Science China Earth Sciences

, Volume 61, Issue 12, pp 1697–1713 | Cite as

Methane biotransformation in the ocean and its effects on climate change: A review

  • Mingyang Niu
  • Wenyue Liang
  • Fengping WangEmail author


Methane is a potent greenhouse gas. Continental margins contain large reservoirs of methane as solid gas hydrate and the dissolved and gaseous forms of methane. Submarine methane seeps along the global continental margins, including the coastal seas, have been estimated to contribute 0.01 to 0.05 Gt of carbon to the atmosphere annually, accounting for between 1% and 5% of the global methane emissions to the atmosphere. Much of this methane is exhausted via microbial anaerobic methane oxidation. Methane biotransformation in the ocean has effects on global climate change. This review mainly introduces the mechanisms of methanogenesis and methane oxidation and describes new findings that will provide information that will improve the understanding of the balance in terms of the generation, migration and consumption of methane in marine environments. Moreover, this review provides new insights into methane biogeochemical cycles and the effects of marine methane budgets on global climate.


Methane production Methane oxidization Marine Sediment Climate 



The authors would like to thank Dr. Guangchao Zhuang from Georgia University, Dr. Yinzhao Wang, Lei Xu and Lewen Liang from Shanghai Jiao Tong University for providing several helpful comments and suggestions. This work was supported by the State Key R & D Project of China (Grant No. 2016YFA0601102) and the National Natural Science Foundation of China (Grant Nos. 41525011, 91228201 & 91428308) and the National Special Project on Gas Hydrate of China (Grant Nos. GZH201100311 & DD20160217). This study is also a contribution to the international IMBER project.


  1. Baror I, Elvert M, Eckert W, Kushmaro A, Vigderovich H, Zhu Q, Ben- Dov E, Sivan O. 2017. Iron-coupled anaerobic oxidation of methane performed by a mixed bacterial-archaeal community based on poorly reactive minerals. Environ Sci Technol, 51: 12293–12301Google Scholar
  2. Beal E J, House C H, Orphan V J. 2009. Manganese- and iron-dependent marine methane oxidation. Science, 325: 184–187Google Scholar
  3. Blake L I, Tveit A, Øvreås L, Head I M, Gray N D. 2015. Response of methanogens in arctic sediments to temperature and methanogenic substrate availability. PLoS One, 10: e0129733Google Scholar
  4. Boetius A, Ravenschlag K, Schubert C J, Rickert D, Widdel F, Gieseke A, Amann R, Jørgensen B B, Witte U, Pfannkuche O. 2000. A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature, 407: 623–626Google Scholar
  5. Boetius A, Wenzhöfer F. 2013. Seafloor oxygen consumption fuelled by methane from cold seeps. Nat Geosci, 6: 725–734Google Scholar
  6. Bratina B J, Brusseau G A, Hanson R S. 1992. Use of 16S rRNA analysis to investigate phylogeny of methylotrophic bacteria. Int J Syst Bacteriol, 42: 645–648Google Scholar
  7. Buffett B, Archer D. 2004. Global inventory of methane clathrate: Sensitivity to changes in the deep ocean. Earth Planet Sci Lett, 227: 185–199Google Scholar
  8. Burdige D J. 2007. Preservation of organic matter in marine sediments: Controls, mechanisms, and an imbalance in sediment organic carbon budgets? Chem Rev, 107: 467–485Google Scholar
  9. Caldwell S L, Laidler J R, Brewer E A, Eberly J O, Sandborgh S C, Colwell F S. 2008. Anaerobic oxidation of methane: Mechanisms, bioenergetics, and the ecology of associated microorganisms. Environ Sci Technol, 42: 6791–6799Google Scholar
  10. Chen J, Jiang X W, Gu J D. 2015. Existence of novel phylotypes of nitritedependent anaerobic methane-oxidizing bacteria in surface and subsurface sediments of the South China Sea. Geomicrobiol J, 32: 1–10Google Scholar
  11. Chen Y, Feng X, He Y, Wang F. 2016. Genome analysis of a Limnobacter sp. identified in an anaerobic methane-consuming cell consortium. Front Mar Sci, 3: 257Google Scholar
  12. Chen Y, Li Y L, Zhou G T, Li H, Lin Y T, Xiao X, Wang F P. 2015. Biomineralization mediated by anaerobic methane-consuming cell consortia. Sci Rep, 4: 5696Google Scholar
  13. Childress J J, Fisher C R, Brooks J M, Kennicutt M C, Bidigare R, Anderson A E. 1986. A methanotrophic marine molluscan (bivalvia, mytilidae) symbiosis: Mussels fueled by gas. Science, 233: 1306–1308Google Scholar
  14. Cicerone R J, Oremland R S. 1988. Biogeochemical aspects of atmospheric methane. Glob Biogeochem Cycle, 2: 299–327Google Scholar
  15. Conrad R. 2009. The global methane cycle: Recent advances in understanding the microbial processes involved. Environ Microbiol Rep, 1: 285–292Google Scholar
  16. D’Hondt S, Rutherford S, Spivack A J. 2002. Metabolic activity of subsurface life in deep-sea sediments. Science, 295: 2067–2070Google Scholar
  17. Dalton H. 1992. Methane oxidation by methanotrophs. In: Murrell J C, Dalton H, eds. Methane and Methanol Utilizers. Biotechnology Handbooks, vol 5. Boston: Springer. 85–114Google Scholar
  18. Deutzmann J S, Stief P, Brandes J, Schink B. 2014. Anaerobic methane oxidation coupled to denitrification is the dominant methane sink in a deep lake. Proc Natl Acad Sci USA, 111: 18273–18278Google Scholar
  19. Dickens G R. 2003. Rethinking the global carbon cycle with a large, dynamic and microbially mediated gas hydrate capacitor. Earth Planet Sci Lett, 213: 169–183Google Scholar
  20. Divins D L. 2003. Total Sediment Thickness of the World’s Oceans & Marginal Seas. NOAA National Geophysical Data Center, BoulderGoogle Scholar
  21. Egert M, Wagner B, Lemke T, Brune A, Friedrich M W. 2003. Microbial community structure in midgut and hindgut of the humus-feeding larva of Pachnoda ephippiata (Coleoptera: Scarabaeidae). Appl Environ Microbiol, 69: 6659–6668Google Scholar
  22. Enzmann F, Mayer F, Rother M, Holtmann D. 2018. Methanogens: Biochemical background and biotechnological applications. AMB Expr, 8: 1, Google Scholar
  23. Ettwig K F, Butler M K, Le Paslier D, Pelletier E, Mangenot S, Kuypers M M M, Schreiber F, Dutilh B E, Zedelius J, de Beer D, Gloerich J, Wessels H J C T, van Alen T, Luesken F, Wu M L, van de Pas-Schoonen K T, Op den Camp H J M, Janssen-Megens E M, Francoijs K J, Stunnenberg H, Weissenbach J, Jetten M S M, Strous M. 2010. Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature, 464: 543–548Google Scholar
  24. Ettwig K F, Shima S, van de Pas-Schoonen K T, Kahnt J, Medema M H, Op den Camp H J M, Jetten M S M, Strous M. 2008. Denitrifying bacteria anaerobically oxidize methane in the absence of Archaea. Environ Microbiol, 10: 3164–3173Google Scholar
  25. Ettwig K F, van Alen T, van de Pas-Schoonen K T, Jetten M S M, Strous M. 2009. Enrichment and molecular detection of denitrifying methanotrophic bacteria of the NC10 phylum. Appl Environ Microbiol, 75: 3656–3662Google Scholar
  26. Ettwig K F, Zhu B, Speth D, Keltjens J T, Jetten M S M, Kartal B. 2016. Archaea catalyze iron-dependent anaerobic oxidation of methane. Proc Natl Acad Sci USA, 113: 12792–12796Google Scholar
  27. Evans P N, Parks D H, Chadwick G L, Robbins S J, Orphan V J, Golding S D, Tyson G W. 2015. Methane metabolism in the archaeal phylum Bathyarchaeota revealed by genome-centric metagenomics. Science, 350: 434–438Google Scholar
  28. Feng D, Chen D, Roberts H H. 2009. Petrographic and geochemical characterization of seep carbonate from Bush Hill (GC 185) gas vent and hydrate site of the Gulf of Mexico. Mar Pet Geol, 26: 1190–1198Google Scholar
  29. Ferry J G. 2010. The chemical biology of methanogenesis. Planet Space Sci, 58: 1775–1783Google Scholar
  30. Ferry J G, Lessner D J. 2008. Methanogenesis in marine sediments. Ann New York Acad Sci, 1125: 147–157Google Scholar
  31. Fischer R, Thauer R K. 1990. Ferredoxin-dependent methane formation from acetate in cell extracts of Methanosarcina barkeri (strain MS). FEBS Lett, 269: 368–372Google Scholar
  32. Fisher C R, Brooks J M, Vodenichar J S, Zande J M, Childress J J, Jr. R A B. 1993. The co-occurrence of methanotrophic and chemoautotrophic sulfur-oxidizing bacterial symbionts in a deep-sea mussel. Mar Ecol, 14: 277–289Google Scholar
  33. Claypool G E, Kvenvolden K A. 1983. Methane and other hydrocarbon gases in marine sediment. Annu Rev Earth Planet Sci, 11: 299–327Google Scholar
  34. Giovannelli D, d’Errico G, Fiorentino F, Fattorini D, Regoli F, Angeletti L, Bakran-Petricioli T, Vetriani C, Yücel M, Taviani M, Manini E. 2016. Diversity and distribution of prokaryotes within a shallow-water pockmark field. Front Microbiol, 7: 941Google Scholar
  35. Gong W, Hao B, Wei Z, Ferguson Jr. D J, Tallant T, Krzycki J A, Chan M K. 2008. Structure of the a2e2 Ni-dependent CO dehydrogenase component of the Methanosarcina barkeri acetyl-CoA decarbonylase/synthase complex. Proc Natl Acad Sci USA, 105: 9558–9563Google Scholar
  36. Graham D W, Chaudhary J A, Hanson R S, Arnold R G. 1993. Factors affecting competition between type I and type II methanotrophs in twoorganism, continuous-flow reactors. Microb Ecol, 25: 1–27Google Scholar
  37. Green P N. 1992. Taxonomy of methylotrophic bacteria. Methane and methanol utilizers. Boston: Springer. 23–84Google Scholar
  38. Groβkopf R, Stubner S, Liesack W. 1998. Novel euryarchaeotal lineages detected on rice roots and in the anoxic bulk soil of flooded rice microcosms. Appl Environ Microb, 64: 4983–4989Google Scholar
  39. Hallam S J, Putnam N, Preston C M, Detter J C, Rokhsar D, Richardson P M, DeLong E F. 2004. Reverse methanogenesis: Testing the hypothesis with environmental genomics. Science, 305: 1457–1462Google Scholar
  40. Hanson R S, Hanson T E. 1996. Methanotrophic bacteria. Microbiol Rev, 60: 439–471Google Scholar
  41. Haroon M F, Hu S, Shi Y, Imelfort M, Keller J, Hugenholtz P, Yuan Z, Tyson G W. 2013. Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage. Nature, 500: 567–570Google Scholar
  42. He X, Sun L, Xie Z, Huang W, Long N, Li Z, Xing G. 2013. Sea ice in the Arctic Ocean: Role of shielding and consumption of methane. Atmos Environ, 67: 8–13Google Scholar
  43. He Y, Li M, Perumal V, Feng X, Fang J, Xie J, Sievert S M, Wang F. 2016. Genomic and enzymatic evidence for acetogenesis among multiple lineages of the archaeal phylum Bathyarchaeota widespread in marine sediments. Nat Microbiol, 1: 16035Google Scholar
  44. Hinrichs K U, Hayes J M, Sylva S P, Brewer P G, DeLong E F. 1999. Methane-consuming archaebacteria in marine sediments. Nature, 398: 802–805Google Scholar
  45. Hoehler T M, Alperin M J, Albert D B, Martens C S. 1994. Field and laboratory studies of methane oxidation in an anoxic marine sediment: Evidence for a methanogen-sulfate reducer consortium. Glob Biogeochem Cycle, 8: 451–463Google Scholar
  46. Huang L N, Chen Y Q, Zhou H, Luo S, Lan C Y, Qu L H. 2003. Characterization of methanogenic Archaea in the leachate of a closed municipal solid waste landfill. FEMS Microbiol Ecol, 46: 171–177Google Scholar
  47. Inagaki F, Nunoura T, Nakagawa S, Teske A, Lever M, Lauer A, Suzuki M, Takai K, Delwiche M, Colwell F S, Nealson K H, Horikoshi K, D’Hondt S, Jørgensen B B. 2006. Biogeographical distribution and diversity of microbes in methane hydrate-bearing deep marine sediments on the Pacific Ocean Margin. Proc Natl Acad Sci USA, 103: 2815–2820Google Scholar
  48. Itävaara M, Salavirta H, Marjamaa K, Ruskeeniemi T. 2016. Chapter onegeomicrobiology and metagenomics of terrestrial deep subsurface microbiomes. Adv Appl Microbiol, 94: 1–77, doi: 10.1016/bs. aambs.2015.12.001Google Scholar
  49. James R H, Bousquet P, Bussmann I, Haeckel M, Kipfer R, Leifer I, Niemann H, Ostrovsky I, Piskozub J, Rehder G, Treude T, Vielstädte L, Greinert J. 2016. Effects of climate change on methane emissions from seafloor sediments in the Arctic Ocean: A review. Limnol Oceanogr, 61: S283–S299Google Scholar
  50. Kallmeyer J, Pockalny R, Ram Adhikari R, Smith D C, D’Hondt S. 2012. Global distribution of microbial abundance and biomass in subseafloor sediment. Proc Natl Acad Sci USA, 109: 16213–16216Google Scholar
  51. Kitidis V, Upstill-Goddard R C, Anderson L G. 2010. Methane and nitrous oxide in surface water along the North-West Passage, Arctic Ocean. Mar Chem, 121: 80–86Google Scholar
  52. Knief C. 2015. Diversity and habitat preferences of cultivated and uncultivated aerobic methanotrophic bacteria evaluated based on pmoA as molecular marker. Front Microbiol, 6: 1346Google Scholar
  53. Knittel K, Boetius A. 2009. Anaerobic oxidation of methane: Progress with an unknown process. Annu Rev Microbiol, 63: 311–334Google Scholar
  54. Knittel K, Lösekann T, Boetius A, Kort R, Amann R. 2005. Diversity and distribution of methanotrophic archaea at cold seeps. Appl Environ Microbiol, 71: 467–479Google Scholar
  55. Lang K. 2014. Diversity, ultrastructure, and comparative genomics of “Methanoplasmatales”, the seventh order of methanogens. Doctoral Dissertation. Marburg: Universität MarburgGoogle Scholar
  56. Lee H S, Lee J C, Lee I K, Moon H B, Chang Y S, Jacobs D R, Lee D H. 2011. Associations among organochlorine pesticides, methanobacteriales, and obesity in Korean women. PLoS One, 6: e27773Google Scholar
  57. Lesniewski R A, Jain S, Anantharaman K, Schloss P D, Dick G J. 2012. The metatranscriptome of a deep-sea hydrothermal plume is dominated by water column methanotrophs and lithotrophs. ISME J, 6: 2257–2268Google Scholar
  58. Lessner D J. 2001. Methanogenesis Biochemistry. Hoboken: John Wiley & SonsGoogle Scholar
  59. Lever M A. 2012. Acetogenesis in the energy-starved deep biosphere—A paradox? Front Microbiol, 2: 284Google Scholar
  60. Lipscomb J D. 1994. Biochemistry of the soluble methane monooxygenase. Annu Rev Microbiol, 48: 371–399Google Scholar
  61. Liu Y, Whitman W B. 2008. Metabolic, phylogenetic, and ecological diversity of the methanogenic archaea. Ann New York Acad Sci, 1125: 171–189Google Scholar
  62. Lloyd K G, Schreiber L, Petersen D G, Kjeldsen K U, Lever M A, Steen A D, Stepanauskas R, Richter M, Kleindienst S, Lenk S, Schramm A, Jørgensen B B. 2013. Predominant archaea in marine sediments degrade detrital proteins. Nature, 496: 215–218Google Scholar
  63. Lösekann T, Knittel K, Nadalig T, Fuchs B, Niemann H, Boetius A, Amann R. 2007. Diversity and abundance of aerobic and anaerobic methane oxidizers at the Haakon Mosby Mud Volcano, Barents Sea. Appl Environ MicroBiol, 73: 3348–3362Google Scholar
  64. Lyu Z, Lu Y. 2015. Comparative genomics of three Methanocellales strains reveal novel taxonomic and metabolic features. Environ Microbiol Rep, 7: 526–537Google Scholar
  65. Maupin-Furlow J, Ferry J G. 1996. Characterization of the cdhD and cdhE genes encoding subunits of the corrinoid/iron-sulfur enzyme of the CO dehydrogenase complex from Methanosarcina thermophila. J Bacteriol, 178: 340–346Google Scholar
  66. McCalley C K, Woodcroft B J, Hodgkins S B, Wehr R A, Kim E H, Mondav R, Crill P M, Chanton J P, Rich V I, Tyson G W, Saleska S R. 2014. Methane dynamics regulated by microbial community response to permafrost thaw. Nature, 514: 478–481Google Scholar
  67. McGlynn S E, Chadwick G L, Kempes C P, Orphan V J. 2015. Single cell activity reveals direct electron transfer in methanotrophic consortia. Nature, 526: 531–535Google Scholar
  68. McInerney M J, Struchtemeyer C G, Sieber J, Mouttaki H, Stams A J M, Schink B, Rohlin L, Gunsalus R P. 2008. Physiology, ecology, phylogeny, and genomics of microorganisms capable of syntrophic metabolism. Ann New York Acad Sci, 1125: 58–72Google Scholar
  69. Meng J, Xu J, Qin D, He Y, Xiao X, Wang F. 2014. Genetic and functional properties of uncultivated MCG archaea assessed by metagenome and gene expression analyses. ISME J, 8: 650–659Google Scholar
  70. Meulepas R J W, Jagersma C G, Khadem A F, Stams A J M, Lens P N L. 2010. Effect of methanogenic substrates on anaerobic oxidation of methane and sulfate reduction by an anaerobic methanotrophic enrichment. Appl Microbiol Biotechnol, 87: 1499–1506Google Scholar
  71. Meyerdierks A, Kube M, Kostadinov I, Teeling H, Glöckner F O, Reinhardt R, Amann R. 2010. Metagenome and mRNA expression analyses of anaerobic methanotrophic archaea of the ANME-1 group. Environ Microbiol, 12: 422–439Google Scholar
  72. Milkov A V. 2004. Global estimates of hydrate-bound gas in marine sediments: How much is really out there? Earth-Sci Rev, 66: 183–197Google Scholar
  73. Milucka J, Ferdelman T G, Polerecky L, Franzke D, Wegener G, Schmid M, Lieberwirth I, Wagner M, Widdel F, Kuypers M M M. 2012. Zerovalent sulphur is a key intermediate in marine methane oxidation. Nature, 491: 541–546Google Scholar
  74. Mitterer R M. 2010. Methanogenesis and sulfate reduction in marine sediments: A new model. Earth Planet Sci Lett, 295: 358–366Google Scholar
  75. Moran J J, Beal E J, Vrentas J M, Orphan V J, Freeman K H, House C H. 2008. Methyl sulfides as intermediates in the anaerobic oxidation of methane. Environ Microbiol, 10: 162–173Google Scholar
  76. Murrell J C. 1994. Molecular genetics of methane oxidation. Biodegradation, 5: 145–159Google Scholar
  77. Muyzer G, Stams A J M. 2008. The ecology and biotechnology of sulphatereducing bacteria. Nat Rev Microbiol, 6: 441–454Google Scholar
  78. Na H, Lever M A, Kjeldsen K U, Schulz F, Jørgensen B B. 2015. Uncultured Desulfobacteraceae and Crenarchaeotal group C3 incorporate 13C-acetate in coastal marine sediment. Environ Microbiol Rep, 7: 614–622Google Scholar
  79. Nakagawa S, Takai K. 2006. 3 the isolation of thermophiles from deep-sea hydrothermal environments. Method Microbiol, 35: 55–91Google Scholar
  80. Nickel J C, di Primio R, Mangelsdorf K, Stoddart D, Kallmeyer J. 2012. Characterization of microbial activity in pockmark fields of the SWBarents Sea. Mar Geol, 332-334: 152–162Google Scholar
  81. Niemann H, Lösekann T, de Beer D, Elvert M, Nadalig T, Knittel K, Amann R, Sauter E J, Schlüter M, Klages M, Foucher J P, Boetius A. 2006. Novel microbial communities of the Haakon Mosby mud volcano and their role as a methane sink. Nature, 443: 854–858Google Scholar
  82. Niu M, Fan X, Zhuang G, Liang Q, Wang F. 2017. Methane metabolizing microbial communities in the sediment of Haima cold seep area, northwest slope of South China Sea. Fems Microbiol Ecol, 93: fix101Google Scholar
  83. Ojima D S, Valentine D W, Mosier A R, Parton W J, Schimel D S. 1993. Effect of land use change on methane oxidation in temperate forest and grassland soils. Chemosphere, 26: 675–685Google Scholar
  84. Orcutt B N, Sylvan J B, Knab N J, Edwards K J. 2011. Microbial ecology of the dark ocean above, at, and below the seafloor. Microbiol Mol Biol Rev, 75: 361–422Google Scholar
  85. Ozuolmez D, Na H, Lever M A, Kjeldsen K U, Jørgensen B B, Plugge C M. 2015. Methanogenic archaea and sulfate reducing bacteria co-cultured on acetate: Teamwork or coexistence? Front Microbiol, 6: 492Google Scholar
  86. Padilla C C, Bristow L A, Sarode N, Garcia-Robledo E, Gómez Ramírez E, Benson C R, Bourbonnais A, Altabet M A, Girguis P R, Thamdrup B, Stewart F J. 2016. NC10 bacteria in marine oxygen minimum zones. ISME J, 10: 2067–2071Google Scholar
  87. Paul K, Nonoh J O, Mikulski L, Brune A. 2012. “Methanoplasmatales,” thermoplasmatales-related archaea in termite guts and other environments, are the seventh order of methanogens. Appl Environ Microbiol, 78: 8245–8253Google Scholar
  88. Pernthaler A, Dekas A E, Titus Brown C, Goffredi S K, Embaye T, Orphan V J. 2008. Diverse syntrophic partnerships from deep-sea methane vents revealed by direct cell capture and metagenomics. Proc Natl Acad Sci USA, 105: 7052–7057Google Scholar
  89. Piñero E, Marquardt M, Hensen C, Haeckel M, Wallmann K. 2013. Estimation of the global inventory of methane hydrates in marine sediments using transfer functions. Biogeosciences, 10: 959–975Google Scholar
  90. Poulsen M, Schwab C, Borg Jensen B, Engberg R M, Spang A, Canibe N, Højberg O, Milinovich G, Fragner L, Schleper C, Weckwerth W, Lund P, Schramm A, Urich T. 2013. Methylotrophic methanogenic Thermoplasmata implicated in reduced methane emissions from bovine rumen. Nat Commun, 4: 1428Google Scholar
  91. Raghoebarsing A A, Pol A, van de Pas-Schoonen K T, Smolders A J P, Ettwig K F, Rijpstra W I C, Schouten S, Damsté J S S, Op den Camp H J M, Jetten M S M, Strous M. 2006. A microbial consortium couples anaerobic methane oxidation to denitrification. Nature, 440: 918–921Google Scholar
  92. Reeburgh W S. 2007. Oceanic methane biogeochemistry. Chem Rev, 107: 486–513Google Scholar
  93. Reitner J, Peckmann J, Blumenberg M, Michaelis W, Reimer A, Thiel V. 2005. Concretionary methane-seep carbonates and associated microbial communities in Black Sea sediments. Palaeogeogr Palaeoclimatol Palaeoecol, 227: 18–30Google Scholar
  94. Römer M, Sahling H, Pape T, Bohrmann G, Spieβ V. 2012. Quantification of gas bubble emissions from submarine hydrocarbon seeps at the Makran continental margin (offshore Pakistan). J GEOPHYS RESOCEANS, 117(C10)Google Scholar
  95. Roussel E G, Bonavita M A C, Querellou J, Cragg B A, Webster G, Prieur D, Parkes R J. 2008. Extending the sub-sea-floor biosphere. Science, 320: 1046Google Scholar
  96. Rudels B, Larsson A M, Sehlstedt P I. 1991. Stratification and water mass formation in the Arctic Ocean: Some implications for the nutrient distribution. Polar Res, 10: 19–32Google Scholar
  97. Ruff S E, Biddle J F, Teske A P, Knittel K, Boetius A, Ramette A. 2015. Global dispersion and local diversification of the methane seep microbiome. Proc Natl Acad Sci USA, 112: 4015–4020Google Scholar
  98. Scheller S, Goenrich M, Boecher R, Thauer R K, Jaun B. 2010. The key nickel enzyme of methanogenesis catalyses the anaerobic oxidation of methane. Nature, 465: 606–608Google Scholar
  99. Schrenk M O, Huber J A, Edwards K J. 2010. Microbial provinces in the subseafloor. Annu Rev Mar Sci, 2: 279–304Google Scholar
  100. Schubert C J, Coolen M J L, Neretin L N, Schippers A, Abbas B, Durisch- Kaiser E, Wehrli B, Hopmans E C, Damsté J S S, Wakeham S, Kuypers M M M. 2006. Aerobic and anaerobic methanotrophs in the Black Sea water column. Environ Microbiol, 8: 1844–1856Google Scholar
  101. Semiletov I, Savelieva N, Weller G, Pipko I, Pugach S, Gukov A Y, Vasilevskaya L. 2000. The dispersion of Siberian river flows into coastal waters: Meteorological, hydrological and hydrochemical aspects. In: Lewis E L, Jones E P, Lemke P, Prowse T D, Wadhams P, eds. The Freshwater Budget of the Arctic Ocean. Dordrecht: Springer. 323–366Google Scholar
  102. Shakhova N, Semiletov I, Salyuk A, Yusupov V, Kosmach D, Gustafsson O. 2010. Extensive methane venting to the atmosphere from sediments of the East Siberian Arctic Shelf. Science, 327: 1246–1250Google Scholar
  103. Shima S, Krueger M, Weinert T, Demmer U, Kahnt J, Thauer R K, Ermler U. 2012. Structure of a methyl-coenzyme M reductase from Black Sea mats that oxidize methane anaerobically. Nature, 481: 98–101Google Scholar
  104. Shubenkova O V, Likhoshvai A V, Kanapatskii T A, Pimenov N V. 2010. Microbial community of reduced pockmark sediments (Gdansk Deep, Baltic Sea). Microbiology, 79: 799–808Google Scholar
  105. Smith D D S, Dalton H. 1989. Solubilisation of methane monooxygenase from Methylococcus capsulatus (Bath). Eur J Biochem, 182: 667–671Google Scholar
  106. Söhngen N. 1906. Über bakterien, welche methan als kohlenstoffnahrung und energiequelle gebrauchen. Zentrabl Bakteriol Parasitenk Infektionskr, 15: 513–517Google Scholar
  107. Sommer S, Pfannkuche O, Linke P, Luff R, Greinert J, Drews M, Gubsch S, Pieper M, Poser M, Viergutz T. 2006. Efficiency of the benthic filter: Biological control of the emission of dissolved methane from sediments containing shallow gas hydrates at Hydrate Ridge. Glob Biogeochem Cycle, 20: GB2019Google Scholar
  108. Sorokin D Y, Makarova K S, Abbas B, Ferrer M, Golyshin P N, Galinski E A, Ciordia S, Mena M C, Merkel A Y, Wolf Y I, van Loosdrecht M C M, Koonin E V. 2017. Discovery of extremely halophilic, methyl-reducing euryarchaea provides insights into the evolutionary origin of methanogenesis. Nat Microbiol, 2: 17081Google Scholar
  109. Takai K, Horikoshi K. 1999. Genetic diversity of archaea in deep-sea hydrothermal vent environments. Genetics, 152: 1285–1297Google Scholar
  110. Takai K, Nakamura K, Toki T, Tsunogai U, Miyazaki M, Miyazaki J, Hirayama H, Nakagawa S, Nunoura T, Horikoshi K. 2008. Cell proliferation at 122°C and isotopically heavy CH4 production by a hyperthermophilic methanogen under high-pressure cultivation. Proc Natl Acad Sci USA, 105: 10949–10954Google Scholar
  111. Tong H, Feng D, Cheng H, Yang S, Wang H, Min A G, Edwards R L, Chen Z, Chen D. 2013. Authigenic carbonates from seeps on the northern continental slope of the South China Sea: New insights into fluid sources and geochronology. Mar Pet Geol, 43: 260–271Google Scholar
  112. Valentine D L, Blanton D C, Reeburgh W S, Kastner M. 2001. Water column methane oxidation adjacent to an area of active hydrate dissociation, Eel river Basin. Geochim Cosmochim Acta, 65: 2633–2640Google Scholar
  113. Valentine D L, Reeburgh W S. 2000. New perspectives on anaerobic methane oxidation. Environ Microbiol, 2: 477–484Google Scholar
  114. Valentine D L, Reeburgh W S, Blanton D C. 2000. A culture apparatus for maintaining H2 at sub-nanomolar concentrations. J Microbiol Methods, 39: 243–251Google Scholar
  115. Valenzuela E I, Prieto-Davó A, López-Lozano N E, Hernández-Eligio A, Vega-Alvarado L, Juárez K, García-González A S, López M G, Cervantes F J. 2017. Anaerobic methane oxidation driven by microbial reduction of natural organic matter in a tropical wetland. Appl Environ Microbiol, 83: e00645–17Google Scholar
  116. Vanwonterghem I, Evans P N, Parks D H, Jensen P D, Woodcroft B J, Hugenholtz P, Tyson G W. 2016. Methylotrophic methanogenesis discovered in the archaeal phylum Verstraetearchaeota. Nat Microbiol, 1: 16170Google Scholar
  117. Wallmann K, Pinero E, Burwicz E, Haeckel M, Hensen C, Dale A, Ruepke L. 2012. The global inventory of methane hydrate in marine sediments: A theoretical approach. Energies, 5: 2449–2498Google Scholar
  118. Wang F P, Zhang Y, Chen Y, He Y, Qi J, Hinrichs K U, Zhang X X, Xiao X, Boon N. 2014. Methanotrophic archaea possessing diverging methane- oxidizing and electron-transporting pathways. Isme J, 8: 1069–1078Google Scholar
  119. Wegener G, Krukenberg V, Riedel D, Tegetmeyer H E, Boetius A. 2015. Intercellular wiring enables electron transfer between methanotrophic archaea and bacteria. Nature, 526: 587–590Google Scholar
  120. Weiland P. 2010. Biogas production: Current state and perspectives. Appl Microbiol Biotechnol, 85: 849–860Google Scholar
  121. Wu M L, de Vries S, van Alen T A, Butler M K, Op den Camp H J M, Keltjens J T, Jetten M S M, Strous M. 2011. Physiological role of the respiratory quinol oxidase in the anaerobic nitrite-reducing methanotroph ‘Candidatus Methylomirabilis oxyfera’. Microbiology, 157: 890–898Google Scholar
  122. Xiao K Q, Beulig F, Kjeldsen K U, Jørgensen B B, Risgaard-Petersen N. 2017. Concurrent methane production and oxidation in surface sediment from Aarhus Bay, Denmark. Front Microbiol, 8: 1198Google Scholar
  123. Zhang Y, Henriet J P, Bursens J, Boon N. 2010. Stimulation of in vitro anaerobic oxidation of methane rate in a continuous high-pressure bioreactor. Bioresource Tech, 101: 3132–3138Google Scholar
  124. Zhang Y, Maignien L, Zhao X, Wang F, Boon N. 2011. Enrichment of a microbial community performing anaerobic oxidation of methane in a continuous high-pressure bioreactor. BMC Microbiol, 11: 137Google Scholar
  125. Zhuang G. 2014. Methylotrophic methanogenesis and potential methylated substrates in marine sediment. Doctoral Dissertation. Bremen: University of BremenGoogle Scholar
  126. Zhuang G C, Heuer V B, Lazar C S, Goldhammer T, Wendt J, Samarkin V A, Elvert M, Teske A P, Joye S B, Hinrichs K U. 2018. Relative importance of methylotrophic methanogenesis in sediments of the Western Mediterranean Sea. Geochim Cosmochim Acta, 224: 171–186Google Scholar
  127. Zhuang G C, Lin Y S, Bowles M W, Heuer V B, Lever M A, Elvert M, Hinrichs K U. 2017. Distribution and isotopic composition of trimethylamine, dimethylsulfide and dimethylsulfoniopropionate in marine sediments. Mar Chem, 196: 35–46Google Scholar
  128. Zhuang G C, Lin Y S, Elvert M, Heuer V B, Hinrichs K U. 2014. Gas chromatographic analysis of methanol and ethanol in marine sediment pore waters: Validation and implementation of three pretreatment techniques. Mar Chem, 160: 82–90Google Scholar
  129. Zhuang G C, Elling F J, Nigro L M, Samarkin V, Joye S B, Teske A, Hinrichs K U. 2016. Multiple evidence for methylotrophic methanogenesis as the dominant methanogenic pathway in hypersaline sediments from the Orca Basin, Gulf of Mexico. Geochim Cosmochim Acta, 187: 1–20Google Scholar

Copyright information

© Science in China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Microbial Metabolism, School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
  2. 2.State Key Laboratory of Ocean Engineering, School of Naval Architecture, Ocean and Civil EngineeringShanghai Jiao Tong UniversityShanghaiChina

Personalised recommendations