Advertisement

Science China Earth Sciences

, Volume 61, Issue 12, pp 1875–1887 | Cite as

Effects of estimating the ionospheric and thermospheric parameters on electron density forecasts

  • Yanan ZhangEmail author
  • Xiaocheng Wu
  • Xiong Hu
Research Paper
  • 20 Downloads

Abstract

Based on the thermosphere-Ionosphere-Electrodynamics General Circulation Model (TIEGCM), a thermospheric-ionospheric data assimilation and forecast system is developed. Using this system, we estimated the oxygen ions, neutral temperature, wind, and composition by assimilating the simulated data from Formosa Satellite 3/Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) occultation electron density profiles to evaluate their effects on the ionospheric forecast. An ensemble Kalman filter data assimilation scheme and combined state and parameter estimation methods are used to estimate the unobserved parameters in the model. The statistical results show that the neutral and ion compositions are more effective than the neutral temperature and wind for improving the forecast of the ionospheric electron density, whose root mean square errors in the assimilation period decreased by approximately 40%, 30%, and 10% due to the estimations of the neutral composition, oxygen ions, and neutral temperature, respectively. Due to the different physical and chemical processes that these parameters primarily affect, their e-folding times differ greatly from longer than 12 h for neutral composition to approximately 6 h for oxygen ions and 3 h for neutral temperature. The effect of estimating the neutral composition on improving the ionospheric forecast is greater than that of estimating the oxygen ions, which can be also be seen in an actual data assimilation experiment. This indicates that the neutral composition is the most important thermospheric parameter in ionospheric data assimilations and forecasts.

Keywords

Electron density Ionosphere Thermosphere Data assimilation Ensemble Kalman filter 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The TIEGCM were obtained from High Altitude Observatory, NCAR (URL: https://doi.org/www.hao.ucar.edu/modeling/tgcm/tie.php). The FORMOSAT-3/COSMIC data were obtained from COSMIC Data Analysis and Archival Center (CDAAC) (URL: https://doi.org/cdaac-www.cosmic.ucar.edu/cdaac/tar/rest.html). This work was supported by National Important Basic Research Project of China (Grant No. 2016YFB0501503) and National Natural Science Foundation of China (Grant No. 41204137).

References

  1. Aa E, Huang W, Yu S, Liu S, Shi L, Gong J, Chen Y, Shen H. (2015). A regional ionospheric TEC mapping technique over China and adjacent areas on the basis of data assimilation. J Geophys Res-Space Phys, 120: 5049–5061CrossRefGoogle Scholar
  2. Aa E, Liu S, Huang W, Shi L, Gong J, Chen Y, Shen H, Li J. (2016). Regional 3–D ionospheric electron density specification on the basis of data assimilation of ground-based GNSS and radio occultation data. Space Weather, 14: 433–448CrossRefGoogle Scholar
  3. Angling M J, Cannon P S. (2004). Assimilation of radio occultation measurements into background ionospheric models. Radio Sci, 39: RS1S08CrossRefGoogle Scholar
  4. Bust G S, Crowley G, Garner T W, Gaussiran Ii T L, Meggs R W, Mitchell C N, Spencer P S J, Yin P, Zapfe B. (2007). Four-dimensional GPS imaging of space weather storms. Space Weather, 5: 02003CrossRefGoogle Scholar
  5. Bust G S, Garner T W, Gaussiran T L. (2004). Ionospheric data assimilation three-dimensional (IDA3D): A global, multisensor, electron density specification algorithm. J Geophys Res, 109: A11312CrossRefGoogle Scholar
  6. Chartier A T, Jackson D R, Mitchell C N. (2013). A comparison of the effects of initializing different thermosphere-ionosphere model fields on storm time plasma density forecasts. J Geophys Res-Space Phys, 118: 7329–7337CrossRefGoogle Scholar
  7. Evensen G. (1994). Sequential data assimilation with a nonlinear quasigeostrophic model using Monte Carlo methods to forecast error statistics. J Geophys Res, 99: 10143–10162CrossRefGoogle Scholar
  8. Evensen G. (2003). The Ensemble Kalman filter: Theoretical formulation and practical implementation. Ocean Dyn, 53: 343–367CrossRefGoogle Scholar
  9. Gaspari G, Cohn S E. (1999). Construction of correlation functions in two and three dimensions. Q J R Meteorol Soc, 125: 723–757CrossRefGoogle Scholar
  10. Houtekamer P L, Mitchell H L. (1998). Data assimilation using an ensemble Kalman filter technique. Mon Weather Rev, 126: 796–811CrossRefGoogle Scholar
  11. Houtekamer P L, Mitchell H L. (2001). A sequential ensemble Kalman filter for atmospheric data assimilation. Mon Weather Rev, 129: 123–137CrossRefGoogle Scholar
  12. Howe B M, Runciman K, Secan J A. (1998). Tomography of the ionosphere: Four-dimensional simulations. Radio Sci, 33: 109–128CrossRefGoogle Scholar
  13. Hsu C T, Matsuo T, Wang W, Liu J Y. (2014). Effects of inferring unobserved thermospheric and ionospheric state variables by using an Ensemble Kalman filter on global ionospheric specification and forecasting. J Geophys Res-Space Phys, 119: 9256–9267CrossRefGoogle Scholar
  14. Lee I T, Matsuo T, Richmond A D, Liu J Y, Wang W, Lin C H, Anderson J L, Chen M Q. (2012). Assimilation of FORMOSAT-3/COSMIC electron density profiles into a coupled thermosphere/ionosphere model using ensemble Kalman filtering. J Geophys Res, 117: A10318CrossRefGoogle Scholar
  15. Mandrake L, Wilson B, Wang C, Hajj G, Mannucci A, Pi X. (2005). A performance evaluation of the operational jet propulsion laboratory/ university of southern California global assimilation ionospheric model (JPL/USC GAIM). J Geophys Res, 110: A12306CrossRefGoogle Scholar
  16. Matsuo T, Araujo-Pradere E A. (2011). Role of thermosphere-ionosphere coupling in a global ionospheric specification. Radio Sci, 46: RS0D23CrossRefGoogle Scholar
  17. Matsuo T, Lee I T, Anderson J L. (2013). Thermospheric mass density specification using an ensemble Kalman filter. J Geophys Res-Space Phys, 118: 1339–1350CrossRefGoogle Scholar
  18. Pi X, Wang C, Hajj G A, Rosen G, Wilson B D, Bailey G J. (2003). Estimation of E×B drift using a global assimilative ionospheric model: An observation system simulation experiment. J Geophys Res, 108: 1075CrossRefGoogle Scholar
  19. Richmond A D, Ridley E C, Roble R G. (1992). A thermosphere/ionosphere general circulation model with coupled electrodynamics. Geophys Res Lett, 19: 601–604CrossRefGoogle Scholar
  20. Rishbeth H, Müller-Wodarg I C F. (1999). Vertical circulation and thermospheric composition: A modelling study. Ann Geophys, 17: 794–805CrossRefGoogle Scholar
  21. Scherliess L, Schunk R W, Sojka J J, Thompson D C. (2004). Development of a physics-based reduced state Kalman filter for the ionosphere. Radio Sci, 39: RS1S04CrossRefGoogle Scholar
  22. Scherliess L, Schunk R W, Sojka J J, Thompson D C, Zhu L. (2006). Utah State University global assimilation of ionospheric measurements Gauss-Markov Kalman filter model of the ionosphere: Model description and validation. J Geophys Res, 111: A11315CrossRefGoogle Scholar
  23. Schunk R W, Scherliess L, Sojka J J, Thompson D C, Anderson D N, Codrescu M, Minter C, Fuller-Rowell T J, Heelis R A, Hairston M, Howe B M. (2004). Global assimilation of ionospheric measurements (GAIM). Radio Sci, 39: RS1S02CrossRefGoogle Scholar
  24. Van Leeuwen P J, Evensen G. (1996). Data assimilation and inverse methods in terms of a probabilistic formulation. Mon Weather Rev, 124: 2898–2913CrossRefGoogle Scholar
  25. Wang C, Hajj G, Pi X, Rosen I G, Wilson B. (2004). Development of the global assimilative ionospheric model. Radio Sci, 39: RS1S06Google Scholar
  26. Yue X A. (2008). Modeling and data assimilation of mid- and low-latitude ionosphere (in Chinese). Doctoral Dissertation. Beijng: Institude of Geology and Geophysics, Chinese Academy of SciencesGoogle Scholar
  27. Yue X, Schreiner W S, Lin Y C, Rocken C, Kuo Y H, Zhao B. (2011). Data assimilation retrieval of electron density profiles from radio occultation measurements. J Geophys Res, 116: A03317CrossRefGoogle Scholar
  28. Yue X, Schreiner W S, Lei J, Sokolovskiy S V, Rocken C, Hunt D C, Kuo Y H. (2010). Error analysis of Abel retrieved electron density profiles from radio occultation measurements. Ann Geophys, 28: 217–222CrossRefGoogle Scholar
  29. Yue X, Wan W, Lin L, Zheng F, Lei J, Zhao B, Xu G, Zahng S R, Zhu J. (2007). Data assimilation of incoherent scatter radar observation into a one-dimensional midlatitude ionospheric model by applying ensemble Kalman filter. Radio Sci, 42: RS6006CrossRefGoogle Scholar
  30. Zhang S R, Oliver W L, Fukao S, Kawamura S. (2001). Extraction of solar and thermospheric information from the ionospheric electron density profile. J Geophys Res, 106: 12821–12836CrossRefGoogle Scholar
  31. Zhang S R, Oliver W L, Holt J M, Fukao S. (2002). Solar EUV flux, exospheric temperature and thermospheric wind inferred from incoherent scatter measurements of the electron density profile at Millstone Hill and Shigaraki. Geophys Res Lett, 29: 72–1–72–4Google Scholar
  32. Zhang Y N, Wu X C and Hu X. (2017). TIEGCM Ensemble Kalman Filter Assimilation Model Design and Preliminary Results (in Chinese). Chin J Space Sci, 37: 168–176Google Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.National Space Science CenterChinese Academy of SciencesBeijingChina
  2. 2.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations