Advertisement

Science China Earth Sciences

, Volume 62, Issue 1, pp 61–88 | Cite as

Ordovician integrative stratigraphy and timescale of China

  • Yuandong ZhangEmail author
  • Renbin Zhan
  • Yongyi Zhen
  • Zhihao Wang
  • Wenwei Yuan
  • Xiang Fang
  • Xuan Ma
  • Junpeng Zhang
Review

Abstract

In this chapter, starting with a brief review of the research history and current status in the studies of the Ordovician chronostratigraphy in China, the subdivision of the Ordovician System, definition and recognition of its series and stage boundaries, and possible stratigraphic gaps are discussed in details in order to establish a multidisciplinary stratigraphic correlation through an integrated approach including lithostratigraphy, biostratigraphy, radiometric dating, chemostratigraphy and magnetostratigraphy. Being internationally accepted, the Ordovician System is now subdivided into three series and seven stages, in ascending order, Lower (Tremadocian, Floian), Middle (Dapingian, Darriwilian) and Upper series (Sandbian, Katian, Hirnantian). Three of the seven “Golden Spikes” defining the bases of the Ordovician stages, which were established in 1997–2007, are located in China. As a regionally applied chronostratigraphy, the Ordovician System was subdivided in China into Lower (Xinchangian, Yiyangian), Middle (Dapingian, Darriwilian) and Upper series (Neichiashanian, Chientangkiangian, Hirnantian). This scheme agrees largely with the standard international classification, which can actually be directly applied to China, except for some special circumstances where the Neichiashanian and Chientangkiangian stages of the Upper Ordovician are used. Based on the new studies in recent years and distinctions and differences recognized in the development of the Ordovician System in the constituent terranes of China, a new framework for correlation among the major Chinese palaeoplates or terranes, e.g. South China, North China (including Tarim and Qaidam) and Xizang (Tibet)-western Yunnan, has been established. However, it has been recognized herein that uncertainties still remain on defining the base of the Tremadocian, Dapingian and Katian, and on the correlation between different mega-facies. More specifically, for the Tremadocian, the precise correlation of its base will depend on the better-defined conodont taxonomy, while for the Dapingian and Katian, on the correlation between different mega-facies. It is worthwhile to note that the chemostratigraphic studies of the Ordovician System in China produced the carbonate δ13C curves for the Darriwilian (Middle Ordovician) and Katian (Upper Ordovician), which show significant differences from the composite global curve. Record of the Ordovician isotopic dating is relatively rare in China, with only three reliable ages from zircons that are all from the upper Katian to Hirnantian of the Upper Ordovician. Abundant bentonite beds in the Upper Ordovician of South China will also provide unique opportunities to advance the isotopic dating and related researches. Studies on the Ordovician magnetostratigraphy need to be significantly enhanced in China, as currently all the available results are restricted to the Lower Ordovician of North China, although they can be correlated with those known from other parts of the world. The analysis of the durational unevenness of the seven stages in the Ordovician supports the possibility to further subdivide the long-durational Tremadocian, Darriwilian and Katian stages, each into two substages.

Keywords

Ordovician System Geological age Chronostratigraphy Chemostratigraphy Biostratigraphy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

Profs Chen Xu, Rong Jiayu, and Shen Shuzhong, and two anonymous reviewers are acknowledged for their careful and constructive reviews and comments on the manuscript. Zhen Yong Yi publishes with permission of the Executive Director, Geological Survey of NSW. This is a contribution to IGCP Project 653 (The Onset of the Great Ordovician Biodiversification Event). This study was supported by the National Natural Science Foundation of China (Grant Nos. 41290260, 41772005), the Chinese Academy of Sciences New Frontiers Special Grants (Grant Nos. XDB10010100, XDB26000000), the SAFEA Project (Grant No. 20140491530), the National Science and Technology Major Project (Grant No. 2017ZX05036-001-004) and the MST of China Special Grants for Basic Science Projects (Grant No. 2013FY111000).

References

  1. Ainsaar L, Meidla T, Martma T. 2004. The middle Caradoc facies and faunal turnover in the Late Ordovician Baltoscandian Palaeobasin. Palaeogeogr Palaeoclimatol Palaeoecol, 210: 119–133Google Scholar
  2. Ainsaar L, Kaljo D, Martma T, Meidla T, Männik P, Nõlvak J, Tinn O. 2010. Middle and Upper Ordovician carbon isotope chemostratigraphy in Baltoscandia: A correlation standard and clues to environmental history. Palaeogeogr Palaeoclimatol Palaeoecol, 294: 189–201Google Scholar
  3. Albanesi G L, Giuliano M E, Pacheco F E, Ortega G, Monaldi C R. 2015. The Cambrian-Ordovician boundary in the Cordillera Oriental, NW Argentina. Stratigraphy, 12: 19–21Google Scholar
  4. An T X, Zhang F, Xiang W D, Zhang Y Q, Xu W H, Zhang H J, Jiang D B, Yang C S, Lin L D, Cui Z T, Yang X C. 1983. The Conodonts of North China and the Adjacent Regions (in Chinese). Beijing: Science Press. 1–223Google Scholar
  5. An T X, Zheng Z C. 1990. The Conodonts of the Marginal Areas Around the Ordos Basin, North China (in Chinese). Beijing: Science Press. 1–201Google Scholar
  6. Bagnoli G, Peng S C, Qi Y P, Wang C Y. 2017. Conodonts from the Wa’ergang section, China: A potential GSSP for the uppermost stage of the Cambrian. Riv Ital Paleontol Stratigr, 123: 1–10Google Scholar
  7. Barnes C R. 1988. The proposed Cambrian-Ordovician global boundary stratotype and point (GSSP) in Western Newfoundland, Canada. Geol Mag, 125: 381–414Google Scholar
  8. Barnes C R. 2004. Was there an Ordovician superplume event? In: Webby B D, Paris F, Droser M L, Percival I, eds. The Great Ordovician Biodiversification Event. New York: Columbia University Press. 77–80Google Scholar
  9. Bergström S M. 2007. Middle and Upper Ordovician conodonts from the Fågelsång GSSP, Scania, southern Sweden. GFF, 129: 77–82Google Scholar
  10. Bergström S M, Chen X, Gutiérrez-marco J C, Dronov A. 2009b. The new chronostratigraphic classification of the Ordovician System and its relations to major regional series and stages and to δ13C chemostratigraphy. Lethaia, 42: 97–107Google Scholar
  11. Bergström S M, Finney S C, Chen X, Pålsson C, Wang Z H, Grahn Y. 2000. A proposed global boundary stratotype for the base of the Upper Series of the Ordovician System: The Fågelsång section, Scania, southern Sweden. Episodes, 23: 102–109Google Scholar
  12. Bergström S M, Löfgren A, Maletz J. 2004. The GSSP of the second (upper) stage of the Lower Ordovician Series: Diabasbrottet at Hunneberg, Province of Västergötland, southwest Sweden. Episodes, 27: 265–272Google Scholar
  13. Bergström S M, Wang Z H, Goldman D. 2016. Relations between Darriwilian and Sandbian conodont and graptolite biozones. In: Chen X, Zhang Y D, Goldman D, Bergström S M, Fan J X, Wang Z H, Finney S C, Chen Q, Ma X, eds. Darriwilian to Katian (Ordovician) graptolites from Northwest China. Hangzhou: Zhejiang University Press. 39–78Google Scholar
  14. Bergström S M, Xu C, Schmitz B, Young S, Rong J Y, Saltzman M R. 2009a. First documentation of the Ordovician Guttenberg δ13C excursion (GICE) in Asia: Chemostratigraphy of the Pagoda and Yanwashan formations in southeastern China. Geol Mag, 146: 1–11Google Scholar
  15. Buggisch W, Keller M, Lehnert O. 2003. Carbon isotope record of late Cambrian to early Ordovician carbonates of the Argentine Precordillera. Palaeogeogr Palaeoclimatol Palaeoecol, 195: 357–373Google Scholar
  16. Chen J Y, Qian Y Y, Zhang J M, Lin Y K, Yin L M, Wang Z H, Wang Z Z, Yang J D, Wang Y X. 1988. The recommended Cambrian-Ordovician global Boundary stratotype of the Xiaoyangqiao section (Dayangcha, Jilin Province), China. Geol Mag, 125: 415–444Google Scholar
  17. Chen T E. 1987. Ordovician nautiloids from Xainza (in Chinese). Bull Nanjing Inst Geol Palaeontol Acad Sin, 11: 133–191Google Scholar
  18. Chen X, Bergström S M, Zhang Y D, Fan J X. 2009. The base of the Middle Ordovician in China with special reference to the succession at Hengtang near Jiangshan, Zhejiang Province, Southern China. Lethaia, 42: 218–231Google Scholar
  19. Chen X, Bergström S M, Zhang Y D, Goldman D, Chen Q. 2011. Upper Ordovician (Sandbian-Katian) graptolite and conodont zonation in the Yangtze region, China. Earth Env Sci Trans Roy Soc Edinburgh, 101: 111–134Google Scholar
  20. Chen X, Ni Y N, Mitchell C E, Qiao X D, Zhan S G. 2000. Graptolites from the Qilang and Yingan formations (Caradoc, Ordovician) of Kalpin, Western Tarim, Xinjiang, China. J Paleontol, 74: 282–300Google Scholar
  21. Chen X, Rong J Y, Wang X F, Wang Z H, Zhang Y D, Zhan R B. 1995. Correlation of the Ordovician rocks of China. Inter Union Geol Sci Publ, 1: 1–104Google Scholar
  22. Chen X, Rong J Y, Zhou Z Y. 2003. Ordovician biostratigraphy of China. In: Zhang W T, Chen P J, Palmer A R, eds. Biostratigraphy of China. Beijing: Science Press. 121–171Google Scholar
  23. Chen X, Rong J Y, Fan J X, Zhan R B, Mitchell C E, Harper D A T, Melchin M J, Peng P A, Finney S C, Wang X F. 2006a. The global boundary stratotype section and point (GSSP) for the base of the Hirnantian Stage (the uppermost of the Ordovician System). Episodes, 29: 183–196Google Scholar
  24. Chen X, Zhang Y D, Bergström S M, Xu H G. 2006b. Upper Darriwilian graptolite and conodont zonation in the global stratotype section of the Darriwilian stage (Ordovician) at Huangnitang, Changshan, Zhejiang, China. Palaeoworld, 15: 150–170Google Scholar
  25. Chen X, Rong J Y, Fan J X, Zhan R B, Mitchell C E, Harper D A T, Melchin M J, Peng P A, Finney S C, Wang X F. 2006c. A final report on the Global Stratotype Section and Point (GSSP) for the Hirnantian Stage (Upper Ordovician) (in Chinese). J Stratigr, 30: 289–305Google Scholar
  26. Chen X, Wang Z H, Zhang Y D. 1998. The first GSSP (Golden Spike) in China (in Chinese). J Stratigr, 11: 131–191Google Scholar
  27. Chen X, Zhang Y D, Mitchell C E. 2001. Early Darriwilian graptolites from central and western China. Alcheringa, 25: 191–210Google Scholar
  28. Chen X, Zhang Y D, Li Y, Fan J X, Tang P, Chen Q, Zhang Y Y. 2012. Biostratigraphic correlation of the Ordovician black shales in Tarim Basin and its peripheral regions. Sci China Earth Sci, 55: 1230–1237Google Scholar
  29. Chen X, Zhang Y D, Goldman D, Bergström S M, Fan J X, Wang Z H, Finney S C, Chen Q, Ma X. 2016. Darriwilian to Katian (Ordovician) Graptolites from Northwest China. Hangzhou: Zhejiang University Press. 1–354Google Scholar
  30. Chen X, Zhang Y D, Goldman D, Bergström S M, Fan J X, Wang Z H, Finney S C, Chen Q, Ma X. 2017. Darriwilian to Katian (Ordovician) graptolites from Northwest China (in Chinese). Hangzhou: Zhejiang University Press. 1–321Google Scholar
  31. Chu T Y, Xu R L, Wang Z P. 1930. Geology of northwest Zhejiang (in Chinese). Annual Report Geol Survey Kwangtung Kwangsi, 3: 1–30Google Scholar
  32. Cohen K M, Finney S C, Gibbard P L, Fan J X. 2013 (updated). The ICS International Chronostratigraphic Chart (v 2017/02). Episodes, 36: 199–204Google Scholar
  33. Cooper R A, Sadler P A. 2012. The Ordovician Period. In: Gradstein F, Ogg J, Schmitz M, Ogg G, eds. The Geological Time Scale. Elsevier. 489–522Google Scholar
  34. Cooper R A, Maletz J, Wang H F, Erdtmann B D. 1998. Taxonomy and evolution of earliest Ordovician graptoloids. Norsk Geol Tidsskr, 78: 3–32Google Scholar
  35. Cooper R A, Nowlan G S, Williams H S. 2001. Global stratotype section and point for base of the Ordovician System. Episodes, 24: 19–28Google Scholar
  36. Couto H, Knight J, Lourenço A. 2013. Late Ordovician ice-marginal processes and sea-level change from the north Gondwana platform: Evidence from the Valongo Anticline (northern Portugal). Palaeogeogr Palaeoclimatol Palaeoecol, 375: 1–15Google Scholar
  37. Deng S H, Huang Z B, Jing X C, Du P D, Lu Y Z, Zhang S B. 2008. Unconformities in the Ordovician of western Tarim Basin, NW China (in Chinese). Geol Rev, 54: 741–747Google Scholar
  38. Dong X P, Zhang H Q. 2017. Middle Cambrian through lowermost Ordovician conodonts from Hunan, South China. J Paleontol, 91: 1–89Google Scholar
  39. Dong X P, Repetski J E, Bergström S M. 2004. Conodont biostratigraphy of the Middle Cambrian through Lowermost Ordovician in Hunan, South China. Acta Geol Sin, 78: 1185–1206Google Scholar
  40. Emerson N R, Simo J A T, Byers C W, Fournelle J. 2004. Correlation of (Ordovician, Mohawkian) K-bentonites in the upper Mississippi valley using apatite chemistry: Implications for stratigraphic interpretation of the mixed carbonate-siliciclastic Decorah Formation. Palaeogeogr Palaeoclimatol Palaeoecol, 210: 215–233Google Scholar
  41. Fan J X, Peng P A, Melchin M J. 2009. Carbon isotopes and event stratigraphy near the Ordovician-Silurian boundary, Yichang, South China. Palaeogeogr Palaeoclimatol Palaeoecol, 276: 160–169Google Scholar
  42. Fan R, Lu Y Z, Zhang X L, Zhang S B, Duan W Z, Li X, Deng S H. 2013. New understanding of the contact relationship between Shihtzupu Formation and Pagoda Formation in Sichuan Basin (in Chinese). Acta Geol Sin, 87: 322–329Google Scholar
  43. Fang X, Ma X, Li W J, Zhang Y D, Zhou Z Q, Chen T E, Lü Y, Yu S Y, Fan J X. 2018. Biostratigraphical constraints on the disconformity within the Upper Ordovician in the Baoshan and Mangshi regions, western Yunnan Province, China. Lethaia, 51: 312–323Google Scholar
  44. Feng H Z, Erdtmann B-D. 1999. The early Tremadoc graptolite sequence in the Wuning area, South China and its international correlation. Acta Univ Carolinae-Geol, 43: 21–24Google Scholar
  45. Feng H Z, Li M, Zhang Y D, Erdtmann B D, Li L X, Wang W H. 2009. Succession and global correlation of late Tremadoc graptolite zones from South China. Sci China Ser D-Earth Sci, 52: 287–299Google Scholar
  46. Finnegan S, Bergmann K, Eiler J M, Jones D S, Fike D A, Eisenman I, Hughes N C, Tripati A K, Fischer W W. 2011. The magnitude and duration of Late Ordovician–Early Silurian glaciation. Science, 331: 903–906Google Scholar
  47. Finnegan S, Heim N A, Peters S E, Fischer W W. 2012. Climate change and the selective signature of the Late Ordovician mass extinction. Proc Natl Acad Sci USA, 109: 6829–6834Google Scholar
  48. Finney S C, Grubb B J, Hatcher R D. 1996. Graphic correlation of Middle Ordovician graptolite shale, southern Appalachians: An approach for examining the subsidence and migration of a Taconic foreland basin. Geol Soc Am Bull, 108: 355–371Google Scholar
  49. Ghienne J F. 2011. The late Ordovician glacial record: state of the art. In: Gutiérrez-Marco J C, Rábano I, Gacía-Bellido D, eds. Ordovician of the World. Cuadernos del Museo Geominero, 14. Madrid: Instituto Geologico y Minero de Espana. 13–19Google Scholar
  50. Goldman D, Leslie S A, Nõlvak J, Young S, Bergström S M, Huff W D. 2007. The global stratotype section and point (GSSP) for the base of the Katian Stage of the Upper Ordovician series at Black Knob Ridge, southeastern Oklahoma, USA. Episodes, 30: 258–270Google Scholar
  51. Grabau A W. 1924. Stratigraphy of China, Part I, Paleozoic and Older. Peking: Geological Survey and Ministry of Agriculture and Commerce of China. 1–528Google Scholar
  52. Han Z R, Yang Z Y, Tong Y B, Jing X Q. 2015. New paleomagnetic results from Late Ordovician rocks of the Yangtze Block, South China, and their paleogeographic implications. J Geophys Res-Solid Earth, 120: 4759–4772Google Scholar
  53. Haq B U, Schutter S R. 2008. A chronology of Paleozoic sea-level changes. Science, 322: 64–68Google Scholar
  54. Hsu S W C, Ma C T. 1948. The I-chang Formation and the Ichangian Fauna. Contributions Natl Res Institute Geol Acad Sin, 8: 1–51Google Scholar
  55. Hu Y H, Zhou J B, Song B, Li W, Sun W D. 2008. SHRIMP zircon U-Pb dating from K-bentonite in the top of Ordovician of Wangjiawan Section, Yichang, Hubei, China. Sci China Ser D-Earth Sci, 51: 493–498Google Scholar
  56. Huff W D, Bergström S M, Kolata D R. 1992. Gigantic Ordovician volcanic ash fall in North America and Europe: Biological, tectonomagmatic, and event-stratigraphic significance. Geology, 20: 875–878Google Scholar
  57. Jiang D Y, Pi X J, Sun Z Y, Chen Y, Wu F X, Hao W C. 2006. Report on graptolite biostratigraphy of the basal part of the middle member of the Kepingtage Formation at Dawangou section, Keping, Xinjiang (in Chinese). J Stratigr, 30: 253–257Google Scholar
  58. Kaljo D, Hints L, Martma T, Nõlvak J, Oraspõld A. 2004. Late Ordovician carbon isotope trend in Estonia, its significance in stratigraphy and environmental analysis. Palaeogeogr Palaeoclimatol Palaeoecol, 210: 165–185Google Scholar
  59. Lai C G, Wang X F. 1982. Chronostratigraphical classification of the Ordovician in China (in Chinese). In: Lai C G, Wang X F, eds. Stratigraphy in China: Ordovician in China. Beijing: Geological Publishing House. 5–22Google Scholar
  60. Lapworth C. 1879. On the tripartite classification of the Lower Palæozoic rocks. Geol Mag, 6: 1Google Scholar
  61. Lee J S, Chao Y T. 1924. Geology of the Gorge district of the Yangtze (from Ichang to Tzegui) with special reference to the development of the Gorges. Bull Geol Soc China, 3: 351–392Google Scholar
  62. Liu J B. 2009. Marine sedimentary response to the great Ordovician biodiversification event: Examples from North China and South China. Paleontol Res, 13: 9–21Google Scholar
  63. Liu J, Zhao Y Z. 1927. Stratigraphy of Southwest Zhejiang (in Chinese). Bull Geol Surv China, 9: 11–28Google Scholar
  64. Liu X, Zhang Y D, Zhou C M. 2012. Sedimentary characteristics of the Upper Ordovician Wenchang and Yankou Formations in northwestern Zhejiang Province (in Chinese). J Palaeogeol, 14: 101–116Google Scholar
  65. Liu Y R, Fu H Y. 1989a. Shuangjiakou section, Qidong, Hunan: A candidate section for the stratotypes of the Hanjiang and Shikou Stages (Ordovician) in China (I) (in Chinese). J Stratigr, 13: 161–192Google Scholar
  66. Liu Y R, Fu H Y. 1989b. Shuangjiakou section, Qidong, Hunan: A candidate section for the stratotypes of the Hanjiang and Shikou Stages (Ordovician) in China (II) (in Chinese). J Stratigr, 13: 235–254Google Scholar
  67. Lu Y H. 1959. Subdivision and Correlation of the Ordovician Rocks of South China (in Chinese). Beijing: Geological Publishing House. 113Google Scholar
  68. Lu Y H. 1983. Cambrian-Ordovician boundary in China (in Chinese). In: Nanjing Institute of Geology and Palaeontology, Chinese Academy of Science, eds. Study of Stratigraphic Boundaries in China. Beijing: Science Press. 12–25Google Scholar
  69. Lu Y H, Zhu Z L, Qian Y Y, Zhou Z Y, Chen J Y, Liu G W, Yu W, Chen X, Xu H K. 1976. Biostratigraphy and palaeobiogeography of Ordovician in China (in Chinese). Mem Nanjing Inst Geol Palaeontol Acad Sin, 7: 1–83Google Scholar
  70. Luo T T, Zhang Y D. 2008. Graptolite biostratigraphy of the Ordovician Dawan Formation in the Yichang and Nanzhang area, Hubei Province (in Chinese). J Stratigr, 32: 253–264Google Scholar
  71. Ma X, Wang Z H, Zhang Y D, Song Y Y, Fang X. 2015. Carbon isotope records of the Middle-Upper Ordovician transition in Yichang area, South China. Palaeoworld, 24: 136–148Google Scholar
  72. Mauviel A, Desrochers A, Jin J. 2016. A high-resolution, continuous δ13C record spanning the Ordovician-Silurian boundary on Anticosti Island, eastern Canada. Can J Earth Sci, 53: 795–801Google Scholar
  73. Miller A I. 2003. Ordovician Radiation. In: Briggs D E G, Crowther P R, eds. Palaeobiology II. Oxford: Blackwell Publishing. 49–52Google Scholar
  74. Miller J F, Evans K R, Ethington R L, Freeman R L, Loch J D, Repetski J E, Ripperdan R L, Taylor J F. 2015. Proposed auxiliary boundary stratigraphic section and point (ASSP) for the base of the Ordovician System at Lawson Cove, Utah, USA. Stratigraphy, 12: 219–236Google Scholar
  75. Miller J F, Repetski J E, Nicoll R S, Nowlan G, Ethington R L. 2014. The conodont Iapetognathus and its value for defining the base of the Ordovician System. GFF, 136: 185–188Google Scholar
  76. Mitchell C E, Chen X, Bergström S M, Zhang Y D, Wang Z H, Webby B D, Finney S C. 1997. Definition of a global boundary stratotype for the Darriwilian Stage of the Ordovician System. Episodes, 20: 158–166Google Scholar
  77. Mu E Z. 1974. Evolution, Classification and distribution of Graptoloids and Graptodendroids (in Chinese). Sci China, 2: 174–183Google Scholar
  78. Munnecke A, Calner M, Harper D A T, Servais T. 2010. Ordovician and Silurian sea-water chemistry, sea level, and climate: A synopsis. Palaeogeogr Palaeoclimatol Palaeoecol, 296: 389–413Google Scholar
  79. Munnecke A, Zhang Y D, Liu X, Cheng J F. 2011. Stable carbon isotope stratigraphy in the Ordovician of South China. Palaeogeogr Palaeoclimatol Palaeoecol, 307: 17–43Google Scholar
  80. Murchison R I. 1839. The Silurian System. London. 1–786Google Scholar
  81. National Commission on Stratigraphy of China. 2002. Notes of the Regional Chronostratigraphic Chart of China (Geological Time) (in Chinese). Beijing: Geological Publishing House. 1–72Google Scholar
  82. National Commission on Stratigraphy of China, Editorial committee of the Stratigraphic Chart of China. 2014. The Stratigraphic Chart of China (2014) (in Chinese). Acta Geosci Sin, 35: AppendixGoogle Scholar
  83. Ni Y N, Geng L Y, Wang Z H, Zhao Z X, Chen T E, Zhang Y B, Wang H F, Zhang S G, Yuan W W, Zhang S B, Gao Q Q, Li J. 2001. Ordovician. In: Zhou Z Y, ed. Stratigraphy of the Tarim Basin. Beijing: Science Press. 39–80, 343–344Google Scholar
  84. Nicoll R S, Miller J F, Nowlan G S, Repetski J E, Ethington R L. 1999. Iapetonudus (N. gen.) and Iapetognathus Landing, unusual earliest Ordovician multielement conodont taxa and their utility for biostratigraphy. Brigham Young Univ Geol Stud, 44: 27–101Google Scholar
  85. Noda S. 1915. Geology of the Northwestern Part of Cheh-kiang-sheng. J Geol Soc Jpn, 22: 159–162Google Scholar
  86. Normore L S, Zhen Y Y, Dent L M, Crowley J L, Percival I, Wingate M T D. 2018a. CA-IDTIMS geochronology of Lower Ordovician subsurface stratigraphy in the Canning Basin, Western Australia and integration with conodont biostratigraphy. In: Zhang et al., eds. Proceedings of the International Geoscience Programme (IGCP) Project 653 Annual Meeting, October 8th -12th, 2017, Yichang, China. Hangzhou: Zhejiang University Press. 123–125Google Scholar
  87. Normore L S, Zhen Y Y, Dent L M, Crowley J L, Percival I G, Wingate M T D. 2018b. Early Ordovician CA-IDTIMS U-Pb zircon dating and conodont biostratigraphy, Canning Basin, Western Australia. Aust J Earth Sci, 65: 61–73Google Scholar
  88. Nowlan G S, Nicoll R S. 1995. Re-examination of the conodont biostratigraphy at the Cambrian-Ordovician Xiaoyangqiao section, Dayangcha, Jilin Province, China. In: Cooper J D, Droser M L, Finney S C, eds. Ordovician Odyssey: Short Papers for the Seventh International Symposium on the Ordovician System. SEPM, 77: 113–116Google Scholar
  89. Ortega G, Albanesi G L, Banchig A L, Peralta G L. 2008. High resolution conodont-graptolite biostratigraphy in the Middle-Upper Ordovician of the Sierra de La Invernada Formation (Central Precordillera, Argentina). Geol Acta, 6: 227–235Google Scholar
  90. Pavlov V, Gallet Y. 2005. A third superchron during the Early Paleozoic. Episodes, 28: 78–84Google Scholar
  91. Popov L E, Kebriaee-Zadeh M R, Ghobadi Pour M. 2016. Emergence of the Saucrorthis Fauna in the Middle Ordovician of northern Iran. Aust Palaeont Mem, 49: 485–514Google Scholar
  92. Qiu H R. 1988. Earlt Palaeozoic conodont biostratigraphy of Tibet (in Chinese). Prof Pap Stratigr Palaeontol, 19: 185–208Google Scholar
  93. Qu Y G, Zhang S Q, Zheng C Z, Wang Z H. 2002. The discovery of Armenoceras of Early Ordovician from Xiongmei, Xainza County, Tibet (in Chinese). Geol Bull China, 19: 185–208Google Scholar
  94. Ripperdan R L, Magaritz M, Kirschvink J L. 1993. Carbon isotope and magnetic polarity evidence for non-depositional events within the Cambrian-Ordovician boundary section near Dayangcha, Jilin Province, China. Geol Mag, 130: 443–452Google Scholar
  95. Rong J Y. 1984. Ecostratigraphic evidence of the Upper Ordovician regressive sequences and the effect of glaciation. J Stratigr, 8: 19–23Google Scholar
  96. Rong J Y, Chen X, Harper D A T. 2002. The latest Ordovician Hirnantia Fauna (Brachiopoda) in time and space. Lethaia, 35: 231–249Google Scholar
  97. Rong J Y, Huang B, Zhan R B, Harper D A T. 2008. Latest Ordovician brachiopod and trilobite assemblage from Yuhang, northern Zhejiang, East China: A window on Hirnantian deep-water benthos. Hist Biol, 20: 137–148Google Scholar
  98. Rong J Y, Huang B. 2014. Study of Mass Extinction over the past thirty years: A synopsis (in Chinese). Sci Sin Terrae, 44: 377–404Google Scholar
  99. Saltzman M R, Young S A. 2005. Long-lived glaciation in the Late Ordovician? Isotopic and sequence-stratigraphic evidence from western Laurentia. Geology, 33: 109–112Google Scholar
  100. Schmitz B, Harper D A T, Peucker-Ehrenbrink B, Stouge S, Alwmark C, Cronholm A, Bergström S M, Tassinari M, Wang X F. 2008. Asteroid breakup linked to the great Ordovician biodiversification event. Nat Geosci, 1: 49–53Google Scholar
  101. Schmitz B, Bergström S M, Wang X F. 2010. The middle Darriwilian (Ordovician) δ13C excursion (MDICE) discovered in the Yangtze Platform succession in China: Implications of its first recorded occurrences outside Baltoscandia. J Geol Soc, 167: 249–259Google Scholar
  102. Sepkoski J J Jr. 1995. The Ordovician Radiations: Diversification and extinction shown by global genus-level taxonomic data. In: Cooper J D, Droser M L, Finney S C, eds. Ordovician Odyssey: Short Papers for the Seventh International Symposium on the Ordovician System. California. SEPM, 77: 393–396Google Scholar
  103. Sepkoski J J, Sheehan P M. 1983. Diversification, Faunal Change, and Community Replacement during the Ordovician Radiations. In: Tevesz M J S, McCall P L, eds. Biotic Interactions in Recent and Fossil Benthic Communities. New York: Plenum Press. 673–717Google Scholar
  104. Servais T, Lehnert O, Li J, Mullins G L, Munnecke A, Nützel A, Vecoli M. 2008. The Ordovician Biodiversification: Revolution in the oceanic trophic chain. Lethaia, 41: 99–109Google Scholar
  105. Servais T, Perrier V, Danelian T, Klug C, Martin R, Munnecke A, Nowak H, Nützel A, Vandenbroucke T R A, Williams M, Rasmussen C M Ø. 2016. The onset of the ‘Ordovician Plankton Revolution’ in the late Cambrian. Palaeogeogr Palaeoclimatol Palaeoecol, 458: 12–28Google Scholar
  106. Song Y Y, Zhang Y D, Goldman D, Wang Z H, Fang X, Ma X. 2014. Latest Darriwilian to early Sandbian graptolite biostratigraphy in Chengkou, northern Chongqing, South China. In: Zhan R B, Huang B, eds. Extended Summary of the IGCP Project 591 Field Workshop 2014, Kunming, 2014. Nanjing: Nanjing University Press. 138–143Google Scholar
  107. Su W B, Huff W D, Ettensohn F R, Liu X M, Zhang J E, Li Z M. 2009. Kbentonite, black-shale and flysch successions at the Ordovician-Silurian transition, South China: Possible sedimentary responses to the accretion of Cathaysia to the Yangtze Block and its implications for the evolution of Gondwana. Gondwana Res, 15: 111–130Google Scholar
  108. Terfelt F, Bagnoli G, Stouge S. 2012. Re-evaluation of the conodont Iapetognathus and implications for the base of the Ordovician System GSSP. Lethaia, 45: 227–237Google Scholar
  109. Trotter J A, Williams I S, Barnes C R, Lécuyer C, Nicoll R S. 2008. Did cooling oceans trigger Ordovician biodiversification? Evidence from conodont thermometry. Science, 321: 550–554Google Scholar
  110. Tu S, Wang Z, Wang J S. 2012. Interpretation for high resolution stable carbon and oxygen isotope records across Ordovician-Silurian boundary from Wangjiawan, South China (in Chinese). Earth Sci J China Uni Geosci, 37: 165–174Google Scholar
  111. Tucker R D, McKerrow W S. 1995. Early Paleozoic chronology: A review in light of new U-Pb zircon ages from Newfoundland and Britain. Can J Earth Sci, 32: 368–379Google Scholar
  112. VandenBerg A H M, Cooper R A. 1992. The Ordovician graptolite sequence of Australasia. Alcheringa, 16: 33–85Google Scholar
  113. Wang C Y, Qu Y G, Zhang S Q, Zheng C Z, Wang Y S. 2004. Late Ordovician-Silurian conodonts from the Xainza (Shenzha) county, North Tibet, China (in Chinese). Acta Micropalaeontol Sin, 21: 237–250Google Scholar
  114. Wang H F, Cooper R A, Erdtmann B D. 1998. Restudy on the earliest Ordovician graptolites from the Dayangcha section in Jilin (in Chinese). Acta Palaeontol Sin, 37: 212–234Google Scholar
  115. Wang H H, Li J H, Zhang H T, Xu L, Li W B. 2016. The absolute paleoposition of the North China Block during the Middle Ordovician. Sci China Earth Sci, 59: 573–582Google Scholar
  116. Wang L W, Zhang J F, Chen J H, Zhang Y D, Chen X Y, Zhu Z H, Liu J, Hu Y H, Ma X. 2015. Characteristics of Katian (Late Ordovician) KBentonites from Anji, Zhejiang Province (in Chinese). J Stratigr, 39: 155–168Google Scholar
  117. Wang W H, Feng H Z, Li L X, Li M, Chen W J. 2012. Adelograptus tenellus (Linnarsson, 1871) from the Lower Ordovician of Yiyang area, Hunan Province (in Chinese). Acta Palaeontol Sin, 51: 186–199Google Scholar
  118. Wang X F. 2016. Ordovician tectonic-paleogeography in South China and chrono- and bio-stratigraphic division and correlation. Earth Sci Front, 6: 253–267Google Scholar
  119. Wang X F. 2017. Dayangcha International Workshop on the Cambrian- Ordovician boundary (DIWCOB) (September 20–25, 2017, Changchun, NE China), First Circular. Ordovician News, 34: 21–27Google Scholar
  120. Wang X F, Wang C S. 2001. Tremadocian (Ordovician) graptolite diversification events in China. Alcheringa, 25: 155–168Google Scholar
  121. Wang X F, Chen X H, Erdtmann E D. 1992. Ordovician chronostratigraphy —A Chinese approach. In: Webby B D, Laurie J R, eds. Global Perspectives on Ordovician Geology. Rotterdam: A. A. Balkema. 35–55Google Scholar
  122. Wang X F, Chen X, Chen X H, Zhu C Y. 1996. Lexicon of Stratigraphy of China, Ordovician (in Chinese). Beijing: Science Press. 1–126Google Scholar
  123. Wang X F, Stouge S, Chen X H, Li Z H, Wang C S, Finney S C, Zeng Q L, Zhou Z Q, Chen H M, Erdtmann B D. 2009. The global stratotype section and point for the base of the Middle Ordovician Series and the Third Stage (Dapingian). Episodes, 32: 96–112Google Scholar
  124. Wang Y J, Cheng J F, Zhang Y D. 2008. New radiolarian genera and species of Heituao Formation (Ordovician) in the Kuruktag region, Xinjiang (in Chinese). Acta Palaeontol Sin, 47: 393–404Google Scholar
  125. Wang Z H, Bergström S M, Song Y Y, Ma X, Zhang Y D. 2017. On the diachronous nature of the top of the Ordovician Kuniutan Formation on the Yangtze Platform: Implications of the conodont biostratigraphy of the Dacao section, Chongqing. Palaeoworld, 26: 37–49Google Scholar
  126. Wang Z H, Bergström S M, Zhang Y D, Zhen Y Y, Wu R C. 2015. Upper Ordovician conodonts from the Yenwashan Formation in the Zhejiang- Jiangxi border region, S.E. China and their biostratigraphic significance (in Chinese). Acta Palaeontol Sin, 54: 147–157Google Scholar
  127. Wang Z H, Bergström S M, Zhen Y Y, Chen X, Zhang Y D. 2013. On the integration of Ordovician conodont and graptolite biostratigraphy: New examples from Gansu and Inner Mongolia in China. Alcheringa, 37: 510–528Google Scholar
  128. Wang Z H, Bergström S M, Zhen Y Y, Zhang Y D, Wu R C. 2014. New conodont data from the Lower Ordovician of Tangshan, Hebei Province, North China (in Chinese). Acta Micropalaeontol Sin, 31: 1–14Google Scholar
  129. Wang Z H, Zhen Y Y, Zhang Y D, Wu R C. 2016. Review of the Ordovician conodont biostratigraphy in the different facies of North China (in Chinese). J Stratigr, 40: 1–6Google Scholar
  130. Wang Z H, Zhen Y Y, Bergström S M, Wu R C, Zhang Y D, Ma X. 2018. A new conodont biozone classification of the Ordovician System in South China. Palaeoworld, doi.: 10.1016/j.palwor.2018.09.002Google Scholar
  131. Wang Z Z, Yang J D. 1994. Features of the carbon isotope changes in the Early Palaeozoic rocks of the Kalpin area, Xinjiang and their significance (in Chinese). J Stratigr, 18: 45–52Google Scholar
  132. Webby B D. 1992. Modified version of 1991 Annual Report from the Subcommission of Ordovician Stratigraphy to IUGS. Ordovician News, 9: 2–6Google Scholar
  133. Webby B D, Droser M L, Paris F. 2004a. Final report of IGCP Project 410 (1997–2002)—The Great Ordovician Biodiversification Event. Episodes, 27: 203–208Google Scholar
  134. Webby B D, Cooper R A, Bergström S M, Paris F. 2004b. Stratigraphic framework and time slices. In: Webby B D, Paris F, Droser M L, Percival I G, eds. The Great Ordovician Biosiversification Event. New York: Columbia University Press. 41–47Google Scholar
  135. Wu G C, Yao J X, Ji Z S, Liu S C. 2005. Latest biostratigraphic advances of Cambrian-Ordovician boundary in Qingzhou area, Shandong (in Chinese). Acta Palaeontol Sin, 44: 106–116Google Scholar
  136. Wu S J, Li Z H, Hu J M, Gong W B. 2014. Confirmation of Ordovician sediments in south margin of Ordos Basin by SHRIMP U-Pb zircon dating of volcanic tuff interlayers and its significance (in Chinese). Geol Rev, 60: 903–912Google Scholar
  137. Xu J, Huang Z G. 1979. Lower Ordovician graptolite fauna of Guozigou area, Hocheng, Xinjiang (in Chinese). Acta Geol Sin, 53: 1–19Google Scholar
  138. Yang J Z, Mu E Z. 1951. New knowledge of stratigraphy in western Hubei (in Chinese). Chin Sci Bull, 2: 1076–1078Google Scholar
  139. Yang J Z, Mu E Z. 1954. The Ordovician stratigraphy of the Changyang-Itu area, W. Hubei (in Chinese). Acta Palaeontol Sin, 2: 59–82Google Scholar
  140. Yang Z Y, Ma X H, Sun Z M, Huang B C, Zhou Y X, Dong J M, Zhu H. 1997. Preliminary paleomagnetic results from the lower Paleozoic of North China (Henan Province) and its implications (in Chinese). Chin Sci Bull, 42: 401–406Google Scholar
  141. Yang Z Y, Otofuji Y, Sun Z M, Ma X H, Xu S J. 1998. Magnetic polarity sequence of Cambrian-Ordovician boundary in Tangshan, Hebei (in Chinese). Chin Sci Bull, 43: 1881–1885Google Scholar
  142. Yang Z Y, Yoichiro O, Sun Z M, Huang B C. 2002. Magnetostratigraphic constraints on the Gondwanan origin of North China: Cambrian/Ordovician boundary results. Geophys J Int, 151: 1–10Google Scholar
  143. Yang Z Y, Sun Z M, Yang T S, Pei J L. 2004. A long connection (750–380Ma) between South China and Australia: Paleomagnetic constraints. Earth Planet Sci Lett, 220: 423–434Google Scholar
  144. Young S A, Saltzman M R, Bergström S M, Leslie S A, Xu C. 2008. Paired δ13Ccarb and δ13Corg records of Upper Ordovician (Sandbian–Katian) carbonates in North America and China: Implications for paleoceanographic change. Palaeogeogr Palaeoclimatol Palaeoecol, 270: 166–178Google Scholar
  145. Zalasiewicz J A, Taylor L, Rushton A W A, Loydell D K, Rickards R B, Williams M. 2009. Graptolites in British stratigraphy. Geol Mag, 146: 785–850Google Scholar
  146. Zeng Q L, Ni S Z, Xu G H, Lai C G, Xiang L W, Zhou T M, Wang X F, Li Z H. 1983. Subdivision and correlation of the Ordovician in the eastern Yangtze Gorges, China (in Chinese). Bull Yichang Inst Geol Mineral Resour. Chin Acad Geol Sci, 6: 1–56Google Scholar
  147. Zeng Q L, Lai C G, Xu G H, Ni S Z, Zhou T M, Xiang L W, Wang X F, Li Z H. 1987. Ordovician. In: Wang X F, Ni S Z, Zeng Q L, Xiang L W, Lai C G, Xu G H, Zhou T M, Li Z H, eds. Biostratigraphy of the Yangtze Gorge Area (2) (in Chinese). Beijing: Geological Publishing House. 43–142Google Scholar
  148. Zhang H F, Yang Y H. 2007. Emplacement age and Sr-Nd-Hf isotopic characteristics of the diamondiferous kimbelites from the eastern North China Craton (in Chinese). Acta Petrol Sin, 23: 285–294Google Scholar
  149. Zhang T G, Shen Y A, Zhan R B, Shen S Z, Chen X. 2009a. Large perturbations of the carbon and sulfur cycle associated with the Late Ordovician mass extinction in South China. Geology, 37: 299–302Google Scholar
  150. Zhang T G, Shen Y A, Algeo T J. 2010. High-resolution carbon isotopic records from the Ordovician of South China: Links to climatic cooling and the Great Ordovician Biodiversification Event (GOBE). Palaeogeogr Palaeoclimatol Palaeoecol, 289: 102–112Google Scholar
  151. Zhang W T. 1962. Ordovician in China (in Chinese). Beijing: Science Press. 1–161Google Scholar
  152. Zhang W T, Li J J, Qian Y Y, Zhu Z L, Chen C Z, Zhang S X. 1957. Cambrian and Ordovician strata of East Yangtze Gorges, Hubei (in Chinese). Chine Sci Bull, 5: 145–146Google Scholar
  153. Zhang W T, Li J J, Ge M Y, Chen J Y. 1982. Classification and correlation of Ordovician in China (in Chinese). In: Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, eds. Stratigraphic Correlation Chart in China with Explanation Text. Beijing: Science Press. 55–72Google Scholar
  154. Zhang Y C, Cheng L R, Zhang Y J. 2004. The Ordovician system in the Xainza region, north Tibet (in Chinese). J Jilin Univ-Earth Sci Ed, 34: 502–508Google Scholar
  155. Zhang Y D, Chen X. 2003. The Early-Middle Ordovician graptolite sequence of the Upper Yangtze region, South China. In: Albanesi G L, Beresi M S, Peralta S H, eds. Ordovician from the Andes. INSUGEO, Serie Correlación Geologica, 17: 173–180Google Scholar
  156. Zhang Y D, Chen X. 2007. Palaeobiogeographic distribution of Pseudisograptus and early biserials in South China and its implication for the origination of major graptolite faunas in the Ordovician. Acta Palaeontol Sin, 46 (Suppl): 530–536Google Scholar
  157. Zhang Y D, Munnecke A. 2016. Ordovician stable carbon isotope stratigraphy in the Tarim Basin, NW China. Palaeogeogr Palaeoclimatol Palaeoecol, 458: 154–175Google Scholar
  158. Zhang Y D, Wang Z H, Feng H Z, Luo T T, Erdtmann B D. 2005. Tremadocian (Ordovician) graptolite biostratigraphy of China—A review (in Chinese). J Stratigr, 29: 215–235Google Scholar
  159. Zhang Y D, Chen X, Yu G H, Goldman D, Liu X. 2007. Ordovician and Silurian Rocks of Northwest Zhejiang and Northeast Jiangxi Provinces, SE China. Hefei: University of Science and Technology of China Press. 1–189Google Scholar
  160. Zhang Y D, Chen X, Wang Z H. 2008. A comprehensive research report of the Global Stratotype Section and Point (GSSP) for the base of Darriwilian Stage (Middle Ordovician) (in Chinese). In: The 3rd National Commission on Stratigraphy of China, eds. Research Reports on Chinese Stages of the Major Geological Periods (2001–2005). Beijing: Geological Publishing House. 436–454Google Scholar
  161. Zhang Y D, Fan J X, Liu X. 2009b. Graptolite biostratigraphy of the Shihtien Formation (Darriwilian) in West Yunnan, China. Bull Geosci, 84: 35–40Google Scholar
  162. Zhang Y D, Yu G H, Luo Z. 2010a. New material of graptolite from the Ordovician Hulo Formation in Banqiao section, Lin’an, Zhejiang and its significance (in Chinese). J Stratigr, 34: 1–7Google Scholar
  163. Zhang Y D, Zhan R B, Fan J X, Cheng J F, Liu X. 2010b. Principal aspects of the Ordovician biotic radiation. Sci China Earth Sci, 53: 382–394Google Scholar
  164. Zhang Y D, Munnecke A, Chen X, Cheng J F, Liu X. 2011. Biostratigraphic and chemostratigraphic correlation for the base of the Middle Ordovician between Yichang and western Zhejiang areas, South China. Acta Geol Sin, 85: 320–329Google Scholar
  165. Zhang Y D, Wang Y, Zhan R B, Fan J X, Zhou Z Q, Fang X. 2014. Ordovician and Silurian Stratigraphy and Palaeontology of Yunnan, Southwest China. Beijing: Science Press. 1–138Google Scholar
  166. Zhen Y Y, Nicoll R S. 2009. Biogeographic and biostratigraphic implications of the Serratognathus bilobatus fauna (Conodonta) from the Emanuel Formation (Early Ordovician) of the Canning Basin, Western Australia. Rec Aust Mus, 61: 1–30Google Scholar
  167. Zhen Y Y, Percival I G, Liu J B, Zhang Y D. 2009a. Conodont fauna and biostratigraphy of the Honghuayuan Formation (Early Ordovician) of Guizhou, South China. Alcheringa, 33: 257–295Google Scholar
  168. Zhen Y Y, Zhang Y D, Percival I G. 2009b. Early Sandbian (Late Ordovician) conodonts from the Yenwashan Formation, western Zhejiang, South China. Alcheringa, 33: 133–161Google Scholar
  169. Zhen Y Y, Wang Z H, Zhang Y D, Bergström S M, Percival I G, Cheng J F. 2011. Middle to Late Ordovician (Darriwilian-Sandbian) conodonts from the Dawangou section, Kalpin area of the Tarim Basin, northwestern China. Rec Aust Mus, 63: 203–266Google Scholar
  170. Zhen Y Y, Zhang Y D, Wang Z H, Percival I G. 2016. Huaiyuan Epeirogeny— Shaping Ordovician stratigraphy and sedimentation on the North China Platform. Palaeogeogr Palaeoclimatol Palaeoecol, 448: 363–370Google Scholar
  171. Zhen Y Y, Percival I G, Webby B D. 2017. Discovery of Iapetognathus fauna from far western New South Wales: Towards a more precisely defined Cambrian-Ordovician boundary in Australia, Aust J Earth Sci, 64: 487–496Google Scholar
  172. Zhou Z Q, Zhou Z Y, Yuan W W. 2005. Late Ordovician trilobite fauna and succession, Yichang, Hubei Province, China (in Chinese). Acta Palaeontol Sin, 44: 327–357Google Scholar
  173. Zhou Z Q, Zhou Z Y, Yuan W W. 2011. Late Ordovician (Hirnantian) Mucronaspis (Songxites)—Dominant trilobite fauna from northwestern Zhejiang, China. Mem Assoc Aust Palaeontol, 42: 75–92Google Scholar
  174. Zhou Z Y, Zhen Y Y. 2008. Trilobite Record of China. Beijing: Science Press. 1–401Google Scholar
  175. Zhou Z Y, Wang Z H, Zhang J M, Lin Y K, Zhang J L. 1984. Cambrian- Ordovician boundary sections and the proposed candidates for stratotype in north and northeast China. In: Nanjing Institute of Geology and Palaeontology, ed. Stratigraphy and Palaeontology of Systematic Boundaries in China—Cambrian-Ordovician Boundary (2). Hefei: Anhui Science and Technology Publishing House. 1–57Google Scholar
  176. Zhou Z Y, Zhen Y Y, Zhou Z Q, Yuan W W. 2009. Ordovician trilobite biogeography of China (in Chinese). J Palaeogeol, 11: 69–80Google Scholar

Copyright information

© Science in China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Yuandong Zhang
    • 1
    • 3
    • 5
    Email author
  • Renbin Zhan
    • 2
    • 3
    • 5
  • Yongyi Zhen
    • 4
  • Zhihao Wang
    • 3
  • Wenwei Yuan
    • 3
  • Xiang Fang
    • 3
  • Xuan Ma
    • 3
    • 5
  • Junpeng Zhang
    • 1
    • 3
  1. 1.CAS Key Laboratory of Economic Stratigraphy and Palaeogeography, Nanjing Institute of Geology and Palaeontology and Center for Excellence in Life and PaleoenvironmentChinese Academy of SciencesNanjingChina
  2. 2.State Key Laboratory of Palaeobiology and StratigraphyNanjing Institute of Geology and Palaeontology, Chinese Academy of SciencesNanjingChina
  3. 3.Nanjing Institute of Geology and PalaeontologyChinese Academy of SciencesNanjingChina
  4. 4.Geological Survey of New South WalesW. B. Clarke Geoscience CentreLondonderryAustralia
  5. 5.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations