Science China Earth Sciences

, Volume 61, Issue 12, pp 1859–1874 | Cite as

An intermediate coupled model for the tropical ocean-atmosphere system

  • Xunshu Song
  • Dake ChenEmail author
  • Youmin Tang
  • Ting Liu
Research Paper


An intermediate ocean-atmosphere coupled model is developed to simulate and predict the tropical interannual variability. Originating from the basic physical framework of the Zebiak-Cane (ZC) model, this tropical intermediate couple model (TICM) extends to the entire global tropics, with a surface heat flux parameterization and a surface wind bias correction added to improve model performance and inter-basin connections. The model well reproduces the variabilities in the tropical Pacific and Indian basins. The simulated El Niño-Southern Oscillation (ENSO) shows a period of 3–4 years and an amplitude of about 2°C, similar to those observed. The variabilities in the Indian Ocean, including the Indian Ocean basin mode (IOBM) and the Indian Ocean Dipole (IOD), are also reasonably captured with a realistic relationship to the Pacific. However, the tropical Atlantic variability in the TICM has a westward bias and is overly influenced by the tropical Pacific. A 47-year hindcast experiment using the TICM for the period of 1970–2016 indicates that ENSO is the most predictable mode in the tropics. Skillful predictions of ENSO can be made one year ahead, similar to the skill of the latest version of the ZC model, while a “spring predictability barrier” still exists as in other models. In the tropical Indian Ocean, the predictability seems much higher in the west than in the east. The correlation skill of IOD prediction reaches 0.5 at a 5-month lead, which is comparable to that of the state-of-the-art coupled general circulation models. The prediction of IOD shows a significant “winter-spring predictability barrier”, implying combined influences from the tropical Pacific and the local sea-air interaction in the eastern Indian Ocean. The TICM has little predictive skill in the equatorial Atlantic for lead times longer than 3 months, which is a common problem of current climate models badly in need of further investigation.


Intermediate coupled model ENSO IOD Prediction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This study was supported by the National Key Research and Development Program of China (Grant No. 2017YFA0604202), the National Natural Science Foundation of China (Grant Nos. 41690124, 41690121, 41690120, 41530961 & 41705049) and the National Programme on Global Change and Air-Sea Interaction (Grant No. GASI-IPOVAI-06).

Supplementary material

11430_2018_9274_MOESM1_ESM.pdf (215 kb)
Supplementary material, approximately 214 KB.


  1. Atwood A R, Battisti D S, Wittenberg A T, Roberts W H G, Vimont D J. 2016. Characterizing unforced multi-decadal variability of ENSO: A case study with the GFDL CM2.1 coupled GCM. Clim Dyn, 49: 2845–2862CrossRefGoogle Scholar
  2. Barnett T P, Graham N, Pazan S, White W, Latif M, Flügel M. 1993. ENSO and ENSO-related predictability. Part I: Prediction of Equatorial Pacific Sea surface temperature with a hybrid coupled ocean-atmosphere model. J Clim, 6: 1545–1566CrossRefGoogle Scholar
  3. Barnston A G, Tippett M K, L’Heureux M L, Li S, DeWitt D G. 2012. Skill of real-time seasonal ENSO model predictions during 2002–11: Is our capability increasing? Bull Amer Meteorol Soc, 93: 631–651CrossRefGoogle Scholar
  4. Bjerknes J. 1969. Atmospheric teleconnections from the Equatorial Pacific. Mon Weather Rev, 97: 163–172CrossRefGoogle Scholar
  5. Budyko M I. 1974. Climate and Life. New York: Academic PressGoogle Scholar
  6. Cai W, Meyers G, Shi G. 2005. Transmission of ENSO signal to the Indian Ocean. Geophys Res Lett, 32: L05616Google Scholar
  7. Cane M A. 1976. A study of the wind-driven ocean circulation in an equatorial basin. Doctoral Dissertation. Cambridge: Massachusetts Institute of TechnologyGoogle Scholar
  8. Cane M A, Zebiak S E, Dolan S C. 1986. Experimental forecasts of El Niño. Nature, 321: 827–832CrossRefGoogle Scholar
  9. Carton J A, Giese B S. 2008. A reanalysis of ocean climate using simple ocean data assimilation (SODA). Mon Weather Rev, 136: 2999–3017CrossRefGoogle Scholar
  10. Chang P, Fang Y, Saravanan R, Ji L, Seidel H. 2006. The cause of the fragile relationship between the Pacific El Niño and the Atlantic Niño. Nature, 443: 324–328CrossRefGoogle Scholar
  11. Chen C, Cane M A, Wittenberg A T, Chen D. 2016. ENSO in the CMIP5 simulations: Life cycles, diversity, and responses to climate change. J Clim, 30: 775–801CrossRefGoogle Scholar
  12. Chen D, Rothstein L M, Busalacchi A J. 1994. A hybrid vertical mixing scheme and its application to tropical ocean models. J Phys Oceanogr, 24: 2156–2179CrossRefGoogle Scholar
  13. Chen D, Zebiak S E, Busalacchi A J, Cane M A. 1995. An improved procedure for EI Nino fforecasting: Implications for predictability. Science, 269: 1699–1702CrossRefGoogle Scholar
  14. Chen D, Zebiak S E, Cane M A, Busalacchi A J. 1997. Initialization and predictability of a coupled ENSO forecast model. Mon Weather Rev, 125: 773–788CrossRefGoogle Scholar
  15. Chen D, Cane M A, Zebiak S E, Cañizares R, Kaplan A. 2000. Bias correction of an ocean-atmosphere coupled model. Geophys Res Lett, 27: 2585–2588CrossRefGoogle Scholar
  16. Chen D, Cane M A, Kaplan A, Zebiak S E, Huang D. 2004. Predictability of El Niño over the past 148 years. Nature, 428: 733–736CrossRefGoogle Scholar
  17. Chen D, Cane M A. 2008. El Niño prediction and predictability. J Comput Phys, 227: 3625–3640CrossRefGoogle Scholar
  18. Chen D. 2011. Indo-Pacific Tripole: An intrinsic mode of tropical climate variability. Adv Geosci, 24: 1–18CrossRefGoogle Scholar
  19. Chen D, Lian T, Fu C, Cane M A, Tang Y, Murtugudde R, Song X, Wu Q, Zhou L. 2015. Strong influence of westerly wind bursts on El Niño diversity. Nat Geosci, 8: 339–345CrossRefGoogle Scholar
  20. Chiodi A M, Harrison D E. 2016. Observed El Niño SSTA development and the effects of easterly and westerly wind events in 2014/15. J Clim, 30: 1505–1519CrossRefGoogle Scholar
  21. Clement A C, Seager R, Cane M A, Zebiak S E. 1996. An ocean dynamical thermostat. J Clim, 9: 2190–2196CrossRefGoogle Scholar
  22. Dai A. 2006. Precipitation characteristics in eighteen coupled climate models. J Clim, 19: 4605–4630CrossRefGoogle Scholar
  23. Dewitte B, Perigaud C. 1996. El Niño-La Niña events simulated with Cane and Zebiak’s Model and observed with satellite or in situ data. Part II: Model forced with observations. J Clim, 9: 1188–1207Google Scholar
  24. England M H, McGregor S, Spence P, Meehl G A, Timmermann A, Cai W, Gupta A S, McPhaden M J, Purich A, Santoso A. 2014. Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus. Nat Clim Change, 4: 222–227CrossRefGoogle Scholar
  25. Gnanaseelan C, Chowdary J S, Mishra A K, Salvekar P S. 2003. Indian Ocean dipole mode events in a simple mixed layer ocean model. Indian J Mar Sci, 32: 294–304Google Scholar
  26. Hastenrath S, Heller L. 2010. Dynamics of climatic hazards in northeast Brazil. Q J R Meteorol Soc, 103: 77–92CrossRefGoogle Scholar
  27. IPCC. 2013. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University PressGoogle Scholar
  28. Jin E K, Kinter Iii J L, Wang B, Park C K, Kang I S, Kirtman B P, Kug J S, Kumar A, Luo J J, Schemm J, Shukla J, Yamagata T. 2008. Current status of ENSO prediction skill in coupled ocean-atmosphere models. Clim Dyn, 31: 647–664CrossRefGoogle Scholar
  29. Jin F F. 1997. An equatorial ocean recharge paradigm for ENSO. Part I: Conceptual model. J Atmos Sci, 54: 811–829Google Scholar
  30. Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Leetmaa A, Reynolds R, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo K C, Ropelewski C, Wang J, Jenne R, Joseph D. 1996. The NCEP/NCAR 40-year reanalysis project. Bull Amer Meteorol Soc, 77: 437–471CrossRefGoogle Scholar
  31. Klein S A, Soden B J, Lau N C. 1997. Remote sea surface temperature variations during ENSO: Evidence for a tropical atmospheric bridge. J Clim, 12: 917–932CrossRefGoogle Scholar
  32. L’Heureux M L, Takahashi K, Watkins A B, Barnston A G, Becker E J, Di Liberto T E, Gamble F, Gottschalck J, Halpert M S, Huang B, Mosquera-Vásquez K, Wittenberg A T. 2017. Observing and predicting the 2015/16 El Niño. Bull Amer Meteorol Soc, 98: 1363–1382CrossRefGoogle Scholar
  33. Lamb P J. 1978. Large-scale tropical Atlantic surface circulation patterns associated with Subsaharan weather anomalies. Tellus, 30: 240–251CrossRefGoogle Scholar
  34. Latif M, Barnett T P, Cane M A, Flügel M, Graham N E, von Storch H, Xu J S, Zebiak S E. 1994. A review of ENSO prediction studies. Clim Dyn, 9: 167–179CrossRefGoogle Scholar
  35. Lawrence M G. 2005. The relationship between relative humidity and the dewpoint temperature in moist air: A simple conversion and applications. Bull Amer Meteorol Soc, 86: 225–234CrossRefGoogle Scholar
  36. Li G, Xie S P. 2014. Tropical biases in CMIP5 multimodel ensemble: The excessive equatorial Pacific cold tongue and double ITCZ problems. J Clim, 27: 1765–1780CrossRefGoogle Scholar
  37. Li T, Hogan T F, Chang C P. 2000. Dynamic and thermodynamic regulation of ocean warming. J Atmos Sci, 57: 3353–3365CrossRefGoogle Scholar
  38. Lian T, Chen D, Tang Y, Wu Q. 2014a. Effects of westerly wind bursts on El Niño: A new perspective. Geophys Res Lett, 41: 3522–3527CrossRefGoogle Scholar
  39. Lian T, Chen D K, Tang Y M, Jin B G. 2014b. A theoretical investigation of the tropical Indo-Pacific tripole mode. Sci China Earth Sci, 57: 174–188CrossRefGoogle Scholar
  40. Lian T, Chen D K, Tang Y M. 2017. Genesis of the 2014–2016 El Niño events. Sci China Earth Sci, 60: 1589–1600CrossRefGoogle Scholar
  41. Liu H, Tang Y, Chen D, Lian T. 2017. Predictability of the Indian Ocean dipole in the coupled models. Clim Dyn, 48: 2005–2024CrossRefGoogle Scholar
  42. Liu L, Xie S P, Zheng X T, Li T, Du Y, Huang G, Yu W D. 2013. Indian Ocean variability in the CMIP5 multi-model ensemble: The zonal dipole mode. Clim Dyn, 43: 1715–1730CrossRefGoogle Scholar
  43. Lorenz E N. 1971. An N-cycle time-differencing scheme for stepwise numerical integration. Mon Weather Rev, 99: 644–648CrossRefGoogle Scholar
  44. Luo J J, Masson S, Behera S K, Yamagata T. 2008. Extended ENSO predictions using a fully coupled ocean-atmosphere model. J Clim, 21: 84–93CrossRefGoogle Scholar
  45. Luo J J, Sasaki W, Masumoto Y. 2012. Indian Ocean warming modulates Pacific climate change. Proc Natl Acad Sci USA, 109: 18701–18706CrossRefGoogle Scholar
  46. Luo J J, Masson S, Behera S, Yamagata T. 2007. Experimental forecasts of the Indian Ocean Dipole using a coupled OAGCM. J Clim, 20: 2178–2190CrossRefGoogle Scholar
  47. Luo J J, Masson S, Behera S, Shingu S, Yamagata T. 2005. Seasonal climate predictability in a coupled OAGCM Using a different approach for ensemble forecasts. J Clim, 18: 4474–4497CrossRefGoogle Scholar
  48. Mesinger F, Arakawa A. 1976. Numerical methods used in atmospheric models. GARP Publications seriesGoogle Scholar
  49. Murtugudde R, Seager R, Busalacchi A. 1996. Simulation of the tropical oceans with an ocean GCM coupled to an atmospheric mixed-layer model. J Clim, 9: 1795–1815CrossRefGoogle Scholar
  50. Ng M K F, Hsieh W W. 1994. The equatorial Kelvin wave in finite difference models. J Geophys Res, 99: 14173CrossRefGoogle Scholar
  51. Philander S G. 1990. El Niño, La Nina, and the Southern Oscillation. San Diego: Academic PressGoogle Scholar
  52. Rayner N A, Parker D E, Horton E B, Folland C K, Alexander L V, Rowell D P, Kent E C, Kaplan A. 2003. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res, 108: 37CrossRefGoogle Scholar
  53. Saha S, Nadiga S, Thiaw C, Wang J, Wang W, Zhang Q, Van den Dool H M, Pan H L, Moorthi S, Behringer D, Stokes D, Peña M, Lord S, White G, Ebisuzaki W, Peng P, Xie P. 2006. The NCEP climate forecast system. J Clim, 19: 3483–3517CrossRefGoogle Scholar
  54. Saji N H, Goswami B N, Vinayachandran P N, Yamagata T. 1999. A dipole mode in the tropical Indian Ocean. Nature, 401: 360–363Google Scholar
  55. Shi L, Hendon H H, Alves O, Luo J J, Balmaseda M, Anderson D. 2012. How predictable is the Indian Ocean dipole? Mon Weather Rev, 140: 3867–3884CrossRefGoogle Scholar
  56. Smith R, Jones P, Briegleb B, Bryan F, Danabasoglu G, Dennis J, Dukowicz J, Eden C, Fox-Kemper B, Gent P. 2010. The parallel ocean program (POP) reference manual ocean component of the community climate system model (CCSM) and community earth system model (CESM). Rep. LAUR-01853, 141: 1–140Google Scholar
  57. Sriver R L, Timmermann A, Mann M E, Keller K, Goosse H. 2014. Improved representation of tropical Pacific Ocean-atmosphere dynamics in an intermediate complexity climate model. J Clim, 27: 168–185CrossRefGoogle Scholar
  58. Stockdale T N, Anderson D L T, Balmaseda M A, Doblas-Reyes F, Ferranti L, Mogensen K, Palmer T N, Molteni F, Vitart F. 2011. ECMWF seasonal forecast system 3 and its prediction of sea surface temperature. Clim Dyn, 37: 455–471CrossRefGoogle Scholar
  59. Stockdale T N, Balmaseda M A, Vidard A. 2006. Tropical Atlantic SST prediction with coupled ocean-atmosphere GCMs. J Clim, 19: 6047–6061CrossRefGoogle Scholar
  60. Tang Y. 2001. ENSO simulation and prediction using hybrid coupled models with data assimilation. Doctoral Dissertation. Vancouver: University of British ColumbiaGoogle Scholar
  61. Terray P, Masson S, Prodhomme C, Roxy M K, Sooraj K P. 2016. Impacts of Indian and Atlantic oceans on ENSO in a comprehensive modeling framework. Clim Dyn, 46: 2507–2533CrossRefGoogle Scholar
  62. Timmermann A, Jin F F, Abshagen J. 2003. A nonlinear theory for El Niño bursting. J Atmos Sci, 60: 152–165CrossRefGoogle Scholar
  63. Wajsowicz R C. 2005. Potential predictability of tropical Indian Ocean SST anomalies. Geophys Res Lett, 32: L24702CrossRefGoogle Scholar
  64. Wajsowicz R C. 2007. Seasonal-to-interannual forecasting of tropical Indian Ocean sea surface temperature anomalies: Potential predictability and barriers. J Clim, 20: 3320–3343CrossRefGoogle Scholar
  65. Wang B, Li T. 1993. A simple tropical atmosphere model of relevance to short-term climate variations. J Atmos Sci, 50: 260–284CrossRefGoogle Scholar
  66. Wang B, Li T, Chang P. 1995. An intermediate model of the tropical Pacific Ocean. J Phys Oceanogr, 25: 1599–1616CrossRefGoogle Scholar
  67. Wang C. 2000. On the atmospheric responses to tropical Pacific heating during the mature phase of El Niño. J Atmos Sci, 57: 3767–3781CrossRefGoogle Scholar
  68. Webster P J. 1995. The annual cycle and the predictability of the tropical coupled ocean-atmosphere system. Meteorl Atmos Phys, 56: 33–55CrossRefGoogle Scholar
  69. Wittenberg A T, Rosati A, Lau N C, Ploshay J J. 2006. GFDL’s CM2 global coupled climate models. Part III: Tropical pacific climate and ENSO. J Clim, 19: 698–722Google Scholar
  70. Wu Q, Chen D. 2010. Ensemble forecast of Indo-Pacific SST based on IPCC twentieth-century climate simulations. Geophys Res Lett, 37: L16702Google Scholar
  71. Xie S P. 1999. A dynamic ocean-atmosphere model of the tropical Atlantic decadal variability. J Clim, 12: 64–70CrossRefGoogle Scholar
  72. Xie S P, Hu K, Hafner J, Tokinaga H, Du Y, Huang G, Sampe T. 2009. Indian ocean capacitor effect on indo-western Pacific climate during the summer following El Niño. J Clim, 22: 730–747CrossRefGoogle Scholar
  73. Xue Y, Cane M A, Zebiak S E, Blumenthal M B. 1994. On the prediction of ENSO: A study with a low-order Markov model. Tellus Ser A-Dyn Meteorol Oceanol, 46: 512–528CrossRefGoogle Scholar
  74. Xue Y, Kumar A. 2017. Evolution of the 2015/16 El Niño and historical perspective since 1979. Sci China Earth Sci, 60: 1572–1588CrossRefGoogle Scholar
  75. Yao Z, Tang Y, Chen D, Zhou L, Li X, Lian T, Ul Islam S. 2016. Assessment of the simulation of Indian Ocean Dipole in the CESM-Impacts of atmospheric physics and model resolution. J Adv Model Earth Syst, 8: 1932–1952CrossRefGoogle Scholar
  76. Zebiak S E. 1986. Atmospheric convergence feedback in a simple model for El Niño. Mon Weather Rev, 114: 1263–1271CrossRefGoogle Scholar
  77. Zebiak S E. 1993. Air-sea interaction in the equatorial Atlantic region. J Clim, 6: 1567–1586CrossRefGoogle Scholar
  78. Zebiak S E, Cane M A. 1987. A model Elño-Southern oscillation. Mon Weather Rev, 115: 2262–2278CrossRefGoogle Scholar
  79. Zhang R H, Gao C. 2016. The IOCAS intermediate coupled model (IOCAS ICM) and its real-time predictions of the 2015–2016 El Niño event. Chin Sci Bull, 61: 1061–1070Google Scholar
  80. Zhang R H, Zebiak S E, Kleeman R, Keenlyside N. 2005. Retrospective El Niño forecasts using an improved intermediate coupled model. Mon Weather Rev, 133: 2777–2802CrossRefGoogle Scholar
  81. Zhang T, Sun D Z. 2014. ENSO asymmetry in CMIP5 models. J Clim, 27: 4070–4093CrossRefGoogle Scholar
  82. Zhao M, Hendon H H. 2010. Representation and prediction of the Indian Ocean dipole in the POAMA seasonal forecast model. Q J R Meteorol Soc, 135: 337–352CrossRefGoogle Scholar
  83. Zheng F, Zhu J, Zhang R H, Zhou G Q. 2006. Ensemble hindcasts of SST anomalies in the tropical Pacific using an intermediate coupled model. Geophys Res Lett, 33: L19604CrossRefGoogle Scholar
  84. Zheng F, Zhu J, Zhang R H. 2007. impact of altimetry data on ENSO ensemble initializations and predictions. Geophys Res Lett, 34: L13611Google Scholar
  85. Zheng F, Zhu J. 2010. Coupled assimilation for an intermediated coupled ENSO prediction model. Ocean Dyn, 60: 1061–1073CrossRefGoogle Scholar
  86. Zhu J, Huang B, Kumar A, Kinter III J L. 2015. Seasonality in prediction skill and predictable pattern of tropical Indian Ocean SST. J Clim, 28: 7962–7984CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Xunshu Song
    • 1
    • 2
  • Dake Chen
    • 1
    • 2
    • 3
    Email author
  • Youmin Tang
    • 2
    • 4
  • Ting Liu
    • 2
  1. 1.Ocean CollegeZhejiang UniversityZhoushanChina
  2. 2.State Key Laboratory of Satellite Ocean Environment DynamicsSecond Institute of OceanographyHangzhouChina
  3. 3.Lamont-Doherty Earth Observatory of Columbia UniversityNew YorkUSA
  4. 4.Environmental Science and EngineeringUniversity of Northern British ColumbiaPrince GeorgeCanada

Personalised recommendations