossRefGoogle Scholar
  48. Menezes V V, Vianna M L, Phillips H E. 2014. Aquarius sea surface salinity in the South Indian Ocean: Revealing annual-period planetary waves. J Geophys Res-Oceans, 119: 3883–3908CrossRefGoogle Scholar
  49. Merrifield M A. 2011. A shift in western tropical Pacific sea level trends during the 1990s. J Clim, 24: 4126–4138CrossRefGoogle Scholar
  50. Mignot J, Frankignoul C. 2010. Local and remote impacts of a tropical Atlantic salinity anomaly. Clim Dyn, 35: 1133–1147CrossRefGoogle Scholar
  51. Nyadjro E S, Subrahmanyam B. 2014. SMOS mission reveals the salinity structure of the Indian Ocean dipole. IEEE Geosci Remote Sens Lett, 11: 1564–1568CrossRefGoogle Scholar
  52. Qiu B, Lukas R. 1996. Seasonal and interannual variability of the North Equatorial Current, the Mindanao Current, and the Kuroshio along the Pacific western boundary. J Geophys Res, 101: 12315–12330CrossRefGoogle Scholar
  53. Qiu Y, Cai W, Li L, Guo X. 2012. Argo profiles variability of barrier layer in the tropical Indian Ocean and its relationship with the Indian Ocean Dipole. Geophys Res Lett, 39: L08605CrossRefGoogle Scholar
  54. Qu T, Gao S, Fukumori I. 2011. What governs the North Atlantic salinity maximum in a global GCM? Geophys Res Lett, 38: L07602CrossRefGoogle Scholar
  55. Qu T, Gao S, Fukumori I. 2013. Formation of salinity maximum water and its contribution to the overturning circulation in the North Atlantic as revealed by a global general circulation model. J Geophys Res-Oceans, 118: 1982–1994CrossRefGoogle Scholar
  56. Qu T, Gao S. 2017. Resurfacing of South Pacific tropical water in the Equatorial Pacific and its variability associated with ENSO. J Phys Oceanogr, 47: 1095–1106CrossRefGoogle Scholar
  57. Qu T, Song Y T, Maes C. 2014. Sea surface salinity and barrier layer variability in the equatorial Pacific as seen from Aquarius and Argo. J Geophys Res-Oceans, 119: 15–29CrossRefGoogle Scholar
  58. Qu T, Yu J Y. 2014. ENSO indices from sea surface salinity observed by Aquarius and Argo. J Oceanogr, 70: 367–375CrossRefGoogle Scholar
  59. Schmitt R W. 2008. Salinity and the global water cycle. Oceanography, 21: 12–19CrossRefGoogle Scholar
  60. Skliris N, Marsh R, Josey S A, Good S A, Liu C, Allan R P. 2014. Salinity changes in the world ocean since 1950 in relation to changing surface freshwater fluxes. Clim Dyn, 43: 709–736CrossRefGoogle Scholar
  61. Tang Z. 2013. Study on Foreign Ocean Salinity and Soil Moisture Detector Satellite. Spacecraft Eng, 22: 83–89Google Scholar
  62. Thompson B, Gnanaseelan C, Salvekar P S. 2006. Variability in the Indian Ocean circulation and salinity and its impact on SST anomalies during dipole events. J Mar Res, 64: 853–880CrossRefGoogle Scholar
  63. Thorpe R B, Gregory J M, Johns T C, Wood R A, Mitchell J F B. 2001. Mechanisms determining the Atlantic thermohaline circulation response to greenhouse gas forcing in a non-flux-adjusted coupled climate model. J Clim, 14: 3102–3116CrossRefGoogle Scholar
  64. Trenberth K E, Smith L, Qian T, Dai A, Fasullo J. 2007. Estimates of the global water budget and its annual cycle using observational and model data. J Hydrometeorol, 8: 758–769CrossRefGoogle Scholar
  65. Vecchi G A, Soden B J. 2007. Global warming and the weakening of the tropical circulation. J Clim, 20: 4316–4340CrossRefGoogle Scholar
  66. Vellinga M, Wu P. 2004. Low-latitude freshwater influence on centennial variability of the Atlantic thermohaline circulation. J Clim, 17: 4498–4511CrossRefGoogle Scholar
  67. Wang C, Dong S, Munoz E. 2010. Seawater density variations in the North Atlantic and the Atlantic meridional overturning circulation. Clim Dyn, 34: 953–968CrossRefGoogle Scholar
  68. Wang T Y, Du Y, Zhuang W, Wang J B. 2015. Connection of sea level variability between the tropical western Pacific and the southern Indian Ocean during recent two decades. Sci China Earth Sci, 58: 1387–1396CrossRefGoogle Scholar
  69. Wijffels S, Meyers G. 2004. An intersection of oceanic waveguides: Variability in the Indonesian Throughflow region. J Phys Oceanogr, 34: 1232–1253CrossRefGoogle Scholar
  70. Xie P, Boyer T, Bayler E, Xue Y, Byrne D, Reagan J, Locarnini R, Sun F, Joyce R, Kumar A. 2014. An in situ-satellite blended analysis of global sea surface salinity. J Geophys Res-Oceans, 119: 6140–6160CrossRefGoogle Scholar
  71. Xie S P, Kosaka Y, Du Y, Hu K, Chowdary J S, Huang G. 2016. Indowestern Pacific ocean capacitor and coherent climate anomalies in post-ENSO summer: A review. Adv Atmos Sci, 33: 411–432CrossRefGoogle Scholar
  72. Yashayaev I, Clarke A. 2008. Evolution of north Atlantic water masses inferred from Labrador Sea salinity series. Oceanography, 21: 30–45CrossRefGoogle Scholar
  73. Yin X, Boutin J, Reverdin G, Lee T, Arnault S, Martin N. 2014. SMOSSea surface salinity signals of tropical instability waves. J Geophys Res-Oceans, 119: 7811–7826CrossRefGoogle Scholar
  74. Yin X, Zhang Q, Wang R, Zhang H. 2016. Development Status and Trends of Sea Surface Salt Satellite. Spacecraft Eng, 25: 119–123Google Scholar
  75. Yu L. 2011. A global relationship between the ocean water cycle and near-surface salinity. J Geophys Res, 116: C10025CrossRefGoogle Scholar
  76. Yu L. 2014. Coherent evidence from Aquarius and Argo for the existence of a shallow low-salinity convergence zone beneath the Pacific ITCZ. J Geophys Res-Oceans, 119: 7625–7644CrossRefGoogle Scholar
  77. Yu L, Weller R A. 2007. Objectively analyzed air-sea heat fluxes for the global ice-free oceans (1981–2005). Bull Amer Meteorol Soc, 88: 527–540CrossRefGoogle Scholar
  78. Zeng L, Timothy Liu W, Xue H, Xiu P, Wang D. 2014. Freshening in the South China Sea during 2012 revealed by Aquarius and in situ data. J Geophys Res-Oceans, 119: 8296–8314CrossRefGoogle Scholar
  79. Zhang L, Wu L. 2012. Can oceanic freshwater flux amplify global warming? J Clim, 25: 3417–3430CrossRefGoogle Scholar
  80. Zhang R H, Busalacchi A J. 2009. Freshwater flux (FWF)-induced oceanic feedback in a hybrid coupled model of the tropical pacific. J Clim, 22: 853–879CrossRefGoogle Scholar
  81. Zhang R H, Zheng F, Zhu J, Pei Y, Zheng Q, Wang Z. 2012. Modulation of El Niño-southern oscillation by freshwater flux and salinity variability in the tropical pacific. Adv Atmos Sci, 29: 647–660CrossRefGoogle Scholar
  82. Zhang R H, Gao C, Kang X, Zhi H, Wang Z, Feng L. 2015. ENSO modulations due to interannual variability of freshwater forcing and ocean biology-induced heating in the tropical Pacific. Sci Rep, 5: 18506CrossRefGoogle Scholar
  83. Zhang Y H, Du Y, Feng M. 2018. Multiple time scale variability of the sea surface salinity dipole mode in the tropical Indian Ocean. J Clim, 31: 283–296CrossRefGoogle Scholar
  84. Zhang Y H, Du Y, Zheng S J, Yang Y L, Cheng X H. 2013. Impact of Indian Ocean dipole on the salinity budget in the equatorial Indian Ocean. J Geophys Res-Oceans, 118: 4911–4923CrossRefGoogle Scholar
  85. Zhang Y H, Du Y, Qu T. 2016. A sea surface salinity dipole mode in the tropical Indian Ocean. Clim Dyn, 47: 2573–2585CrossRefGoogle Scholar
  86. Zheng F, Zhang R H. 2012. Effects of interannual salinity variability and freshwater flux forcing on the development of the 2007/08 La Niña event diagnosed from Argo and satellite data. Dyn Atmos Oceans, 57: 45–57CrossRefGoogle Scholar
  87. Zheng F, Zhang R H. 2015. Interannually varying salinity effects on ENSO in the tropical pacific: A diagnostic analysis from Argo. Ocean Dyn, 65: 691–705CrossRefGoogle Scholar
  88. Zhu J, Huang B, Zhang R H, Hu Z Z, Kumar A, Balmaseda M A, Marx L, Kinter III J L. 2014. Salinity anomaly as a trigger for ENSO events. Sci Rep, 4: 6821CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Tropical Oceanography, South China Sea Institute of OceanologyChinese Academy of SciencesGuangzhouChina
  2. 2.University of Chinese Academy of SciencesBeijingChina
  3. 3.State Key Laboratory of Remote Sensing Science, Institute of Remote Sensing and Digital EarthChinese Academy of SciencesBeijingChina

Personalised recommendations