Advertisement

Science China Earth Sciences

, Volume 61, Issue 10, pp 1523–1532 | Cite as

Hydrologic implications of the isotopic kinetic fractionation of open-water evaporation

  • Wei Xiao
  • Yufei Qian
  • Xuhui Lee
  • Wei Wang
  • Mi Zhang
  • Xuefa Wen
  • Shoudong Liu
  • Yongbo Hu
  • Chengyu Xie
  • Zhen Zhang
  • Xuesong Zhang
  • Xiaoyan Zhao
  • Fucun Zhang
Research Paper

Abstract

The kinetic fractionation of open-water evaporation against the stable water isotope H218O is an important mechanism underlying many hydrologic studies that use 18O as an isotopic tracer. A recent in-situ measurement of the isotopic water vapor flux over a lake indicates that the kinetic effect is much weaker (kinetic factor 6.2‰) than assumed previously (kinetic factor 14.2‰) by lake isotopic budget studies. This study investigates the implications of the weak kinetic effect for studies of deuterium excess-humidity relationships, regional moisture recycling, and global evapotranspiration partitioning. The results indicate that the low kinetic factor is consistent with the deuterium excess-humidity relationships observed over open oceans. The moisture recycling rate in the Great Lakes region derived from the isotopic tracer method with the low kinetic factor is a much better agreement with those from atmospheric modeling studies than if the default kinetic factor of 14.2‰ is used. The ratio of transpiration to evapotranspiration at global scale decreases from 84±9% (with the default kinetic factor) to 76±19% (with the low kinetic factor), the latter of which is in slightly better agreement with other non-isotopic partitioning results.

Keywords

Kinetic fractionation factor Craig-Gordon model Moisture recycling Evapotranspiration partitioning Deuterium excess 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 41475141, 41830860, 41575147 & 41505005), the National Key Research and Development Program of China (Grant No. 2016YFC0500102), the U. S. National Science Foundation (Grant No. 1520684), the Science and Technology Department of Ningxia (Grant No. 2015KJHM34), the China Special Fund for Meteorological Research in the Public Interest (Major projects, Grant No. GYHY201506001-6), the NUIST Scientific Foundation (Grant No. KLME1415), the Priority Academic Program Development of Jiangsu Higher Education Institutions (Grant No. PAPD), and the Ministry of Education of the People’s Republic of China (Grant No. PCSIRT).

Supplementary material

11430_2018_9246_MOESM1_ESM.pdf (2.3 mb)
Appendix 1 Derivation of the equations for kinetic fractionation factor

References

  1. Benetti M, Reverdin G, Pierre C, Merlivat L, Risi C, Steen–Larsen H C, Vimeux F. 2014. Deuterium excess in marine water vapor: Dependency on relative humidity and surface wind speed during evaporation. J Geophys Res–Atmos, 119: 584–593Google Scholar
  2. Bowen G J, Kennedy C D, Henne P D, Zhang T. 2012. Footprint of recycled water subsidies downwind of Lake Michigan. Ecosphere, 3: art53CrossRefGoogle Scholar
  3. Bryan A M, Steiner A L, Posselt D J. 2015. Regional modeling of surface-atmosphere interactions and their impact on Great Lakes hydroclimate. J Geophys Res–Atmos, 120: 1044–1064CrossRefGoogle Scholar
  4. Cappa C D, Hendricks M B, Depaolo D J, Cohen R C. 2003. Isotopic fractionation of water during evaporation. J Geophys Res, 108: 4525CrossRefGoogle Scholar
  5. Coenders–Gerrits A M J, van der Ent R J, Bogaard T A, Wang–Erlandsson L, Hrachowitz M, Savenije H H G. 2014. Uncertainties in transpiration estimates. Nature, 506: E1–E2CrossRefGoogle Scholar
  6. Collins W J, Bellouin N, Doutriaux–Boucher M, Gedney N, Halloran P, Hinton T, Hughes J, Jones C D, Joshi M, Liddicoat S, Martin G, O’Connor F, Rae J, Senior C, Sitch S, Totterdell I, Wiltshire A, Woodward S. 2011. Development and evaluation of an Earth–System model–HadGEM2. Geosci Model Dev, 4: 1051–1075CrossRefGoogle Scholar
  7. Craig H, Gordon L I. 1965. Deuterium and oxygen 18 variations in the ocean and the marine atmosphere. Stable isotopes in oceanographic studies and paleotemperatures, 26–30 July 1965, SpoletoGoogle Scholar
  8. Dai A, Trenberth K E. 2002. Estimates of freshwater discharge from continents: Latitudinal and seasonal variations. J Hydrometeorol, 3: 660–687CrossRefGoogle Scholar
  9. Dee D P, Uppala S M, Simmons A J, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda M A, Balsamo G, Bauer P, Bechtold P, Beljaars A C M, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer A J, Haimberger L, Healy S B, Hersbach H, Hólm E V, Isaksen L, Kållberg P, Köhler M, Matricardi M, McNally A P, Monge–Sanz B M, Morcrette J J, Park B K, Peubey C, de Rosnay P, Tavolato C, Thépaut J N, Vitart F. 2011. The ERA–Interim reanalysis: Configuration and performance of the data assimilation system. Q J R Meteorol Soc, 137: 553–597CrossRefGoogle Scholar
  10. Dee S, Noone D, Buenning N, Emile–Geay J, Zhou Y. 2015. SPEEDY–IER: A fast atmospheric GCM with water isotope physics. J Geophys Res–Atmos, 120: 73–91Google Scholar
  11. Dirmeyer P A, Gao X, Zhao M, Guo Z, Oki T, Hanasaki N. 2006. GSWP–2: Multimodel analysis and implications for our perception of the land surface. Bull Amer Meteorol Soc, 87: 1381–1398CrossRefGoogle Scholar
  12. Dunne J P, John J G, Adcroft A J, Griffies S M, Hallberg R W, Shevliakova E, Stouffer R J, Cooke W, Dunne K A, Harrison M J, Krasting J P, Malyshev S L, Milly P C D, Phillipps P J, Sentman L T, Samuels B L, Spelman M J, Winton M, Wittenberg A T, Zadeh N. 2012. GFDL’s ESM2 global coupled climate–carbon earth system models. Part I: Physical formulation and baseline simulation characteristics. J Clim, 25: 6646–6665Google Scholar
  13. Dunne J P, John J G, Shevliakova E, Stouffer R J, Krasting J P, Malyshev S L, Milly P C D, Sentman L T, Adcroft A J, Cooke W, Dunne K A, Griffies S M, Hallberg R W, Harrison M J, Levy H, Wittenberg A T, Phillips P J, Zadeh N. 2013. GFDL’s ESM2 global coupled climatecarbon earth system models. Part II: Carbon system formulation and baseline simulation characteristics. J Clim, 26: 2247–2267Google Scholar
  14. Farquhar G D, Lloyd J. 1993. Carbon and oxygen isotope effects in the exchange of carbon dioxide between terrestrial plant and the atmosphere. In: Saugier B, Ehleringer J R, Hall A E, Farquhar G D, eds. Stable Isotopes and Plant Carbon–Water Relations. San Diego: Academic. 47–70Google Scholar
  15. Fatichi S, Pappas C. 2017. Constrained variability of modeled T:ET ratio across biomes. Geophys Res Lett, 44: 6795–6803CrossRefGoogle Scholar
  16. Gat J R, Bowser C J, Kendall C. 1994. The contribution of evaporation from the Great Lakes to the continental atmosphere: Estimate based on stable isotope data. Geophys Res Lett, 21: 557–560CrossRefGoogle Scholar
  17. Gat J R, Klein B, Kushnir Y, Roether W, Wernli H, Yam R, Shemesh A. 2003. Isotope composition of air moisture over the Mediterranean Sea: An index of the air–sea interaction pattern. Tellus B, 55: 953–965CrossRefGoogle Scholar
  18. Gibson J J, Birks S J, Jeffries D, Yi Y. 2017. Regional trends in evaporation loss and water yield based on stable isotope mass balance of lakes: The Ontario Precambrian Shield surveys. J Hydrol, 544: 500–510CrossRefGoogle Scholar
  19. Gibson J J, Birks S J, Yi Y. 2016. Stable isotope mass balance of lakes: A contemporary perspective. Quat Sci Rev, 131: 316–328CrossRefGoogle Scholar
  20. Gibson J J, Reid R. 2010. Stable isotope fingerprint of open–water evaporation losses and effective drainage area fluctuations in a subarctic shield watershed. J Hydrol, 381: 142–150CrossRefGoogle Scholar
  21. Giorgi F, Coppola E, Solmon F, Mariotti L, Sylla M, Bi X, Elguindi N, Diro G, Nair V, Giuliani G, Turuncoglu U, Cozzini S, Güttler I, O’Brien T, Tawfik A, Shalaby A, Zakey A, Steiner A, Stordal F, Sloan L, Brankovic C. 2012. RegCM4: Model description and preliminary tests over multiple CORDEX domains. Clim Res, 52: 7–29CrossRefGoogle Scholar
  22. Gonfiantini R. 1986. Environmental isotopes in lake studies. In: Fritz P, Fontes J C, eds. Handbook of Environmental Isotope Geochemistry. Vol 2: The Terrestrial Environment. Amsterdam: Elsevier. 113–163Google Scholar
  23. Good S P, Noone D, Bowen G. 2015. Hydrologic connectivity constrains partitioning of global terrestrial water fluxes. Science, 349: 175–177CrossRefGoogle Scholar
  24. Jasechko S, Sharp Z D, Gibson J J, Birks S J, Yi Y, Fawcett P J. 2013. Terrestrial water fluxes dominated by transpiration. Nature, 496: 347–350CrossRefGoogle Scholar
  25. Jasechko S, Gibson J J, Edwards T W D. 2014. Stable isotope mass balance of the Laurentian Great Lakes. J Great Lakes Res, 40: 336–346CrossRefGoogle Scholar
  26. Jouzel J, Koster R D. 1996. A reconsideration of the initial conditions used for stable water isotope models. J Geophys Res, 101: 22933–22938CrossRefGoogle Scholar
  27. Jouzel J, Masson–Delmotte V, Cattani O, Dreyfus G, Falourd S, Hoffmann G, Minster B, Nouet J, Barnola J M, Chappellaz J, Fischer H, Gallet J C, Johnsen S, Leuenberger M, Loulergue L, Luethi D, Oerter H, Parrenin F, Raisbeck G, Raynaud D, Schilt A, Schwander J, Selmo E, Souchez R, Spahni R, Stauffer B, Steffensen J P, Stenni B, Stocker T F, Tison J L, Werner M, Wolff E W. 2007. Orbital and millennial Antarctic climate variability over the past 800000 years. Science, 317: 793–796CrossRefGoogle Scholar
  28. Kabeya N, Kubota T, Shimizu A, Nobuhiro T, Tsuboyama Y, Chann S, Tith N. 2008. Isotopic investigation of river water mixing around the confluence of the Tonle Sap and Mekong rivers. Hydrol Process, 22: 1351–1358CrossRefGoogle Scholar
  29. Kool D, Agam N, Lazarovitch N, Heitman J L, Sauer T J, Ben–Gal A. 2014. A review of approaches for evapotranspiration partitioning. Agric For Meteorol, 184: 56–70CrossRefGoogle Scholar
  30. Lawrence D M, Thornton P E, Oleson K W, Bonan G B. 2007. The partitioning of evapotranspiration into transpiration, soil evaporation, and canopy evaporation in a GCM: Impacts on land–atmosphere interaction. J Hydrometeorol, 8: 862–880CrossRefGoogle Scholar
  31. Lawrence D M, Oleson K W, Flanner M G, Thornton P E, Swenson S C, Lawrence P J, Zeng X, Yang Z L, Levis S, Sakaguchi K, Bonan G B, Slater A G. 2011. Parameterization improvements and functional and structural advances in version 4 of the community land model. J Adv Model Earth Syst, 3: M03001Google Scholar
  32. Lee X, Griffis T J, Baker J M, Billmark K A, Kim K, Welp L R. 2009. Canopy–scale kinetic fractionation of atmospheric carbon dioxide and water vapor isotopes. Glob Biogeochem Cycle, 23: GB1002CrossRefGoogle Scholar
  33. Machavaram M V, Krishnamurthy R V. 1995. Earth surface evaporative process: A case study from the Great Lakes region of the United States based on deuterium excess in precipitation. Geochim Cosmochim Acta, 59: 4279–4283CrossRefGoogle Scholar
  34. Majoube M. 1971. Fractionnement en oxygène 18 et en deutérium entre l’eau et sa vapeur. J Chim Phys, 68: 1423–1436CrossRefGoogle Scholar
  35. Martin G M, Bellouin N, Collins W J, Culverwell I D, Halloran P R, Hardiman S C, Hinton T J, Jones C D, McDonald R E, McLaren A J, O′ Connor F M, Roberts M J, Rodriguez J M, Woodward S, Best M J, Brooks M E, Brown A R, Butchart N, Dearden C, Derbyshire S H, Dharssi I, Doutriaux–Boucher M, Edwards J M, Falloon P D, Gedney N, Gray L J, Hewitt H T, Hobson M, Huddleston M R, Hughes J, Ineson S, Ingram W J, James P M, Johns T C, Johnson C E, Jones A, Jones C P, Joshi M M, Keen A B, Liddicoat S, Lock A P, Maidens A V, Manners J C, Milton S F, Rae J G L, Ridley J K, Sellar A, Senior C A, Totterdell I J, Verhoef A, Vidale P L, Wiltshire A. 2011. The HadGEM2 family of met office unified model climate configurations. Geosci Model Dev, 4: 723–757CrossRefGoogle Scholar
  36. Maxwell R M, Condon L E. 2016. Connections between groundwater flow and transpiration partitioning. Science, 353: 377–380CrossRefGoogle Scholar
  37. Merlivat L. 1978. Molecular diffusivities of H2 16O, HD16O, and H2 18O in gases. J Chem Phys, 69: 2864–2871CrossRefGoogle Scholar
  38. Merlivat L, Jouzel J. 1979. Global climatic interpretation of the deuteriumoxygen 18 relationship for precipitation. J Geophys Res, 84: 5029–5033CrossRefGoogle Scholar
  39. Mesinger F, DiMego G, Kalnay E, Mitchell K, Shafran P C, Ebisuzaki W, Jović D, Woollen J, Rogers E, Berbery E H, Ek M B, Fan Y, Grumbine R, Higgins W, Li H, Lin Y, Manikin G, Parrish D, Shi W. 2006. North American regional reanalysis. Bull Amer Meteorol Soc, 87: 343–360CrossRefGoogle Scholar
  40. Miralles D G, de Jeu R A M, Gash J H, Holmes T R H, Dolman A J. 2011. Magnitude and variability of land evaporation and its components at the global scale. Hydrol Earth Syst Sci, 15: 967–981CrossRefGoogle Scholar
  41. Miralles D G, Gash J H, Holmes T R H, de Jeu R A M, Dolman A J. 2010. Global canopy interception from satellite observations. J Geophys Res, 115: D16122CrossRefGoogle Scholar
  42. Miralles D G, Jiménez C, Jung M, Michel D, Ershadi A, McCabe M F, Hirschi M, Martens B, Dolman A J, Fisher J B, Mu Q, Seneviratne S I, Wood E F, Fernández–Prieto D. 2016. The WACMOS–ET project—Part 2: Evaluation of global terrestrial evaporation data sets. Hydrol Earth Syst Sci, 20: 823–842CrossRefGoogle Scholar
  43. New M, Lister D, Hulme M, Makin I. 2002. A high–resolution data set of surface climate over global land areas. Clim Res, 21: 1–25CrossRefGoogle Scholar
  44. Pfahl S, Wernli H. 2008. Air parcel trajectory analysis of stable isotopes in water vapor in the eastern Mediterranean. J Geophys Res, 113: D20104CrossRefGoogle Scholar
  45. Risi C, Bony S, Vimeux F, Jouzel J. 2010. Water–stable isotopes in the LMDZ4 general circulation model: Model evaluation for present–day and past climates and applications to climatic interpretations of tropical isotopic records. J Geophys Res, 115: D12118CrossRefGoogle Scholar
  46. Rozanski K, Araguas–Araguas L, Gonfiantini R. 1993. Isotopic patterns in modern global precipitation. In: Swart P K, Lohmann K C, McKenzie J, Savin S, eds. Climate Change in Continental Isotopic Records. American Geophysical Union. 36Google Scholar
  47. Schlaepfer D R, Ewers B E, Shuman B N, Williams D G, Frank J M, Massman W J, Lauenroth W K. 2014. Terrestrial water fluxes dominated by transpiration: Comment. Ecosphere, 5: 1–9CrossRefGoogle Scholar
  48. Schlesinger W H, Jasechko S. 2014. Transpiration in the global water cycle. Agric For Meteorol, 189–190: 115–117Google Scholar
  49. Skrzypek G, Mydłowski A, Dogramaci S, Hedley P, Gibson J J, Grierson P F. 2015. Estimation of evaporative loss based on the stable isotope composition of water using hydrocalculator. J Hydrol, 523: 781–789CrossRefGoogle Scholar
  50. Steen–Larsen H C, Sveinbjörnsdottir A E, Jonsson T, Ritter F, Bonne J L, Masson–Delmotte V, Sodemann H, Blunier T, Dahl–Jensen D, Vinther B M. 2015. Moisture sources and synoptic to seasonal variability of North Atlantic water vapor isotopic composition. J Geophys Res–Atmos, 120: 5757–5774Google Scholar
  51. Steen–Larsen H C, Sveinbjörnsdottir A E, Peters A J, Masson–Delmotte V, Guishard M P, Hsiao G, Jouzel J, Noone D, Warren J K, White J W C. 2014. Climatic controls on water vapor deuterium excess in the marine boundary layer of the North Atlantic based on 500 days of in situ, continuous measurements. Atmos Chem Phys, 14: 7741–7756CrossRefGoogle Scholar
  52. Steffensen J P, Andersen K K, Bigler M, Clausen H B, Dahl–Jensen D, Fischer H, Goto–Azuma K, Hansson M, Johnsen S J, Jouzel J, Masson–Delmotte V, Popp T, Rasmussen S O, Röthlisberger R, Ruth U, Stauffer B, Siggaard–Andersen M L, Sveinbjörnsdóttir A E, Svensson A, White J W C. 2008. High–resolution Greenland ice core data show abrupt climate change happens in few years. Science, 321: 680–684CrossRefGoogle Scholar
  53. Uemura R, Matsui Y, Yoshimura K, Motoyama H, Yoshida N. 2008. Evidence of deuterium excess in water vapor as an indicator of ocean surface conditions. J Geophys Res, 113: D19114CrossRefGoogle Scholar
  54. Wang L X, Good S P, Caylor K K. 2014. Global synthesis of vegetation control on evapotranspiration partitioning. Geophys Res Lett, 41: 6753–6757CrossRefGoogle Scholar
  55. Wang K, Dickinson R E. 2012. A review of global terrestrial evapotranspiration: Observation, modeling, climatology, and climatic variability. Rev Geophys, 50: RG2005CrossRefGoogle Scholar
  56. Wang–Erlandsson L, van der Ent R J, Gordon L J, Savenije H H G. 2014. Contrasting roles of interception and transpiration in the hydrological cycle—Part 1: Temporal characteristics over land. Earth Syst Dynam, 5: 441–469CrossRefGoogle Scholar
  57. Wassenaar L I, Athanasopoulos P, Hendry M J. 2011. Isotope hydrology of precipitation, surface and ground waters in the Okanagan Valley, British Columbia, Canada. J Hydrol, 411: 37–48CrossRefGoogle Scholar
  58. Wei Z, Yoshimura K, Wang L, Miralles D G, Jasechko S, Lee X. 2017. Revisiting the contribution of transpiration to global terrestrial evapotranspiration. Geophys Res Lett, 44: 2792–2801CrossRefGoogle Scholar
  59. Werner M, Haese B, Xu X, Zhang X, Butzin M, Lohmann G. 2016. Glacial–interglacial changes in H2 18O, HDO and deuterium excess—Results from the fully coupled ECHAM5/MPI–OM Earth system model. Geosci Model Dev, 9: 647–670CrossRefGoogle Scholar
  60. Werner M, Langebroek P M, Carlsen T, Herold M, Lohmann G. 2011. Stable water isotopes in the ECHAM5 general circulation model: Toward high–resolution isotope modeling on a global scale. J Geophys Res, 116: D15109CrossRefGoogle Scholar
  61. Xiao W, Lee X, Hu Y, Liu S, Wang W, Wen X, Werner M, Xie C. 2017. An experimental investigation of kinetic fractionation of open–water evaporation over a large lake. J Geophys Res–Atmos, 122: 11651–11663Google Scholar
  62. Yoshimura K, Miyazaki S, Kanae S, Oki T. 2006. Iso–MATSIRO, a land surface model that incorporates stable water isotopes. Glob Planet Change, 51: 90–107CrossRefGoogle Scholar
  63. Yi Y, Brock B E, Falcone M D, Wolfe B B, Edwards T W D. 2008. A coupled isotope tracer method to characterize input water to lakes. J Hydrol, 350: 1–13CrossRefGoogle Scholar
  64. Zhang Y, Peña–Arancibia J L, McVicar T R, Chiew F H S, Vaze J, Liu C, Lu X, Zheng H, Wang Y, Liu Y Y, Miralles D G, Pan M. 2016. Multidecadal trends in global terrestrial evapotranspiration and its components. Sci Rep, 6: 19124CrossRefGoogle Scholar
  65. Zhou S, Yu B, Zhang Y, Huang Y, Wang G. 2016. Partitioning evapotranspiration based on the concept of underlying water use efficiency. Water Resour Res, 52: 1160–1175CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Wei Xiao
    • 1
  • Yufei Qian
    • 1
  • Xuhui Lee
    • 2
  • Wei Wang
    • 3
  • Mi Zhang
    • 1
  • Xuefa Wen
    • 4
  • Shoudong Liu
    • 1
  • Yongbo Hu
    • 1
  • Chengyu Xie
    • 1
  • Zhen Zhang
    • 1
  • Xuesong Zhang
    • 1
  • Xiaoyan Zhao
    • 1
  • Fucun Zhang
    • 3
  1. 1.Yale-NUIST Center on Atmospheric Environment & Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET)Nanjing University of Information Science & TechnologyNanjingChina
  2. 2.School of Forestry and Environmental StudiesYale UniversityNew HavenUSA
  3. 3.Jiangsu Key Laboratory of Agricultural MeteorologyNanjing University of Information Science & TechnologyNanjingChina
  4. 4.Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources ResearchChinese Academy of SciencesBeijingChina

Personalised recommendations