Science China Earth Sciences

, Volume 61, Issue 10, pp 1482–1490 | Cite as

Terahertz band simulations using two different radiative transfer models

  • Linjun PanEmail author
  • Daren Lü
Research Paper


A high-resolution dual-band terahertz (THz) radiometer was designed to measure vertical distributions of chemical elements in the middle atmosphere of the Tibetan Plateau. A forward simulation, which always should be conducted firstly for the development of a matching retrieval algorithm, has not been done before. We use two radiative transfer models, ARTS and AM, to simulate the water vapor, ozone and carbon monoxide spectra on the plateau based on the spectral design of the THz radiometer. The emission line characteristics of the three gases in this spectral band are identified. Reasons for the differences in the spectral simulations between the two models are analyzed for individual gases. The impact of several different spectral parameter settings on the simulations are evaluated through a series of sensitivity experiments. This study suggests that the ARTS is more suitable for the development of the THz radiometer retrieval algorithm. An optimal parameter setting of the ARTS for the three elements are given.


Terahertz radiation Radiometer Radiative transfer model Spectral simulation Plateau 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the National Natural Science Foundation of China (Grant Nos. 41505024 & 41127901).


  1. Anderson G P, Chetwynd J H, Clough S A, Shettle E P, Kneizys F X. 1986. AFGL atmospheric constituent profiles (0–120 km). Environmental Research Papers, No. 954, AFGL-TR-86-01110Google Scholar
  2. Blundell R. 2007. The Submillimeter Array. In: 2007 IEEE/MTT-S International Microwave Symposium. Honolulu. 38: 1857–1860CrossRefGoogle Scholar
  3. Buehler S A, Eriksson P. 2017. ARTS Theory. ARTS version 2.3.897Google Scholar
  4. Buehler S A, Eriksson P, Kuhn T, von Engeln A, Verdes C. 2005. ARTS, the atmospheric radiative transfer simulator. J Quant Spectrosc Ra, 91: 65–93CrossRefGoogle Scholar
  5. Buehler S A, Defer E, Evans F, Eliasson S, Mendrok J, Eriksson P, Lee C, Jiménez C, Prigent C, Crewell S, Kasai Y, Bennartz R, Gasiewski A J. 2012. Observing ice clouds in the submillimeter spectral range: The CloudIce mission proposal for ESA’s Earth Explorer 8. Atmos Meas Tech, 5: 1529–1549CrossRefGoogle Scholar
  6. Buehler S A, Mendrok J, Eriksson P, Perrin A, Larsson R, Lemke O. 2018. ARTS, the atmospheric radiative transfer simulator-version 2.2, The planetary toolbox edition. Geosci Model Dev, 11: 1537–1556CrossRefGoogle Scholar
  7. Cheng D J, de Zafra R L, Trimble C. 1996. Millimeter wave spectroscopic measurements over the South Pole: 2. An 11-month cycle of stratospheric ozone observations during 1993–1994. J Geophys Res, 101: 6781–6793CrossRefGoogle Scholar
  8. Connor B J, Siskind D E, Tsou J J, Parrish A, Remsberg E E. 1994. Ground-based microwave observations of ozone in the upper stratosphere and mesosphere. J Geophys Res, 99: 16757–16770CrossRefGoogle Scholar
  9. Connor B J, Parrish A, Tsou J J, McCormick M P. 1995. Error analysis for the ground-based microwave ozone measurements during STOIC. J Geophys Res, 100: 9283–9291CrossRefGoogle Scholar
  10. Crewell S, Cheng D, de Zafra R L, Trimble C. 1995. Millimeter wave spectroscopic measurements over the South Pole: 1. A study of stratospheric dynamics using N2O observations. J Geophys Res, 100: 20839CrossRefGoogle Scholar
  11. de Zafra R L, Jaramillo M, Parrish A, Solomon P, Connor B, Barrett J. 1987. High concentrations of chlorine monoxide at low altitudes in the Antarctic spring stratosphere: Diurnal variation. Nature, 328: 408–411CrossRefGoogle Scholar
  12. de Zafra R L, Reeves J M, Shindell D T. 1995. Chlorine monoxide in the Antarctic spring vortex: 1. Evolution of midday vertical profiles over McMurdo Station, 1993. J Geophys Res, 100: 13999CrossRefGoogle Scholar
  13. de Zafra R L, Muscari G. 2004. Correction to “CO as an important highaltitude tracer of dynamics in the polar stratosphere and mesosphere”. J Geophys Res, 109: D16102CrossRefGoogle Scholar
  14. Delamere J S, Clough S A, Payne V H, Mlawer E J, Turner D D, Gamache R R. 2010. A far-infrared radiative closure study in the Arctic: Application to water vapor. J Geophys Res, 115: D17106CrossRefGoogle Scholar
  15. de Lange A, Birk A M, de Lange G, Friedl-Vallon F, Kiselev O, Koshelets V, Maucher G, Oelhaf H, Selig A, Vogt P, Wagner G, Landgraf J. 2011. HCl and ClO in activated Arctic air; first retrieved vertical profiles from TELIS submillimetre limb spectra. Atmos Meas Tech Discuss, 4: 6497–6537CrossRefGoogle Scholar
  16. Eriksson P, Buehler S A, Davis C P, Emde C, Lemke O. 2011. ARTS, the atmospheric radiative transfer simulator, version 2. J Quant Spectr Rad, 112: 1551–1558CrossRefGoogle Scholar
  17. Forkman P, Christensen O M, Eriksson P, Billade B, Vassilev V, Shulga V M. 2015. A compact receiver system for simultaneous measurements of mesospheric CO and O3. Geosci Instrum Method Data Syst Discuss, 5: 311–361CrossRefGoogle Scholar
  18. Hoffmann C G, Raffalski U, Palm M, Funke B, Golchert S H W, Hochschild G, Notholt J. 2011. Observation of strato-mesospheric CO above Kiruna with ground-based microwave radiometry—Retrieval and satellite comparison. Atmos Meas Tech, 4: 2389–2408CrossRefGoogle Scholar
  19. John V O, Buehler S A. 2004. The impact of ozone lines on AMSU-B radiances. Geophys Res Lett, 31: L21108CrossRefGoogle Scholar
  20. Kasai Y J, Koshiro T, Endo M, Jones N B, Murayama Y. 2005. Groundbased measurement of strato-mesospheric CO by a FTIR spectrometer over Poker Flat, Alaska. Adv Space Res, 35: 2024–2030CrossRefGoogle Scholar
  21. Kawabata K, Ogawa H, Yonekura Y. 1994. Ground-based millimeterwave measurements of mesosopheric and stratospheric ozone employing an SIS mixer receiver. J Geomagn Geoelec, 46: 755–770CrossRefGoogle Scholar
  22. Kawabata K, Ogawa H, Yonekura Y, Suzuki H, Suzuki M, Iwasaka Y, Shibata T, Sakai T. 1997. Ground-based radiometry of stratomesospheric ozone employing a superconductive receiver. J Geophys Res, 102: 1371–1377CrossRefGoogle Scholar
  23. Kunzi K F, Carlson E R. 1982. Atmospheric CO volume mixing ratio profiles determined from dround-based measurements of the J=1→O and J=2→1 emission lines. J Geophys Res, 87: 7235–7241CrossRefGoogle Scholar
  24. Kuwahara T, Mizuno A, Nagahama T, Maezawa H, Morihira A, Toriyama N, Murayama S, Matsuura M, Sugimoto T, Asayama S, Mizuno N, Onishi T, Fukui Y. 2008. Ground-based millimeter-wave observations of water vapor emission (183 GHz) at Atacama, Chile. Adv Space Res, 42: 1167–1171CrossRefGoogle Scholar
  25. Li X X, Paine S, Yao Q J, Shi S C, Matsuo H, Yang J, Zhang Q Z. 2009. A Fourier transform spectrometer for site testing at Dome A. Proc. SPIE, 7385Google Scholar
  26. Liebe H J, Layton D H. 1987. Millimeter-wave properties of the atmosphere: Laboratory studies and propagation modelling. Technical Report 87224. U.S. Dept. of Commerce, National Telecommunications and Information Administration, Institute for Communication SciencesGoogle Scholar
  27. Liebe H J. 1989. MPM—An atmospheric millimeter-wave propagation model. Int J Infrared Milli Waves, 10: 631–650CrossRefGoogle Scholar
  28. Liebe H J, Hufford G A, Cotton M G. 1993. Propagation modeling of moist air and suspended water/ice particles at frequencies below 1000 GHz. In AGARD 52nd Specialists Meeting of the Electromagnetic Wave Propagation Panel, Palma de Mallorca, SpainGoogle Scholar
  29. Lu D, Pan W L. 2013. Atmospheric profiling synthetic observation system (APSOS). AIP Conf Proceed, 1531: 244–247CrossRefGoogle Scholar
  30. Matsuo Hiroshi. 2010. Far-Infrared interferometry from Antarctica. International Symposium on space Terahertz Technology, OxfordGoogle Scholar
  31. Melsheimer C, Verdes C, Buehler S A, Emde C, Eriksson P, Feist D G, Ichizawa S, John V O, Kasai Y, Kopp G, Koulev N, Kuhn T, Lemke O, Ochiai S, Schreier F, Sreerekha T R, Suzuki M, Takahashi C, Tsujimaru S, Urban J. 2005. Intercomparison of general purpose clear sky atmospheric radiative transfer models for the millimeter/submillimeter spectral range. Radio Sci, 40: RS1007CrossRefGoogle Scholar
  32. Mlawer E J, Payne V H, Moncet J L, Delamere J S, Alvarado M J, Tobin D C. 2012. Development and recent evaluation of the MT_CKD model of continuum absorption. Philos Trans R Soc A-Math Phys Eng Sci, 370: 2520–2556CrossRefGoogle Scholar
  33. Nagahama T, Nakane H, Fujinuma Y, Ninomiya M, Ogawa H, Fukui Y. 1999. Ground-based millimeter-wave observations of ozone in the upper stratosphere and mesosphere over Tsukuba. Earth Planet Space, 51: 1287–1296CrossRefGoogle Scholar
  34. Nagahama T, Nakane H, Fujinuma Y, Ogawa H, Mizuno A, Fukui Y. 2003. A semiannual variation of ozone in the middle mesosphere observed with the millimeter-wave radiometer at Tsukuba, Japan. J Geophys Res, 108: 4684Google Scholar
  35. Paine S. 2018. The am atmospheric model. SMA technical memo #152 (version 10.0)Google Scholar
  36. Parrish A, Dezafra R L, Solomon P M, Barrett J W. 1988. A ground-based technique for millimeter wave spectroscopic observations of stratospheric trace constituents. Radio Sci, 23: 106–118CrossRefGoogle Scholar
  37. Payne V H, Mlawer E J, Cady-Pereira K E, Moncet J L. 2011. Water vapor continuum absorption in the microwave. IEEE Trans Geosci Remote Sens, 49: 2194–2208CrossRefGoogle Scholar
  38. Picket H M, Poynter R L, Cohen E A, Delitsky M L, Pearson J C, Müller H S P. 1998. Submillimeter, millimeter, and microwave spectral line catalog. J Quant Spectrosc Ra, 60: 883–890CrossRefGoogle Scholar
  39. Rosenkranz P W. 1993. Absorption of microwaves by atmospheric gases. In: Janssen M A, ed. Atmospheric Remote Sensing by Microwave Radiometry. Hoboken: John Wiley & Sons, Inc. 37–90Google Scholar
  40. Rosenkranz P W. 1998. Water vapor microwave continuum absorption: A comparison of measurements and models. Radio Sci, 33: 919–928CrossRefGoogle Scholar
  41. Shi S C, Paine S, Yao Q J, Lin Z H, Li X X, Duan W Y, Matsuo H, Zhang Q, Yang J, Ashley M C B, Shang Z, Hu Z W. 2016. Terahertz and farinfrared windows opened at Dome a in Antarctica. Nat Astron, 1: 0001CrossRefGoogle Scholar
  42. Solomon S, Garcia R R, Olivero J J, Bevilacqua R M, Schwartz P R, Clancy R T, Muhleman D O. 1985. Photochemistry and transport of carbon monoxide in the middle atmosphere. J Atmos Sci, 42: 1072–1083CrossRefGoogle Scholar
  43. Straub C, Espy P J, Hibbins R E, Newnham D A. 2013. Mesospheric CO above Troll station, Antarctica observed by a ground based microwave radiometer. Earth Syst Sci Data Discuss, 6: 1–26CrossRefGoogle Scholar
  44. Suen J Y, Fang M T, Lubin P M. 2014. Global distribution of water vapor and cloud cover—Sites for high-performance THz applications. IEEE Trans THz Sci Technol, 4: 86–100CrossRefGoogle Scholar
  45. Tschanz B, Straub C, Scheiben D, Walker K A, Stiller G P, Kämpfer N. 2013. Validation of middle atmospheric campaign-based water vapour measured by the ground-based microwave radiometer MIAWARA-C. Atmos Meas Tech Discuss, 6: 1311–1359CrossRefGoogle Scholar
  46. Urban N R, Auer M T, Green S A, Lu X, Apul D S, Powell K D, Bub L. 2005. Carbon cycling in Lake Superior. J Geophys Res, 110: 1–20CrossRefGoogle Scholar
  47. Yao Q J, Liu D, Li J, Lin Z H, Lou Z, Shi S C, Maezawa H, Paine S. 2012. Atmospheric profiling synthetic observation system at THz. Proc SPIE, 8562: 85620TCrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratory for Middle Atmosphere and Global Environment Observation, Institute of Atmospheric PhysicsChinese Academy of SciencesBeijingChina

Personalised recommendations