Advertisement

Science China Earth Sciences

, Volume 61, Issue 11, pp 1669–1684 | Cite as

Modeling the distribution of Populus euphratica in the Heihe River Basin, an inland river basin in an arid region of China

  • Yanlong Guo
  • Xin Li
  • Zefang Zhao
  • Haiyan Wei
Research Paper
  • 27 Downloads

Abstract

Populus euphratica is a dominant tree species in riparian Tugai forests and forms a natural barrier that maintains the stability of local oases in arid inland river basins. Despite being critical information for local environmental protection and recovery, establishing the specific spatial distribution of P. euphratica has rarely been attempted via precise and reliable species distribution models in such areas. In this research, the potential geographic distribution of P. euphratica in the Heihe River Basin was simulated with MaxEnt software based on species occurrence data and 29 environmental variables. The result showed that in the Heihe River Basin, 820 km2 of land primarily distributed along the banks of the lower reaches of the river is a suitable habitat for P. euphratica. We built other MaxEnt models based on different environmental variables and another eight models employing different mathematical algorithms based on the same 29 environmental variables to demonstrate the superiority of this method. MaxEnt based on 29 environmental variables performed the best among these models, as it precisely described the essential characteristics of the distribution of P. euphratica forest land. This study verified that MaxEnt can serve as an effective tool for species distribution in extremely arid regions with sufficient and reliable environmental variables. The results suggest that there may be a larger area of P. euphratica forest distribution in the study area and that ecological conservation and management of P. euphratica should prioritize suitable habitat. This research provides valuable insights for the conservation and management of degraded P. euphratica riparian forests.

Keywords

Populus euphratica MaxEnt Species distribution models Model comparison Inland river basin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 91425303), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA20100104) and the 13th Five-year Informatization Plan of Chinese Academy of Sciences (Grant No. XXH13505–06).

Supplementary material

References

  1. Adhikari D, Barik S K, Upadhaya K. 2012. Habitat distribution modelling for reintroduction of Ilex khasiana Purk., a critically endangered tree species of northeastern India. Ecol Eng, 40: 37–43CrossRefGoogle Scholar
  2. Aishan T, Halik Ü, Cyffka B, Kuba M, Abliz A, Baidourela A. 2013. Monitoring the hydrological and ecological response to water diversion in the lower reaches of the Tarim River, Northwest China. Quat Int, 311: 155–162CrossRefGoogle Scholar
  3. Aishan T, Halik Ü, Kurban A, Cyffka B, Kuba M, Betz F, Keyimu M. 2015. Eco-morphological response of floodplain forests (Populus euphratica Oliv.) to water diversion in the lower Tarim River, Northwest China. Environ Earth Sci, 73: 533–545CrossRefGoogle Scholar
  4. Allouche O, Tsoar A, Kadmon R. 2006. Assessing the accuracy of species distribution models: Prevalence, kappa and the true skill statistic (TSS). J Appl Ecol, 43: 1223–1232CrossRefGoogle Scholar
  5. Anderson R P. 2013. A framework for using niche models to estimate impacts of climate change on species distributions. Ann New York Acad Sci, 1297: 8–28CrossRefGoogle Scholar
  6. Andriamparany J N, Brinkmann K, Wiehle M, Jeannoda V, Buerkert A. 2015. Modelling the distribution of four Dioscorea species on the Mahafaly Plateau of south-western Madagascar using biotic and abiotic variables. Agric Ecosyst Environ, 212: 38–48CrossRefGoogle Scholar
  7. Araújo M B, Luoto M. 2007. The importance of biotic interactions for modelling species distributions under climate change. Glob Ecol Biogeogr, 16: 743–753CrossRefGoogle Scholar
  8. Barbet-Massin M, Jiguet F, Albert C H, Thuiller W. 2012. Selecting pseudo-absences for species distribution models: How, where and how many? Methods Ecol Evol, 3: 327–338CrossRefGoogle Scholar
  9. Barbet-Massin M, Rome Q, Muller F, Perrard A, Villemant C, Jiguet F. 2013. Climate change increases the risk of invasion by the Yellowlegged hornet. Biol Conserv, 157: 4–10CrossRefGoogle Scholar
  10. Bradter U, Kunin W E, Altringham J D, Thom T J, Benton T G. 2013. Identifying appropriate spatial scales of predictors in species distribution models with the random forest algorithm. Methods Ecol Evol, 4: 167–174CrossRefGoogle Scholar
  11. Brown C J, O’Connor M I, Poloczanska E S, Schoeman D S, Buckley L B, Burrows M T, Duarte C M, Halpern B S, Pandolfi J M, Parmesan C, Richardson A J. 2016. Ecological and methodological drivers of species’ distribution and phenology responses to climate change. Glob Change Biol, 22: 1548–1560CrossRefGoogle Scholar
  12. Bucklin D N, Basille M, Benscoter A M, Brandt L A, Mazzotti F J, Romañach S S, Speroterra C, Watling J I. 2015. Comparing species distribution models constructed with different subsets of environmental predictors. Divers Distrib, 21: 23–35CrossRefGoogle Scholar
  13. Busby J R. 1991. BIOCLIM—A bioclimate analysis and prediction system. In: Margules C R, Austin M P, eds. Nature Conservation: Cost Effective Biological Surveys and Data Analysis. Victoria: CSIRO. 64–68Google Scholar
  14. Cheng G, Li X, Zhao W, Xu Z, Feng Q, Xiao S, Xiao H. 2014. Integrated study of the water-ecosystem-economy in the Heihe River Basin. Nat Sci Rev, 1: 413–428CrossRefGoogle Scholar
  15. Edwards Jr T C, Cutler D R, Zimmermann N E, Geiser L, Moisen G G. 2006. Effects of sample survey design on the accuracy of classification tree models in species distribution models. Ecol Model, 199: 132–141CrossRefGoogle Scholar
  16. Elith J, Leathwick J R. 2009. Species distribution models: Ecological explanation and prediction across space and time. Annu Rev Ecol Evol Syst, 40: 677–697CrossRefGoogle Scholar
  17. Escalante T, Rodríguez-Tapia G, Linaje M, Illoldi-Rangel P, González-López R. 2013. Identification of areas of endemism from species distribution models: Threshold selection and Nearctic mammals. TIP, 16: 5–17CrossRefGoogle Scholar
  18. Fang M, Li X. 2016. Paleoclimate data assimilation: Its motivation, progress and prospects. Sci China Earth Sci, 59: 1817–1826CrossRefGoogle Scholar
  19. Fei S, Yu F. 2016. Quality of presence data determines species distribution model performance: A novel index to evaluate data quality. Landsc Ecol, 31: 31–42CrossRefGoogle Scholar
  20. Ficetola G F, Thuiller W, Padoa-Schioppa E. 2009. From introduction to the establishment of alien species: Bioclimatic differences between presence and reproduction localities in the slider turtle. Divers Distrib, 15: 108–116CrossRefGoogle Scholar
  21. Guo Y, Wei H, Lu C, Gao B, Gu W. 2016. Predictions of potential geographical distribution and quality of Schisandra sphenanthera under climate change. PeerJ, 4: e2554CrossRefGoogle Scholar
  22. Heikkinen R K, Luoto M, Araújo M B, Virkkala R, Thuiller W, Sykes M T. 2006. Methods and uncertainties in bioclimatic envelope modelling under climate change. Prog Phys Geogr, 30: 751–777CrossRefGoogle Scholar
  23. Hijmans R J, Cameron S E, Parra J L, Jones P G, Jarvis A. 2005. Very high resolution interpolated climate surfaces for global land areas. Int J Climatol, 25: 1965–1978CrossRefGoogle Scholar
  24. Hu X, Lu L, Li X, Wang J, Lu X. 2015. Ejin oasis land use and vegetation change between 2000 and 2011: The role of the Ecological Water Diversion Project. Energies, 8: 7040–7057CrossRefGoogle Scholar
  25. Keyimu M, Halik Ü, Betz F, Dulamsuren C. 2018. Vitality variation and population structure of a riparian forest in the lower reaches of the Tarim River, NW China. J Forest Res, 29: 749–760CrossRefGoogle Scholar
  26. Kuemmerlen M, Schmalz B, Guse B, Cai Q, Fohrer N, Jähnig S C. 2014. Integrating catchment properties in small scale species distribution models of stream macroinvertebrates. Ecol Model, 277: 77–86CrossRefGoogle Scholar
  27. Li W, Si J, Yu T, Li X. 2016. Response of Populus euphratica Oliv. sap flow to environmental variables for a desert riparian forest in the Heihe River Basin, Northwest China. J Arid Land, 8: 591–603CrossRefGoogle Scholar
  28. Li X, Lu L, Cheng G, Xiao H. 2001. Quantifying landscape structure of the Heihe River Basin, north-west China using FRAGSTATS. J Arid Environ, 48: 521–535CrossRefGoogle Scholar
  29. Li X, Nan Z, Cheng G, Ding Y, Wu L, Wang L, Wang J, Ran Y, Li H, Pan X, Zhu Z. 2011. Toward an improved data stewardship and service for environmental and ecological science data in West China. Int J Digital Earth, 4: 347–359CrossRefGoogle Scholar
  30. Liu F, Rossiter D G, Song X D, Zhang G L, Yang R M, Zhao Y G, Li D C, Ju B. 2016. A similarity-based method for three-dimensional prediction of soil organic matter concentration. Geoderma, 263: 254–263CrossRefGoogle Scholar
  31. Lu C Y, Gu W, Dai A H, Wei H Y. 2012. Assessing habitat suitability based on geographic information system (GIS) and fuzzy: A case study of Schisandra sphenanthera Rehd. et Wils. in Qinling Mountains, China. Ecol Model, 242: 105–115CrossRefGoogle Scholar
  32. Marmion M, Luoto M, Heikkinen R K, Thuiller W. 2009a. The performance of state-of-the-art modelling techniques depends on geographical distribution of species. Ecol Model, 220: 3512–3520CrossRefGoogle Scholar
  33. Marmion M, Parviainen M, Luoto M, Heikkinen R K, Thuiller W. 2009b. Evaluation of consensus methods in predictive species distribution modelling. Divers Distrib, 15: 59–69CrossRefGoogle Scholar
  34. Márquez A L, Real R, Olivero J, Estrada A. 2011. Combining climate with other influential factors for modelling the impact of climate change on species distribution. Clim Change, 108: 135–157CrossRefGoogle Scholar
  35. Merow C, Smith M J, Silander Jr J A. 2013. A practical guide to MaxEnt for modeling species’ distributions: What it does, and why inputs and settings matter. Ecography, 36: 1058–1069CrossRefGoogle Scholar
  36. Naimi B, Araújo M B. 2016. Sdm: A reproducible and extensible R platform for species distribution modelling. Ecography, 39: 368–375CrossRefGoogle Scholar
  37. Pan X, Li X, Cheng G, Li H, He X. 2015. Development and evaluation of a river-basin-scale high spatio-temporal precipitation data set using the WRF model: A case study of the Heihe River Basin. Remote Sens, 7: 9230–9252CrossRefGoogle Scholar
  38. Pan X, Li X, Shi X, Han X, Luo L, Wang L. 2012. Dynamic downscaling of near-surface air temperature at the basin scale using WRF—A case study in the Heihe River Basin, China. Front Earth Sci, 6: 314–323CrossRefGoogle Scholar
  39. Pan X, Li X, Yang K, He J, Zhang Y, Han X. 2014. Comparison of downscaled precipitation data over a mountainous watershed: A case study in the Heihe River Basin. J Hydrometeorol, 15: 1560–1574CrossRefGoogle Scholar
  40. Peng X, Xiao S, Xiao H. 2013. Preliminary dendrochronological studies on Populus euphratica in the lower reaches of the Heihe River basin in northwest China. Dendrochronologia, 31: 242–249CrossRefGoogle Scholar
  41. Phillips S J, Anderson R P, Schapire R E. 2006. Maximum entropy modeling of species geographic distributions. Ecol Model, 190: 231–259CrossRefGoogle Scholar
  42. Pliscoff P, Luebert F, Hilger H H, Guisan A. 2014. Effects of alternative sets of climatic predictors on species distribution models and associated estimates of extinction risk: A test with plants in an arid environment. Ecol Model, 288: 166–177CrossRefGoogle Scholar
  43. Ran Y H, Li X, Lu L, Li Z Y. 2012. Large-scale land cover mapping with the integration of multi-source information based on the Dempster–Shafer theory. Int J Geogr Inf Sci, 26: 169–191CrossRefGoogle Scholar
  44. Ray D, Behera M D, Jacob J. 2016. Predicting the distribution of rubber trees (Hevea brasiliensis) through ecological niche modelling with climate, soil, topography and socioeconomic factors. Ecol Res, 31: 75–91CrossRefGoogle Scholar
  45. Ridgeway G. 1999. The state of boosting. Comput Sci Stat, 31: 172–181Google Scholar
  46. Rödder D, Lötters S. 2009. Niche shift versus niche conservatism? Climatic characteristics of the native and invasive ranges of the Mediterranean house gecko (Hemidactylus turcicus ). Glob Ecol Biogeogr, 18: 674–687CrossRefGoogle Scholar
  47. Rüger N, Schlüter M, Matthies M. 2005. A fuzzy habitat suitability index for Populus euphratica in the Northern Amudarya delta (Uzbekistan). Ecol Model, 184: 313–328CrossRefGoogle Scholar
  48. Song X D, Brus D J, Liu F, Li D C, Zhao Y G, Yang J L, Zhang G L. 2016. Mapping soil organic carbon content by geographically weighted regression: A case study in the Heihe River Basin, China. Geoderma, 261: 11–22CrossRefGoogle Scholar
  49. Tayierjiang A, Umut H, Arkin H, Bernd C, Christian O. 2011. Spatial distribution of Populus euphratica forests on Argan section in the lower reaches of Tarim River and its influencing factors (in Chinese). J Arid Land Resour Environ, 25: 156–160Google Scholar
  50. Thuiller W, Lafourcade B, Engler R, Araújo M B. 2009. BIOMOD—A platform for ensemble forecasting of species distributions. Ecography, 32: 369–373CrossRefGoogle Scholar
  51. Tian Y, Zheng Y, Zheng C, Xiao H, Fan W, Zou S, Wu B, Yao Y, Zhang A, Liu J. 2015. Exploring scale-dependent ecohydrological responses in a large endorheic river basin through integrated surface water-groundwater modeling. Water Resour Res, 51: 4065–4085CrossRefGoogle Scholar
  52. Wang J H, Ge C M, Zhao J, Hu X L. 2014. Landuse/Landcover data in the down reaches of the Heihe River Basin in 2011. Cold and Arid Regions Sciences Data Center at Lanzhou (https://doi.org/westdc.westgis.ac.cn Google Scholar
  53. Wang Y Y, Zhong B, Shang F J. 2016. An automatic method to extract populus euphratica forest in a large area using remote sensing. In: 4th International Conference on Mechanical Materials and Manufacturing Engineering, WuhanGoogle Scholar
  54. Yang F, Zhang G L, Yang J L, Li D C, Zhao Y G, Liu F, Yang R M, Yang F. 2014. Organic matter controls of soil water retention in an alpine grassland and its significance for hydrological processes. J Hydrol, 519: 3086–3093CrossRefGoogle Scholar
  55. Yang R M, Zhang G L, Liu F, Lu Y Y, Yang F, Yang F, Yang M, Zhao Y G, Li D C. 2016. Comparison of boosted regression tree and random forest models for mapping topsoil organic carbon concentration in an alpine ecosystem. Ecol Indic, 60: 870–878CrossRefGoogle Scholar
  56. Yang X Q, Kushwaha S P S, Saran S, Xu J, Roy P S. 2013. Maxent modeling for predicting the potential distribution of medicinal plant, Justicia adhatoda L. in Lesser Himalayan foothills. Ecol Eng, 51: 83–87CrossRefGoogle Scholar
  57. Yi Y, Cheng X, Yang Z F, Zhang S H. 2016. Maxent modeling for predicting the potential distribution of endangered medicinal plant (H. riparia Lour) in Yunnan, China. Ecol Eng, 92: 260–269CrossRefGoogle Scholar
  58. Yuan H S, Wei Y L, Wang X G. 2015. Maxent modeling for predicting the potential distribution of Sanghuang, an important group of medicinal fungi in China. Fungal Ecol, 17: 140–145CrossRefGoogle Scholar
  59. Zhang X, Nan Z, Wu J, Du E, Wang T, You Y. 2012. Mountain permafrost distribution modeling using multivariate adaptive regression spline (MARS) in the Wenquan area over the Qinghai-Tibet Plateau. Sci Cold Arid Regions, 4: 361–370CrossRefGoogle Scholar
  60. Zhao W Z, Chang X L, Li Q Y. 2005. Artificial water diversion effects of HeiheRiver on Populus euphratica Oliv. Desert riparian forests in Ejina. Acta Ecol Sin, 25: 1987–1993Google Scholar
  61. Zhu Y, Ren L, Skaggs T H, Lü H, Yu Z, Wu Y, Fang X. 2009. Simulation of Populus euphratica root uptake of groundwater in an arid woodland of the Ejina Basin, China. Hydrol Process, 23: 2460–2469CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Yanlong Guo
    • 1
    • 2
  • Xin Li
    • 1
    • 2
    • 3
  • Zefang Zhao
    • 4
  • Haiyan Wei
    • 4
  1. 1.Key Laboratory of Remote Sensing of Gansu Province, Northwest Institute of Eco-Environment and ResourcesChinese Academy of SciencesLanzhouChina
  2. 2.University of Chinese Academy of SciencesBeijingChina
  3. 3.CAS Center for Excellence in Tibetan Plateau Earth SciencesBeijingChina
  4. 4.School of Geography and TourismShaanxi Normal UniversityXi’anChina

Personalised recommendations