Science China Earth Sciences

, Volume 62, Issue 2, pp 389–402 | Cite as

Characteristics of carbonaceous aerosols analyzed using a multiwavelength thermal/optical carbon analyzer: A case study in Lanzhou City

  • Yulan ZhangEmail author
  • Shichang KangEmail author
Research Paper


Characteristics of atmospheric carbonaceous aerosols in Lanzhou City from December 2014 to November 2015 are analyzed using a multiwavelength thermal/optical carbon analyzer. Results reveal that average concentrations of black carbon (BC) and organic carbon in atmospheric aerosols at Lanzhou are 6.7 and 25.4 μg m−3, respectively, showing obvious seasonality (higher in winter and lower in summer). This is consistent with findings in cities of northern China. Primary organic aerosols and secondary organic aerosols respectively account for approximately 60% and 17% of carbonaceous aerosols. No significant seasonality is found for secondary organic carbon, indicating that its potential sources do not vary significantly throughout the study period. The mass absorption cross-section (MAC632 nm) of BC is 7.1 m2 g−1, slightly higher than that of immediately emitted BC. MAC values of BC at different wavelengths vary drastically; they are higher for ultraviolet and visible light (8.5–10.2 m2 g–1) than for near-infrared light (4.9–5.7 m2 g–1). The aerosol absorption optical depth generally declines from the near-infrared to the near-ultraviolet region. The values are higher in winter than in summer, thus showing there are different contributions of BC deposition in different seasons. Brown carbon (BrC) has an Ångström absorption exponent (AAE) value of approximately 2.75, which is similar to the AAE value of BrC generated by diesel combustion (2.3). The contribution of BrC to light absorption is as much as 34% at a wavelength of 635 nm. This study demonstrates that the multiwavelength thermal/optical carbon analyzer can quantify absorption properties of BrC in atmospheric aerosols. This can enhance understanding of carbonaceous aerosols and provide key parameters for simulations of climate models.


Carbonaceous aerosol Black carbon Organic carbon Brown carbon Multiwavelength thermal/optical carbon analyzer 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the National Natural Science Foundation of China (Grant Nos. 41671067, 41630754), the Key Research Program of Frontier Sciences CAS (Grant No. QYZDJSSW- DQC039), the State Key Laboratory of Cryospheric Sciences, Chinese Academy of Sciences (Grant No. SKLCS-ZZ-2018), the Youth Talents Project of Northwest Institute of Environmental Resources, Chinese Academy of Sciences, China Scholarship Council Project.


  1. Andreae M O, Gelencsér A. 2006. Black carbon or Brown carbon? The nature of light-absorbing carbonaceous aerosols. Atmos Chem Phys, 6: 3131–3148CrossRefGoogle Scholar
  2. Bond T C, Bergstrom R W. 2006. Light absorption by carbonaceous particles: An investigative review. Aerosol Sci Tech, 40: 27–67CrossRefGoogle Scholar
  3. Bond T C, Doherty S J, Fahey D W, Forster P M, Berntsen T, DeAngelo B J, Flanner M G, Ghan S, Kärcher B, Koch D, Kinne S, Kondo Y, Quinn P K, Sarofim M C, Schultz M G, Schulz M, Venkataraman C, Zhang H, Zhang S, Bellouin N, Guttikunda S K, Hopke P K, Jacobson M Z, Kaiser J W, Klimont Z, Lohmann U, Schwarz J P, Shindell D, Storelvmo T, Warren S G, Zender C S. 2013. Bounding the role of black carbon in the climate system: A scientific assessment. J Geophys Res-Atmos, 118: 5380–5552CrossRefGoogle Scholar
  4. Bond T C, Streets D G, Yarber K F, Nelson S M, Woo J H, Klimont Z. 2004. A technology-based global inventory of black and organic carbon emissions from combustion. J Geophys Res, 109: D14203CrossRefGoogle Scholar
  5. Bond T C, Zarzycki C, Flanner M G, Koch D M. 2011. Quantifying immediate radiative forcing by black carbon and organic matter with the specific forcing pulse. Atmos Chem Phys, 11: 1505–1525CrossRefGoogle Scholar
  6. Bones D L, Henricksen D K, Mang S A, Gonsior M, Bateman A P, Nguyen T B, Cooper W J, Nizkorodov S A. 2010. Appearance of strong absorbers and fluorophores in limonene-O3 secondary organic aerosol due to NH4 +-mediated chemical aging over long time scales. J Geophys Res, 115: D05203CrossRefGoogle Scholar
  7. Cabada J C, Pandis S N, Subramanian R, Robinson A L, Polidori A, Turpin B. 2004. Estimating the secondary organic aerosol contribution to PM2.5 using the EC tracer method special issue of Aerosol Science and Technology on Findings from the Fine Particulate Matter Supersites Program. Aerosol Sci Tech, 38: 140–155CrossRefGoogle Scholar
  8. Cao J J, Zhan C L. 2011. Research significance and role of black carbon in global climate and environmental systems (in Chinese with English abstract). J Earth Sci Environ, 33: 177–184Google Scholar
  9. Cao J J, Zhu C S, Chow J C, Watson J G, Han Y M, Wang G, Shen Z, An Z S. 2009. Black carbon relationships with emissions and meteorology in Xi’an, China. Atmos Res, 94: 194–202CrossRefGoogle Scholar
  10. Chakrabarty R K, Moosmüller H, Chen L W A, Lewis K, Arnott W P, Mazzoleni C, Dubey M K, Wold C E, Hao W M, Kreidenweis S M. 2010. Brown carbon in tar balls from smoldering biomass combustion. Atmos Chem Phys, 10: 6363–6370CrossRefGoogle Scholar
  11. Chen B, Bai Z, Cui X, Chen J M, Andersson A, Gustafsson Ö. 2016. Light absorption enhancement of black carbon from urban haze in Northern China winter. Environ Pollut, 221: 418–426CrossRefGoogle Scholar
  12. Chen L W A, Chow J C, Wang X L, Robles J A, Sumlin B J, Lowenthal D H, Zimmermann R, Watson J G. 2015. Multi-wavelength optical measurement to enhance thermal/optical analysis for carbonaceous aerosol. Atmos Meas Tech, 8: 451–461CrossRefGoogle Scholar
  13. Cheng Y. 2011. Study on the sampling and analysis methods of carbonaceous aerosols (in Chinese with English abstract). Doctoral Dissertation. Beijing: Tsinghua UniversityGoogle Scholar
  14. Cheng Y, He K B, Du Z Y, Engling G, Liu J M, Ma Y L, Zheng M, Weber R J. 2016. The characteristics of brown carbon aerosol during winter in Beijing. Atmos Environ, 127: 355–364CrossRefGoogle Scholar
  15. Cheng Y, He K B, Duan F K, Zheng M, Du Z Y, Ma Y L, Tan J H. 2011. Ambient organic carbon to elemental carbon ratios: Influences of the measurement methods and implications. Atmos Environ, 45: 2060–2066CrossRefGoogle Scholar
  16. Clarke A, McNaughton C, Kapustin V, Shinozuka Y, Howell S, Dibb J, Zhou J, Anderson B, Brekhovskikh V, Turner H, Pinkerton M. 2007. Biomass burning and pollution aerosol over North America: Organic components and their influence on spectral optical properties and humidification response. J Geophys Res, 112: D12S18CrossRefGoogle Scholar
  17. Cui X J, Wang X F, Yang L X, Chen B, Chen J M, Andersson A, Gustafsson Ö. 2016. Radiative absorption enhancement from coatings on black carbon aerosols. Sci Total Environ, 551–552: 51–56CrossRefGoogle Scholar
  18. Devi J J, Bergin M H, Mckenzie M, Schauer J J, Weber R J. 2016. Contribution of particulate brown carbon to light absorption in the rural and urban Southeast US. Atmos Environ, 136: 95–104CrossRefGoogle Scholar
  19. Feng T, Li G, Cao J, Bei N, Shen Z, Zhou W, Liu S, Zhang T, Wang Y, Huang R, Tie X, Molina L T. 2016. Simulations of organic aerosol concentrations during springtime in the Guanzhong Basin, China. Atmos Chem Phys, 16: 10045–10061CrossRefGoogle Scholar
  20. Feng Y, Ramanathan V, Kotamarthi V R. 2013. Brown carbon: A significant atmospheric absorber of solar radiation? Atmos Chem Phys, 13: 8607–8621CrossRefGoogle Scholar
  21. Flowers B A, Dubey M K, Mazzoleni C, Stone E A, Schauer J J, Kim S W, Yoon S C. 2010. Optical-chemical-microphysical relationships and closure studies for mixed carbonaceous aerosols observed at Jeju Island; 3-laser photoacoustic spectrometer, particle sizing, and filter analysis. Atmos Chem Phys, 10: 10387–10398CrossRefGoogle Scholar
  22. Gustafsson Ö, Ramanathan V. 2016. Convergence on climate warming by black carbon aerosols. Proc Natl Acad Sci USA, 113: 4243–4245CrossRefGoogle Scholar
  23. Hadley O L, Corrigan C E, Kirchstetter T W. 2008. Modified thermaloptical analysis using spectral absorption selectivity to distinguish black carbon from pyrolized organic carbon. Environ Sci Technol, 42: 8459–8464CrossRefGoogle Scholar
  24. Huang H, Ho K F, Lee S C, Tsang P K, Ho S S H, Zou C W, Zou S C, Cao J J, Xu H M. 2012. Characteristics of carbonaceous aerosol in PM2.5: Pearl Delta River Region, China. Atmos Res, 104–105: 227–236CrossRefGoogle Scholar
  25. IPCC. 2013. Intergovernmental Panel on Climate Change 2013: The physical science basis. In: Stocker T F, Qin D, Plattner G K, Tignor M M B, Allen S K, Boschung J, Nauels A, Xia Y, Bex V, Midgley P, eds. New York: Cambridge University PressGoogle Scholar
  26. Jacobson M C, Hansson H C, Noone K J, Charlson R J. 2000. Organic atmospheric aerosols: Review and state of the science. Rev Geophys, 38: 267–294CrossRefGoogle Scholar
  27. Kirchstetter T W, Novakov T, Hobbs P V. 2004. Evidence that the spectral dependence of light absorption by aerosols is affected by organic carbon. J Geophys Res, 109: D21208CrossRefGoogle Scholar
  28. Kirillova E N, Marinoni A, Bonasoni P, Vuillermoz E, Facchini M C, Fuzzi S, Decesari S. 2016. Light absorption properties of brown carbon in the high Himalayas. J Geophys Res-Atmos, 121: 9621–9639CrossRefGoogle Scholar
  29. Lack D A, Langridge J M, Bahreini R, Cappa C D, Middlebrook A M, Schwarz J P. 2012. Brown carbon and internal mixing in biomass burning particles. Proc Natl Acad Sci USA, 109: 14802–14807CrossRefGoogle Scholar
  30. Laskin A, Laskin J, Nizkorodov S A. 2015. Chemistry of atmospheric brown carbon. Chem Rev, 115: 4335–4382CrossRefGoogle Scholar
  31. Li C, Chen P, Kang S, Yan F, Hu Z, Qu B, Sillanpää M. 2016a. Concentrations and light absorption characteristics of carbonaceous aerosol in PM2.5 and PM10 of Lhasa city, the Tibetan Plateau. Atmos Environ, 127: 340–346CrossRefGoogle Scholar
  32. Li C, Yan F, Kang S, Chen P, Hu Z, Gao S, Qu B, Sillanpää M. 2016b. Light absorption characteristics of carbonaceous aerosols in two remote stations of the southern fringe of the Tibetan Plateau, China. Atmos Environ, 143: 79–85CrossRefGoogle Scholar
  33. Li J, Zhuang S G, Huang K, Lin Y, Xu C, Yu S. 2008. Characteristics and sources of air-borne particulate in Urumqi, China, the upstream area of Asia dust. Atmos Environ, 42: 776–787CrossRefGoogle Scholar
  34. Li W F, Bai Z P. 2009. Characteristics of organic and elemental carbon in atmospheric fine particles in Tianjin, China. Particuology, 7: 432–437CrossRefGoogle Scholar
  35. Lin G, Penner J E, Flanner M G, Sillman S, Xu L, Zhou C. 2014. Radiative forcing of organic aerosol in the atmosphere and on snow: Effects of SOA and brown carbon. J Geophys Res-Atmos, 119: 7453–7476CrossRefGoogle Scholar
  36. Lin P, Hu M, Deng Z, Slanina J, Han S, Kondo Y, Takegawa N, Miyazaki Y, Zhao Y, Sugimoto N. 2009. Seasonal and diurnal variations of organic carbon in PM2.5 in Beijing and the estimation of secondary organic carbon. J Geophys Res, 114: D00G11Google Scholar
  37. Liousse C, Penner J E, Walton J J, Eddleman H, Chuang C, Cachier H. 1996. Modelling biomass burning aerosols. Biomass Burning and Global Change, 1: 492–508Google Scholar
  38. Liu S, Aiken A C, Gorkowski K, Dubey M K, Cappa C D, Williams L R, Herndon S C, Massoli P, Fortner E C, Chhabra P S, Brooks W A, Onasch T B, Jayne J T, Worsnop D R, China S, Sharma N, Mazzoleni C, Xu L, Ng N L, Liu D, Allan J D, Lee J D, Fleming Z L, Mohr C, Zotter P, Szidat S, Prévôt A S H. 2015. Enhanced light absorption by mixed source black and brown carbon particles in UK winter. Nat Commun, 6: 8435CrossRefGoogle Scholar
  39. Ma J Z, Tang J, Li S M, Jacobson M Z. 2003. Size distributions of ionic aerosols measured at Waliguan Observatory: Implication for nitrate gasto-particle transfer processes in the free troposphere. J Geophys Res, 108: 4541CrossRefGoogle Scholar
  40. Marinoni A, Cristofanelli P, Laj P, Duchi R, Calzolari F, Decesari S, Sellegri K, Vuillermoz E, Verza G P, Villani P, Bonasoni P. 2010. Aerosol mass and black carbon concentrations, a two year record at NCO-P (5079 m, Southern Himalayas). Atmos Chem Phys, 10: 8551–8562CrossRefGoogle Scholar
  41. Ming J, Xiao C, Sun J, Kang S, Bonasoni P. 2010. Carbonaceous particles in the atmosphere and precipitation of the Nam Co region, central Tibet. J Environ Sci, 22: 1748–1756CrossRefGoogle Scholar
  42. Moosmüller H, Chakrabarty R K, Arnott W P. 2009. Aerosol light absorption and its measurement: A review. J Quant Spectr Radiative Transfer, 110: 844–878CrossRefGoogle Scholar
  43. Peng J, Hu M, Guo S, Du Z, Zheng J, Shang D, Levy Zamora M, Zeng L, Shao M, Wu Y S, Zheng J, Wang Y, Glen C R, Collins D R, Molina M J, Zhang R. 2016. Markedly enhanced absorption and direct radiative forcing of black carbon under polluted urban environments. Proc Natl Acad Sci USA, 113: 4266–4271CrossRefGoogle Scholar
  44. Pio C, Cerqueira M, Harrison R M, Nunes T, Mirante F, Alves C, Oliveira C, Sanchez de la Campa A, Artíñano B, Matos M. 2011. OC/EC ratio observations in Europe: Re-thinking the approach for apportionment between primary and secondary organic carbon. Atmos Environ, 45: 6121–6132CrossRefGoogle Scholar
  45. Pöschl U. 2003. Aerosol particle analysis: challenges and progress. Anal Bioanal Chem, 375: 30–32CrossRefGoogle Scholar
  46. Ram K, Sarin M M. 2009. Absorption coefficient and site-specific mass absorption efficiency of elemental carbon in aerosols over urban, rural, and high-altitude sites in India. Environ Sci Technol, 43: 8233–8239CrossRefGoogle Scholar
  47. Ramanathan V, Carmichael G. 2008. Global and regional climate changes due to black carbon. Nat Geosci, 1: 221–227CrossRefGoogle Scholar
  48. Ramanathan V, Crutzen P J, Kiehl J T, Rosenfeld D. 2001. Aerosols, climate, and the hydrological cycle. Science, 294: 2119–2124CrossRefGoogle Scholar
  49. Schauer J J, Mader B T, DeMinter J T, Heidemann G, Bae M S, Seinfeld J H, Flagan R C, Cary R A, Smith D, Huebert B J, Bertram T, Howell S, Kline J T, Quinn P, Bates T, Turpin B, Lim H J, Yu J Z, Yang H, Keywood M D. 2003. ACE-Asia intercomparison of a thermal-optical method for the determination of particle-phase organic and elemental carbon. Environ Sci Technol, 37: 993–1001CrossRefGoogle Scholar
  50. Turpin B J, Huntzicker J J. 1995. Identification of secondary organic aerosol episodes and quantitation of primary and secondary organic aerosol concentrations during SCAQS. Atmos Environ, 29: 3527–3544CrossRefGoogle Scholar
  51. Wang L, Li Z Q, Tian Q J, Ma Y, Zhang F X, Zhang Y, Li D H, Li K T, Li L. 2013. Estimate of aerosol absorbing components of black carbon, brown carbon, and dust from ground-based remote sensing data of sunsky radiometers. J Geophys Res-Atmos, 118: 6534–6543CrossRefGoogle Scholar
  52. Wang X, Heald C L, Sedlacek A J, de Sá S S, Martin S T, Alexander M L, Watson T B, Aiken A C, Springston S R, Artaxo P. 2016. Deriving brown carbon from multiwavelength absorption measurements: Method and application to AERONET and Aethalometer observations. Atmos Chem Phys, 16: 12733–12752CrossRefGoogle Scholar
  53. Weingartner E, Saathoff H, Schnaiter M, Streit N, Bitnar B, Baltensperger U. 2003. Absorption of light by soot particles: Determination of the absorption coefficient by means of aethalometers. J Aerosol Sci, 34: 1445–1463CrossRefGoogle Scholar
  54. Xie S D, Yu M, Jiang M. 2006. Research progress in source and formation of organic aerosol (in Chinese with English abstract). J Environ Sci, 26: 1933–1939Google Scholar
  55. Yan C Q, Zheng M, Zhang Y H. 2014. Research progress and direction of atmospheric brown carbon (in Chinese with English abstract). Environ Sci, 35: 4404–4413Google Scholar
  56. Yang F, He K, Ye B, Chen X, Cha L, Cadle S H, Chan T, Mulawa P A. 2005. One-year record of organic and elemental carbon in fine particles in downtown Beijing and Shanghai. Atmos Chem Phys, 5: 1449–1457CrossRefGoogle Scholar
  57. Yang M, Howell S G, Zhuang J, Huebert B J. 2009. Attribution of aerosol light absorption to black carbon, brown carbon, and dust in China–Interpretations of atmospheric measurements during EAST-AIRE. Atmos Chem Phys, 9: 2035–2050CrossRefGoogle Scholar
  58. Yu X, Zhu B, Fan S, Yin Y, Bu X. 2009. Ground-based observation of aerosol optical properties in Lanzhou, China. J Environ Sci, 21: 1519–1524CrossRefGoogle Scholar
  59. Zhang L, Zhang L, Zhang D L, Zhao S Q, Huang J P, Zhang W, Shi J S. 2011. Property of black carbon concentration over outskirts of Lanzhou, Northwest China (in Chinese with English abstract). Chin J Environ Sci, 31: 1248–1255Google Scholar
  60. Zhang Q. 2001. The influence of terrain and inversion.ayer on pollutant transfer over Lanzhou City (in Chinese with English abstract). Chin J Environ Sci, 21: 230–234Google Scholar
  61. Zhang X, Ming J, Li Z, Wang F, Zhang G. 2017. The online measured black carbon aerosol and source orientations in the Nam Co region, Tibet. Environ Sci Pollut Res, 24: 25021–25033CrossRefGoogle Scholar
  62. Zhang X Y, Wang Y Q, Niu T, Zhang X C, Gong S L, Zhang Y M, Sun J Y. 2012. Atmospheric aerosol compositions in China: Spatial/temporal variability, chemical signature, regional haze distribution and comparisons with global aerosols. Atmos Chem Phys, 12: 779–799CrossRefGoogle Scholar
  63. Zhang X Y. 2007. Aerosol over China and their climate effect (in Chinese with English abstract). Adv Earth Scie, 22: 12–16Google Scholar
  64. Zhao J G, Wang S G, Wang J Y, Bi J R, Shi J S, Wang T H, Zhang T Y. 2013. Analysis of the relationship between pollution in Lanzhou City and ground meteorological factors. J Lanzhou Univ-Natural Sci, 49: 491–497Google Scholar
  65. Zhao S, Ming J, Xiao C, Sun W, Qin X. 2012. A preliminary study on measurements of black carbon in the atmosphere of northwest Qilian Shan. J Environ Sci, 24: 152–159CrossRefGoogle Scholar
  66. Zhao X J, Chen C H, Yuan T, Zhang W, Dong X J. 2005. Lanzhou aerosol optical depth in winter and their relation with visibility (in Chinese with English abstract). Plateau Meteorol, 24: 617–622Google Scholar
  67. Zhao Z, Cao J J, Xu B Q, Zhu C S, Chen L W A, Su X L, Liu S X, Han Y M, Wang G H, Ho K. 2013. Aerosol particles at a high-altitude site on the Southeast Tibetan Plateau, China: Implications for pollution transport from South Asia. J Geophys Res-Atmos, 118: 11360–11375CrossRefGoogle Scholar
  68. Zheng M, Yan C Q, Li X Y, Wang X S, Zhang Y H. 2014. A review of methods for quantifuing secondary organic aerosol (in Chinese with English abstract). Chin J Environ Sci, 34: 555–564Google Scholar
  69. Zhu C S, Cao J J, Liu S X. 2006. Measurement and analysis of black carbon in Xi’an (in Chinese with English abstract). Chin J Process Engin, 6: 10–14Google Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environmental ResourcesChinese Academy of SciencesLanzhouChina
  2. 2.Geoscience Innovation and Innovation Center of the Tibetan PlateauChinese Academy of SciencesBeijingChina
  3. 3.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations