Science China Earth Sciences

, Volume 62, Issue 2, pp 365–375 | Cite as

Dynamical downscaling of regional climate: A review of methods and limitations

  • Zhongfeng XuEmail author
  • Ying Han
  • Zongliang Yang


The traditional dynamical downscaling (TDD) method employs continuous integration of regional climate models (RCM) with the general circulation model (GCM) providing the initial and lateral boundary conditions. Dynamical downscaling simulations are constrained by physical principles and can generate a full set of climate information, providing one of the important approaches to projecting fine spatial-scale future climate information. However, the systematic biases of climate models often degrade the TDD simulations and hinder the application of dynamical downscaling in the climate-change related studies. New methods developed over past decades improve the performance of dynamical downscaling simulations. These methods can be divided into four groups: the TDD method, the pseudo global warming method, dynamical downscaling with GCM bias corrections, and dynamical downscaling with both GCM and RCM bias corrections. These dynamical downscaling methods are reviewed and compared in this paper. The merits and limitations of each dynamical downscaling method are also discussed. In addition, the challenges and potential directions in progressing dynamical downscaling methods are stated.


Global circulation model Bias correction Regional climate model Downscaling Projection of regional climate 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the National Natural Science Foundation of China (Grant Nos. 91637103, 41675105, 41675080).


  1. Adam J C, Stephens J C, Chung S H, Brady M P, Evans R D, Kruger C E, Lamb B K, Liu M, Stöckle C O, Vaughan J K, Rajagopalan K, Harrison J A, Tague C L, Kalyanaraman A, Chen Y, Guenther A, Leung F Y, Leung L R, Perleberg A B, Yoder J, Allen E, Anderson S, Chandrasekharan B, Malek K, Mullis T, Miller C, Nergui T, Poinsatte J, Reyes J, Zhu J, Choate J S, Jiang X, Nelson R, Yoon J H, Yorgey G G, Johnson K, Chinnayakanahalli K J, Hamlet A F, Nijssen B, Walden V. 2015. BioEarth: Envisioning and developing a new regional earth system model to inform natural and agricultural resource management. Clim Change, 129: 555–571CrossRefGoogle Scholar
  2. Alexandru A, de Elia R, Laprise R. 2007. Internal variability in regional climate downscaling at the seasonal scale. Mon Weather Rev, 135: 3221–3238CrossRefGoogle Scholar
  3. Bao J W, Feng J M, Wang Y L. 2015. Dynamical downscaling simulation and future projection of precipitation over China. J Geophys Res-Atmos, 120: 8227–8243CrossRefGoogle Scholar
  4. Boulard D, Castel T, Camberlin P, Sergent A S, Bréda N, Badeau V, Rossi A, Pohl B. 2016. Capability of a regional climate model to simulate climate variables requested for water balance computation: A case study over northeastern France. Clim Dyn, 46: 2689–2716CrossRefGoogle Scholar
  5. Bruyère C L, Done J M, Holland G J, Fredrick S. 2014. Bias corrections of global models for regional climate simulations of high-impact weather. Clim Dyn, 43: 1847–1856CrossRefGoogle Scholar
  6. Bukovsky M S, Karoly D J. 2011. A regional modeling study of climate change impacts on warm-season precipitation in the central United States. J Clim, 24: 1985–2002CrossRefGoogle Scholar
  7. Caron L P, Jones C G, Winger K. 2011. Impact of resolution and downscaling technique in simulating recent Atlantic tropical cylone activity. Clim Dyn, 37: 869–892CrossRefGoogle Scholar
  8. Chan S C, Kendon E J, Fowler H J, Blenkinsop S, Ferro C A T, Stephenson D B. 2013. Does increasing the spatial resolution of a regional climate model improve the simulated daily precipitation? Clim Dyn, 41: 1475–1495CrossRefGoogle Scholar
  9. Chang J, Peng X D, Fan G Z, Che Y Z. 2015. Error correction of numerical weaterh prediction with historical data(in Chinese). Acta Meteorol Sin, 73: 341–354Google Scholar
  10. Chen L J, Li W J, Zhang P Q, Wang J G. 2003. Application of a new downscaling model to monthly precipitation forecast (in Chinese). J Appl Meteorol Sci, 14: 648–655Google Scholar
  11. Chen L, Ma Z G, Li Z H, Wu L, Flemke J, Li Y P. 2018. Dynamical downscaling of temperature and precipitation extremes in China under current and future climates. Atmos-Ocean, 56: 55–70CrossRefGoogle Scholar
  12. Chen J, Xu C Y, Guo S L, Chen H. 2016. Progress and chanllenge in statistically downscaling climate model outputs (in Chinese). J Water Resour Res, 5: 299–313CrossRefGoogle Scholar
  13. Colette A, Vautard R, Vrac M. 2012. Regional climate downscaling with prior statistical correction of the global climate forcing. Geophys Res Lett, 39: L13707CrossRefGoogle Scholar
  14. Cook K H, Vizy E K. 2008. Effects of twenty-first-century climate change on the Amazon rain forest. J Clim, 21: 542–560CrossRefGoogle Scholar
  15. Dai A G, Rasmussen R M, Ikeda K, Liu C H. 2017. A new approach to construct representative future forcing data for dynamic downscaling. Clim Dyn, 43Google Scholar
  16. Déqué M. 2007. Frequency of precipitation and temperature extremes over France in an anthropogenic scenario: Model results and statistical correction according to observed values. Glob Planet Change, 57: 16–26CrossRefGoogle Scholar
  17. Dickinson R E, Errico R M, Giorgi F, Bates G T. 1989. A regional climate model for the western United States. Clim Change, 15: 383–422Google Scholar
  18. Done J M, Holland G J, Bruyère C L, Leung L R, Suzuki-Parker A. 2015. Modeling high-impact weather and climate: Lessons from a tropical cyclone perspective. Clim Change, 129: 381–395CrossRefGoogle Scholar
  19. El-Samra R, Bou-Zeid E, Bangalath H K, Stenchikov G, El-Fadel M. 2017. Future intensification of hydro-meteorological extremes: Downscaling using the weather research and forecasting model. Clim Dyn, 49: 3765–3785CrossRefGoogle Scholar
  20. Fan L, Fu C, Chen D. 2005. Review on creating future climate change scenarios by statistical downscaling techniques (in Chinese). Adv Earth Sci, 20: 320–329Google Scholar
  21. Fan L J, Chen D L, Fu C B, Yan Z W. 2013. Statistical downscaling of summer temperature extremes in northern China. Adv Atmos Sci, 30: 1085–1095CrossRefGoogle Scholar
  22. Fang Y J, Zhang Y C, Huang A N, Li B. 2013. Seasonal and intraseasonal variations of East Asian summer monsoon precipitation simulated by a regional air-sea coupled model. Adv Atmos Sci, 30: 315–329CrossRefGoogle Scholar
  23. Feng L, Zhou T, Wu B, Li T, Luo J J. 2011. Projection of future precipitation change over China with a high-resolution global atmospheric model. Adv Atmos Sci, 28: 464–476CrossRefGoogle Scholar
  24. Fox-Rabinovitz M, Côté J, Dugas B, Déqué M, McGregor J L. 2006. Variable resolution general circulation models: Stretched-grid model intercomparison project (SGMIP). J Geophys Res, 111: D16104CrossRefGoogle Scholar
  25. Fu C, Wang S Y, Xiong Z, Gutowski W J, Lee D K, McGregor J L, Sato Y, Kato H, Kim J W, Suh M S. 2005. Regional climate model intercomparison project for Asia. Bull Amer Meteorol Soc, 86: 257–266CrossRefGoogle Scholar
  26. Gao X J, Shi Y, Giorgi F. 2011. A high resolution simulation of climate change over China. Sci China Earth Sci, 54: 462–472CrossRefGoogle Scholar
  27. Gao X J, Zhao Z C, Giorgi F. 2002. Changes of extreme events in regional climate simulations over East Asia. Adv Atmos Sci, 19: 927–942CrossRefGoogle Scholar
  28. Gao Y, Vano J A, Zhu C, Lettenmaier D P. 2011. Evaluating climate change over the Colorado River basin using regional climate models. J Geophys Res, 116: D13104CrossRefGoogle Scholar
  29. Giorgi F, Mearns L O. 1991. Approaches to the simulation of regional climate change: A review. Rev Geophys, 29: 191–216CrossRefGoogle Scholar
  30. Giorgi F, Mearns L O. 1999. Introduction to special section: Regional climate modeling revisited. J Geophys Res, 104: 6335–6352CrossRefGoogle Scholar
  31. Giorgi F, Jones G, Asrar G R. 2009. Addressing climate information needs at the regional level: The CORDEX framework. WMO Bull, 58: 175–183Google Scholar
  32. Giorgi F, Shields Brodeur C, Bates G T. 1994a. Regional climate change scenarios over the United States produced with a nested regional climate model. J Clim, 7: 375–399CrossRefGoogle Scholar
  33. Giorgi F, Hostetler S W, Brodeur C S. 1994b. Analysis of the surface hydrology in a regional climate model. Q J R Met Soc, 120: 161–183CrossRefGoogle Scholar
  34. Han X, Wei F Y. 2010. The influence of vertical atmospheric circulation pattern over East Asia on summer precipitation in the east of China and its forecasting test (in Chinese). Chin J Atmosp Sci, 34:533–547Google Scholar
  35. Hanssen-Bauer I, Achberger C, Benestad R, Chen D, Førland E. 2005. Statistical downscaling of climate scenarios over Scandinavia. Clim Res, 29: 255–268CrossRefGoogle Scholar
  36. Harris L M, Lin S J. 2013. A two-way nested global-regional dynamical core on the cubed-sphere grid. Mon Weather Rev, 141: 283–306CrossRefGoogle Scholar
  37. Hernández-Díaz L, Laprise R, Nikiéma O, Winger K. 2017. 3-Step dynamical downscaling with empirical correction of sea-surface conditions: Application to a CORDEX Africa simulation. Clim Dyn, 48: 2215–2233CrossRefGoogle Scholar
  38. Holland G J, Done J, Bruyere C, Cooper C, Suzuki A. 2010. Model investigations of the effects of climate variability and change on future-Gulf of Mexico tropical cyclone activity. In: Proc. Offshore Technology Conf., Houston. 20690Google Scholar
  39. Hoffmann P, Katzfey J J, McGregor J L, Thatcher M. 2016. Bias and variance correction of sea surface temperatures used for dynamical downscaling. J Geophys Res-Atmos, 121: 12877–12890CrossRefGoogle Scholar
  40. Hong C P, Zhang Q, Zhang Y, Tang Y H, Tong D, He K B. 2017. Multiyear downscaling application of two-way coupled WRF v3.4 and CMAQ v5.0.2 over East Asia for regional climate and air quality modeling: Model evaluation and aerosol direct effects. Geosci Model Dev, 10: 2447–2470CrossRefGoogle Scholar
  41. Huang X, Rhoades A M, Ullrich P A, Zarzycki C M. 2016. An evaluation of the variable-resolution CESM for modeling California’s climate. J Adv Model Earth Syst, 8: 345–369CrossRefGoogle Scholar
  42. IPCC. 2013. Climate Change 2013. The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. In: Stocker T F, Qin D, Plattner G K, Tignor M, Allen S K, Boschung J, Nauels A, Xia Y, Bex V, Midgley P M, eds. Cambridge: Cambridge University Press. 1535Google Scholar
  43. Jacob D, Podzun R. 1997. Sensitivity studies with the regional climate model REMO. Meteorl Atmos Phys, 63: 119–129CrossRefGoogle Scholar
  44. Kawase H, Yoshikane T, Hara M, Kimura F, Yasunari T, Ailikun B, Ueda H, Inoue T. 2009. Intermodel variability of future changes in the Baiu rainband estimated by the pseudo global warming downscaling method. J Geophys Res, 114: D24110CrossRefGoogle Scholar
  45. Khairunnisa Y, Wang K, Campbell P, Chen Y, Glotfelty T, He J, Pirhalla M, Zhang Y. 2017. Decadal application of WRF/Chem for regional air quality and climate modeling over the U.S. under the representative concentration pathways scenarios. Part 1: Model evaluation and impact of downscaling. Atmos Environ, 152: 562–583Google Scholar
  46. Kitoh A, Ose T, Takayabu I. 2016. Dynamical downscaling for climate projection with high-resolution MRI AGCM-RCM. J Meteorol Soc Jpn, 94A: 1–16CrossRefGoogle Scholar
  47. Lauer A, Zhang C, Elison-Timm O, Wang Y, Hamilton K. 2013. Downscaling of climate change in the Hawaii region using CMIP5 results: On the choice of the forcing fields. J Clim, 26: 10006–10030CrossRefGoogle Scholar
  48. Leung L R, Qian Y, Bian X. 2003. Hydroclimate of the western United States based on observations and regional climate simulation of 1981–2000. Part I: Seasonal statistics. J Clim, 16: 1892–1911Google Scholar
  49. Liang X Z, Li L, Kunkel K E, Ting M, Wang J X L. 2004. Regional climate model simulation of U.S. precipitation during 1982–2002. Part I: Annual cycle. J Clim, 17: 3510–3529Google Scholar
  50. Liang X Z, Kunkel K E, Meehl G A, Jones R G, Wang J X L. 2008. Regional climate models downscaling analysis of general circulation models present climate biases propagation into future change projections. Geophys Res Lett, 35: L08709CrossRefGoogle Scholar
  51. Liao Z J, Zhang Y C. 2013. Simulation of a persistent snow storm over Southern China with a regional atmosphere-ocean coupled model. Adv Atmos Sci, 30: 425–447CrossRefGoogle Scholar
  52. Liu C M, Liu W B, Fu G B, Ouyang R L. 2012. A disscussion of some aspects of statistical downscaling in climate impacts assessment (in Chinese). Adv in Water Sci, 23: 427–437Google Scholar
  53. Lo J C F, Yang Z L, Pielke Sr. R A. 2008. Assessment of three dynamical climate downscaling methods using the Weather Research and Forecasting (WRF) model. J Geophys Res, 113: D09112CrossRefGoogle Scholar
  54. Lorenz P, Jacob D. 2005. Influence of regional scale information on the global circulation: A two-way nesting climate simulation. Geophys Res Lett, 32: L18706Google Scholar
  55. Maraun D, Wetterhall F, Ireson A M, Chandler R E, Kendon E J, Widmann M, Brienen S, Rust H W, Sauter T, Themeβl M, Venema V K C, Chun K P, Goodess C M, Jones R G, Onof C, Vrac M, Thiele-Eich I. 2010. Precipitation downscaling under climate change: Recent developments to bridge the gap between dynamical models and the end user. Rev Geophys, 48: RG3003CrossRefGoogle Scholar
  56. McGregor J L, Dix M R. 2001. The CSIRO conformal-cubic atmospheric GCM. In: Hodnett P F, ed. UTAM Symposium on Advances in Mathematical Modelling of Atmosphere and Ocean Dynamics. New York: Springer. 197–202CrossRefGoogle Scholar
  57. Mearns L O, Gutowski W, Jones R, Leung R, McGinnis S, Nunes A, Qian Y. 2009. A regional climate change assessment program for North America. Eos Trans AGU, 90: 311CrossRefGoogle Scholar
  58. Meyer J D D, Jin J. 2015. Bias correction of the CCSM4 for improved regional climate modeling of the North American monsoon. Clim Dyn, 46: 2961–2976CrossRefGoogle Scholar
  59. Michelangeli P A, Vrac M, Loukos H. 2009. Probabilistic downscaling approaches: Application to wind cumulative distribution functions. Geophys Res Lett, 36: L11708CrossRefGoogle Scholar
  60. Niu X R, Wang S Y, Tang J P, Lee D K, Gao X J, Wu J, Hong S Y, Gutowski W J, McGregor J. 2015. Multimodel ensemble projection of precipitation in eastern China under A1B emission scenario. J Geophys Res-Atmos, 120: 9965–9980CrossRefGoogle Scholar
  61. Ott I, Duethmann D, Liebert J, Berg P, Feldmann H, Ihringer J, Kunstmann H, Merz B, Schaedler G, Wagner S. 2013. High-resolution climate change impact analysis on medium-sized river catchments in Germany: An ensemble assessment. J Hydrometeorol, 14: 1175–1193CrossRefGoogle Scholar
  62. Pielke Sr R A, Wilby R L. 2012. Regional climate downscaling: What's the point? Eos Trans AGU, 93: 52–53CrossRefGoogle Scholar
  63. Peng X D, Che Y, Chang J. 2013. A novel approach to improve numerical weather prediction skills by using anomaly integration and historical data. J Geophys Res-Atmos, 118: 8814–8826CrossRefGoogle Scholar
  64. Prinn R G. 2013. Development and application of earth system models. Proc Natl Acad Sci USA, 110: 3673–3680CrossRefGoogle Scholar
  65. Ratnam J V, Behera S K, Doi T, Ratna S B, Landman W A. 2016. Improvements to the WRF seasonal hindcasts over south Africa by bias correcting the driving SINTEX-F2v CGCM fields. J Clim, 29: 2815–2829CrossRefGoogle Scholar
  66. Ratnam J V, Giorgi F, Kaginalkar A, Cozzini S. 2009. Simulation of the Indian monsoon using the RegCM3-ROMS regional coupled model. Clim Dyn, 33: 119–139CrossRefGoogle Scholar
  67. Rocheta E, Evans J P, Sharma A. 2017. Can bias correction of regional climate model lateral boundary conditions improve low-frequency rainfall variability? J Clim, 30: 9785–9806CrossRefGoogle Scholar
  68. Sato T, Kimura F, Kitoh A. 2007. Projection of global warming onto regional precipitation over Mongolia using a regional climate model. J Hydrol, 333: 144–154CrossRefGoogle Scholar
  69. Shukla S, Lettenmaier D P. 2013. Multi-RCM ensemble downscaling of NCEP CFS winter season forecasts: Implications for seasonal hydrologic forecast skill. J Geophys Res-Atmos, 118: 10770–10790CrossRefGoogle Scholar
  70. Stauffer D R, Seaman N L. 1990. Use of four-dimensional data assimilation in a limited-area mesoscale model. Part I: Experiments with synopticscale data. Mon Weather Rev, 118: 1250–1277Google Scholar
  71. Sun F P, Walton D B, Hall A. 2015. A hybrid dynamical-statistical downscaling technique. Part II: End-of-century warming projections predict a new climate state in the Los Angeles region. J Clim, 28: 4618–4636Google Scholar
  72. Sun Y, Zhong Z, Li T, Yi L, Camargo S J, Hu Y, Liu K, Chen H, Liao Q, Shi J. 2017. Impact of ocean warming on tropical cyclone track over the western north pacific: A numerical investigation based on two case studies. J Geophys Res-Atmos, 122: 8617–8630CrossRefGoogle Scholar
  73. Tan J, Zhang Y, Ma W, Yu Q, Wang J, Chen L. 2015. Impact of spatial resolution on air quality simulation: A case study in a highly industrialized area in Shanghai, China. Atmos Pollut Res, 6: 322–333CrossRefGoogle Scholar
  74. Tang J P, Li Q, Wang S Y, Lee D K, Hui P H, Niu X R, Gutowski J W J, Dairaku K, McGregor J, Katzfey J, Gao X J, Wu J, Hong S Y, Wang Y Q, Sasaki H. 2016a. Building Asian climate change scenario by multiregional climate models ensemble. Part I: Surface air temperature. Int J Climatol, 36: 4241–4252CrossRefGoogle Scholar
  75. Tang J P, Niu X R, Wang S Y, Gao H, Wang X, Wu J. 2016b. Statistical downscaling and dynamical downscaling of regional climate in China: Present climate evaluations and future climate projections. J Geophys Res-Atmos, 121: 2110–2129CrossRefGoogle Scholar
  76. van der Linden P, Mitchell J F B. 2009. ENSEMBLES: Climate change and its impacts: Summary of research and results from the ENSEMBLES project. Met Office Hadley Centre Rep, 160Google Scholar
  77. Varghese S, Langmann B, Ceburnis D, O’Dowd C D. 2011. Effect of horizontal resolution on meteorology and air-quality prediction with a regional scale model. Atmos Res, 101: 574–594CrossRefGoogle Scholar
  78. von Storch H, Zorita E, Cubasch U. 1993. Downscaling of global climate change estimates to regional scales: An application to Iberian rainfall in wintertime. J Clim, 6: 1161–1171CrossRefGoogle Scholar
  79. von Storch H, Langenberg H, Feser F. 2000. A spectral nudging technique for dynamical downscaling purposes. Mon Weather Rev, 128: 3664–3673CrossRefGoogle Scholar
  80. Walton D B, Sun F, Hall A, Capps S. 2015. A hybrid dynamical-statistical downscaling technique. Part I: Development and validation of the technique. J Clim, 28: 4597–4617Google Scholar
  81. Wang B, Ding Q, Fu X, Kang I S, Jin K, Shukla J, Doblas-Reyes F. 2005. Fundamental challenge in simulation and prediction of summer monsoon rainfall. Geophys Res Lett, 32: L15711CrossRefGoogle Scholar
  82. Wang J, Kotamarthi V R. 2015. High-resolution dynamically downscaled projections of precipitation in the mid and late 21st century over North America. Earth’s Future, 3: 268–288CrossRefGoogle Scholar
  83. White R H, Toumi R. 2013. The limitations of bias correcting regional climate model inputs. Geophys Res Lett, 40: 2907–2912CrossRefGoogle Scholar
  84. Wilby R L, Wigley T M L. 1997. Downscaling general circulation model output: A review of methods and limitations. Prog Phys Geography, 21: 530–548CrossRefGoogle Scholar
  85. Wilby R L, Wigley T M L, Conway D, Jones P D, Hewitson B C, Main J, Wilks D S. 1998. Statistical downscaling of general circulation model output: A comparison of methods. Water Resour Res, 34: 2995–3008CrossRefGoogle Scholar
  86. Wu W, Lynch A H. 2000. Response of the seasonal carbon cycle in high latitudes to climate anomalies. J Geophys Res, 105: 22897–22908CrossRefGoogle Scholar
  87. Xiong Z, Yan X D. 2013. Building a high-resolution regional climate model for the Heihe River Basin and simulating precipitation over this region. Chin Sci Bull, 58: 4670–4678CrossRefGoogle Scholar
  88. Xu Y, Zhang Y, Lin E, Lin W, Dong W, Jones R, Hassell D, Wilson S. 2006. Analyses on the climate change responses over China under SRES B2 scenario using PRECIS. Chin Sci Bull, 51: 2260–2267CrossRefGoogle Scholar
  89. Xu Z F, Yang Z L. 2012. An improved dynamical downscaling method with GCM bias corrections and its validation with 30 years of climate simulations. J Clim, 25: 6271–6286CrossRefGoogle Scholar
  90. Xu Z F, Yang Z L. 2015. A new dynamical downscaling approach with GCM bias corrections and spectral nudging. J Geophys Res-Atmos, 120: 3063–3084CrossRefGoogle Scholar
  91. Xu Z F, Yang Z L. 2017. Relative impacts of increased greenhouse gas concentrations and land cover change on the surface climate in arid and semi-arid regions of China. Clim Change, 144: 491–503CrossRefGoogle Scholar
  92. Xue Y, Vasic R, Janjic Z, Mesinger F, Mitchell K E. 2007. Assessment of dynamic downscaling of the continental U.S. regional climate using the Eta/SSiB Regional Climate Model. J Clim, 20: 4172–4193Google Scholar
  93. Xue Y K, Janjic Z, Dudhia J, Vasic R, De Sales F. 2014. A review on regional dynamical downscaling in intraseasonal to seasonal simulation/prediction and major factors that affect downscaling ability. Atmos Res, 147-148: 68–85CrossRefGoogle Scholar
  94. Yang Z L. 2015. Foreword to the special issue: Regional earth system modeling. Clim Change, 129: 365–368CrossRefGoogle Scholar
  95. Yang H, Jiang Z H, Li Z X, Wang X F, Cui C G. 2017. Applicability of a quantile-quantile (Q-Q) bias-correction method for climate dynamical downscaling at Beijing Station (in Chinese). Acta Meteorol Sin, 75: 460–470Google Scholar
  96. Yao S X, Zhang Y C. 2008. Simulation of China summer precipitation with a regional air-sea coupled model (in Chinese). Acta Meteorol Sin, 66: 131–142Google Scholar
  97. Yao J C, Zhou T J, Zou L W. 2018. Dynamical downscaling of tropical cyclone and associated rainfall simulations of FGOALS-g2 (in Chinese). Chin J Atmosp Sci, 42: 150-163Google Scholar
  98. Yu M, Wang G. 2014. Impacts of bias correction of lateral boundary conditions on regional climate projections in West Africa. Clim Dyn, 42: 2521–2538CrossRefGoogle Scholar
  99. Zarzycki C M, Jablonowski C, Thatcher D R, Taylor M A. 2015. Effects of localized grid refinement on the general circulation and climatology in the Community Atmosphere Model. J Clim, 28: 2777–2803CrossRefGoogle Scholar
  100. Zeng Q C, Zhou G Q, Liao H, Lin C H, Liu H Z, Wang B Z, Xie Z H, Xu Y F, Xue F, Zeng X D, Zhang F. 2008. Research on the earth systemp dynamic model and some related numerical simulations (in Chinese). Chin J Atmosp Sci, 32: 653–690Google Scholar
  101. Zhao Z C, Luo Y. 1998. Advances in regional climate simulations over 1990s (in Chinese). Acta Meteorol Sin, 56: 225–246Google Scholar
  102. Zhao Z C, Luo Y, Huang J B. 2014. Are extreme weater and climate events affected by global warming (in Chinese)? Clim Change Res, 10: 388–390Google Scholar
  103. Zou L W, Zhou T J, Peng D D. 2016. Dynamical downscaling of historical climate over CORDEX East Asia domain: A comparison of regional ocean-atmosphere coupled model to stand-alone RCM simulations. J Geophys Res-Atmos, 121: 1442–1458CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.CAS Key Laboratory of Regional Climate-Environment for Temperate East Asia, Institute of Atmospheric PhysicsChinese Academy of SciencesBeijingChina
  2. 2.Department of Geological Sciences, Jackson School of GeosciencesThe University of Texas at AustinTexasUSA

Personalised recommendations