Advertisement

Science China Earth Sciences

, Volume 62, Issue 1, pp 154–188 | Cite as

Permian integrative stratigraphy and timescale of China

  • Shuzhong ShenEmail author
  • Hua Zhang
  • Yichun Zhang
  • Dongxun Yuan
  • Bo Chen
  • Weihong He
  • Lin Mu
  • Wei Lin
  • Wenqian Wang
  • Jun Chen
  • Qiong Wu
  • Changqun Cao
  • Yue Wang
  • Xiangdong Wang
Review

Abstract

A series of global major geological and biological events occurred during the Permian Period. Establishing a highresolution stratigraphic and temporal framework is essential to understand their cause-effect relationship. The official International timescale of the Permian System consists of three series (i.e., Cisuralian, Guadalupian and Lopingian in ascending order) and nine stages. In China, the Permian System is composed of three series (Chuanshanian, Yansingian and Lopingian) and eight stages, of which the subdivisions and definitions of the Chuanshanian and Yangsingian series are very different from the Cisuralian and Guadalupian series. The Permian Period spanned ∼47 Myr. Its base is defined by the First Appearance Datum (FAD) of the conodont Streptognathodus isolatus at Aidaralash, Kazakhstan with an interpolated absolute age 298.9±0.15 Ma at Usolka, southern Urals, Russia. Its top equals the base of the Triassic System and is defined by the FAD of the conodont Hindeodus parvus at Meishan D section, southeast China with an interpolated absolute age 251.902±0.024 Ma. Thirty-five conodont, 23 fusulinid, 17 radiolarian and 20 ammonoid zones are established for the Permian in China, of which the Guadalupian and Lopingian conodont zones have been served as the standard for international correlation. The Permian δ13Ccarb trend indicates that it is characterized by a rapid negative shift of 3–5‰ at the end of the Changhsingian, which can be used for global correlation of the end-Permian mass extinction interval, but δ13Ccarb records from all other intervals may have more or less suffered subsequent diagenetic alteration or represented regional or local signatures only. Permian δ18O{ainpatite} studies suggest that an icehouse stage dominated the time interval from the late Carboniferous to Kungurian (late Cisuralian). However, paleoclimate began to ameriolate during the late Kungurian and gradually shifted into a greenhouse-dominated stage during the Guadalupian. The Changhsingian was a relatively cool stage, followed by a globally-recognizable rapid temperature rise of 8–10°C at the very end of the Changhsingian. The 87Sr/86Sr ratio trend shows that their values at the beginning of the Permian were between 0.70800, then gradually decreased to the late Capitanian minimum 0.70680–0.70690, followed by a persistent increase until the end of the Permian with the value 0.70708. Magenetostratigraphy suggests two distinct stages separated by the Illawarra Reversal in the middle Wordian, of which the lower is the reverse polarity Kiaman Superchron and the upper is the mixed-polarity Illawarra Superchron. The end-Guadalupian (or pre-Lopingian) biological crisis occurred during the late Capitanian, when faunal changeovers of different fossil groups had different paces, but generally experienced a relatively long time from the Jinogondolella altudensis Zone until the earliest Wuchiapingian. The end-Permian mass extinction was a catastrophic event that is best constrained at the Meishan section, which occurred at 251.941±0.037 Ma and persisted no more than 61±48 kyr. After the major pulse at Bed 25, the extinction patterns are displayed differently in different sections. The global end-Guadalupian regression is manifested between the conodont Jinogondolella xuanhanensis and Clarkina dukouensis zones and the end-Changhsingian transgression began in the Hindeodus changxingensis-Clarkina zhejiangensis Zone. The Permian Period is also characterized by strong faunal provincialism in general, which resulted in difficulties in inter-continental and inter-regional correlation of both marine and terrestrial systems.

Keywords

Permian timescale global correlation biostratigraphy chemostratigraphy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

We thank Charles Henderson for many invaluable comments to improve this manuscript. This work was supported by the Strategic Priority Research Program (B) (Grant Nos. XDB18000000, XDB26000000), Key Research Program of Frontier Sciences from the Chinese Academy of Sciences (Grant No. QYZDY-SSW-DQC023) and the National Natural Science Foundation of China (Grant Nos. 41290260, 41420104003, U1702242).

References

  1. Aitchison J C, Suzuki N, Caridroit M, Danelian T, Noble P. 2017. Paleozoic radiolarian biostratigraphy. Geodiversitas, 39: 503–531Google Scholar
  2. All China Commission of Stratigraphy. 2002. Explanationary Notes of Regional Chronostratigraphy (Geological Time) of China (in Chinese). Beijing: Geological Publishing House. 38–45Google Scholar
  3. Amon E O, Chuvashov B I. 2002. Radiolarian biostratigraphy of the Sakmarian Stage (Lower Permian) in southern Urals. Permophile, 41: 16–26Google Scholar
  4. Baresel B, Bucher H, Bagherpour B, Brosse M, Kang G, Schaltegger U. 2017. Timing of global regression and microbial bloom linked with the Permian-Triassic boundary mass extinction: implications for driving mechanisms. Sci Rep, 7: 43630Google Scholar
  5. Barnaby R J, Ward W B. 2007. Outcrop analog for mixed siliciclasticcarbonate ramp reservoirs–Stratigraphic hierarchy, facies architecture, and geologic heterogeneity: Grayburg Formation, Permian Basin, USA. J Sedimentary Res, 77: 34–58Google Scholar
  6. Buggisch W, Krainer K, Schaffhauser M, Joachimski M, Korte C. 2015. Late Carboniferous to Late Permian carbon isotope stratigraphy: A new record from post-Variscan carbonates from the Southern Alps (Austria and Italy). Palaeogeogr Palaeoclimat Palaeoecol, 433: 174–190Google Scholar
  7. Buggisch W, Wang X, Alekseev A S, Joachimski M M. 2011. Carboniferous- Permian carbon isotope stratigraphy of successions from China (Yangtze platform), USA (Kansas) and Russia (Moscow Basin and Urals). Palaeogeogr Palaeoclimat Palaeoecol, 301: 18–38Google Scholar
  8. Burgess S D, Bowring S, Shen S. 2014. High-precision timeline for Earth’s most severe extinction. Proc Natl Acad Sci USA, 111: 3316–3321Google Scholar
  9. Burgess S D, Bowring S A. 2015. High-precision geochronology confirms voluminous magmatism before, during, and after Earth’s most severe extinction. Sci Adv, 1: e1500470–e1500470Google Scholar
  10. Campi M J, Shi G R. 2007. The Linshuichonetes-Crurithyris Community and new productid species from the Cisuralian (Early Permian) of Sichuan, China. Alcheringa, 31: 185–198Google Scholar
  11. Cao C, Love G D, Hays L E, Wang W, Shen S, Summons R E. 2009. Biogeochemical evidence for euxinic oceans and ecological disturbance presaging the end-Permian mass extinction event. Earth Planet Sci Lett, 281: 188–201Google Scholar
  12. Cao C. 2002. Carbon isotope excursions across the Permian-Triassic bound- ary in the Meishan section, Zhejiang Province, China. Chin Sci Bull, 47: 1125–1129Google Scholar
  13. Cao C, Wang W, Liu L, Shen S, Summons R E. 2008. Two episodes of 13Cdepletion in organic carbon in the latest Permian: Evidence from the terrestrial sequences in northern Xinjiang, China. Earth Planet Sci Lett, 270: 251–257Google Scholar
  14. Chen B, Joachimski M M, Shen S, Lambert L L, Lai X, Wang X, Chen J, Yuan D. 2013. Permian ice volume and palaeoclimate history: Oxygen isotope proxies revisited. Gondwana Res, 24: 77–89Google Scholar
  15. Chen B, Joachimski M M, Sun Y D, Shen S Z, Lai X L. 2011. Carbon and conodont apatite oxygen isotope records of Guadalupian-Lopingian boundary sections: Climatic or sea-level signal? Palaeogeogr Palaeoclimatol Palaeoecol, 311: 145–153Google Scholar
  16. Chen H H, Sun S, Li J L, Heller F, Dobson J. 1992. Permo-Triassic magnetostratigraphy in Wulong area, Sichuan, China. Sci China Ser B, 37: 203–212Google Scholar
  17. Chen J. 2011. Early Permian (Cisuralian) conodont biostratigraphy in southern Guizhou and global correlation. Doctoral Dissertation (in Chinese). Nanjing: The Graduate University of Chinese Academy of Sciences & Nanjing Institute of Geology and Paleontology, CAS. 1–225Google Scholar
  18. Chen J, Shen S, Li X, Xu Y, Joachimski M M, Bowring S A, Erwin D H, Yuan D, Chen B, Zhang H, Wang Y, Cao C, Zheng Q, Mu L. 2016. High-resolution SIMS oxygen isotope analysis on conodont apatite from South China and implications for the end-Permian mass extinction. Palaeogeogr Palaeoclimat Palaeoecol, 448: 26–38Google Scholar
  19. Chen J, Xu Y G. 2017. Permian large igneous provinces and their impact on paleoenvironment and biodiversity: progresses and perspectives (in Chinese). Bull Mireral Petrol Geochem, 36: 374–393Google Scholar
  20. Chen Z Q, Shi G R. 2003. Late Paleozoic depositional history of the Tarim basin, northwest China: An integration of biostratigraphic and lithostratigraphic constraints. AAPG Bull, 87: 1323–1354Google Scholar
  21. Cheng L R, Zhang Y J, Zhang Y C. 2004. New progress in the study of Paleozoic strata in the Xainza area, Tibet (in Chinese). Geol Bull China, 23: 1018–1022Google Scholar
  22. Cheng Z W, Wu S Z, Fang X S. 1997. The Permian-Triassic sequences in the southern margin of the Junggar Basin and the Turpan Basin, Xinjiang (in Chinese). Xinjiang Geol, 15: 155–173Google Scholar
  23. Chernykh V V, Chuvashov B I, Davydov V I, Schmitz M D. 2012. Mechetlino Section: A candidate for the Global Stratotype and Point (GSSP) of the Kungurian Stage (Cisuralian, Lower Permian). Permophiles, 59: 21–34Google Scholar
  24. Chernykh V V, Chuvashov B I, Shen S Z, Henderson C M. 2016. Proposal for the Global Stratotype Section and Point (GSSP) for the base-Sakmarian Stage (Lower Permian). Permophiles, 63: 4–18Google Scholar
  25. Chernykh V V. 2005. Zonal method in biostratigraphy, zonal conodont scale of the Lower Permian in the Urals. Ekaterinburg, Institute of Geology and Geochemistry of RAN. 217Google Scholar
  26. Chernykh V V. 2006. Lower Permian conodonts in the Urals. Ekaterinburg: Institute of Geology and Geochemistry, Uralian Branch of the Russian Academy of Sciences. 130Google Scholar
  27. Ching Y K. 1960. Conodonts from the Kufeng Suite (Formation) of Lungtan, Nanjing (in Chinese). Acta Palaeontol Sin, 8: 242–248Google Scholar
  28. Chu D, Tong J, Song H, Benton M J, Song H, Yu J, Qiu X, Huang Y, Tian L. 2015. Lilliput effect in freshwater ostracods during the Permian-Triassic extinction. Palaeogeogr Palaeoclimat Palaeoecol, 435: 38–52Google Scholar
  29. Chu D, Yu J, Tong J, Benton M J, Song H, Huang Y, Song T, Tian L. 2016. Biostratigraphic correlation and mass extinction during the Permian-Triassic transition in terrestrial-marine siliciclastic settings of South China. Glob Planet Change, 146: 67–88Google Scholar
  30. Clapham M E, Shen S, Bottjer D J. 2009. The double mass extinction revisited: reassessing the severity, selectivity, and causes of the end- Guadalupian biotic crisis (Late Permian). Paleobiology, 35: 32–50Google Scholar
  31. Clark D L, Ethington R L. 1962. Survey of Permian conodonts in western North America. Brigham Young Univ Res Stud Geol Ser, 9: 102–114Google Scholar
  32. Davydov V I, Biakov A S, Schmitz M D, Silantiev V V. 2018. Radioisotopic calibration of the Guadalupian (middle Permian) series: Review and updates. Earth-Sci Rev, 176: 222–240Google Scholar
  33. Davydov V I, Glenister B F, Spinosa C, Snyder W S, Ritter S M, Chernykh V V, Wardlaw B R. 1998. Proposal of Aidaralash as Global Stratotype Section and Point (GSSP) for base of the Permian System. Episodes, 21: 11–18Google Scholar
  34. Denison R E, Koepnick R B, Burke W H, Hetherington E A, Fletcher A. 1994. Construction of the Mississippian, Pennsylvanian and Permian seawater 87Sr86Sr curve. Chem Geol, 112: 145–167Google Scholar
  35. Duan C H, Li W G. 1985. Brachiopoda. In: Ding, Y J, Xia, G Y, Duan, C H, Li, W G, eds. Study on the Early Permian Stratigraphy and Fauna in Zhesi District, Nei Mongol Zizhiqu (Inner Mongolia). Bulletin of the Tianjin Institute of Geology and Mineral Resources, the Chinese Academy of Geological Sciences: Beijing: Geological Publishing House. 99–144Google Scholar
  36. Dudás F Ö, Yuan D X, Shen S Z, Bowring S A. 2017. A conodont-based revision of the 87Sr/86Sr seawater curve across the Permian-Triassic boundary. Palaeogeogr Palaeoclimatol Palaeoecol, 470: 40–53Google Scholar
  37. Ehiro M, Shen S. 2008. Permian ammonoid Kufengoceras from the uppermost Maokou Formation (earliest Wuchiapingian) at Penglaitan, Laibin Area, Guangxi Autonomous Region, South China. Paleont Res, 12: 255–259Google Scholar
  38. Embleton B J J, McElhinny M W, Ma X, Zhang Z, Li Z. 1996. Permo-Triassic magnetostratigraphy in China: the type section near Taiyuan, Shanxi Province, North China. Geophys J Int, 126: 382–388Google Scholar
  39. Fan B H, He X L. 1999. Research on Brachiopod Fauna and Stratigraphy of the Late Paleozoic in North China Platform (in Chinese). Xuzhou: China University of Mining and Technology Press. 179Google Scholar
  40. Fan J S, Qi J W, Zhou T M, Zhang X L, Zhang W. 1990. Permian Reefs in Longlin, Guangxi (in Chinese). Beijing: Geological Publishing House. 128Google Scholar
  41. Fang R S, Fan J C. 1994. Middle to Upper Carboniferous-Early Permian Gondwana Facies and Palaeontology in Western Yunnan (in Chinese). Kunming: Yunnan Science and Technology Press. 121Google Scholar
  42. Fang Z J, Zhu H C, Wu X Y, Zhu Z L, Chen Z Q, Luo H, Cao M Z, Yu Z Y. 1996. Advances on the study of the Permian in the Tarim Block. In: Tong X G, ed. New Advances on Petroleum Geology of Tarim Oil Field. Beijing: Science Press: 41–53Google Scholar
  43. Fang Z J. 1997. Southward intrusion of Angaran migrants into Tarim during the latest Permian and the global climatic cooling event (in Chinese). Acta Palaeont Sin, 36: 65–76Google Scholar
  44. Fang Z J. 2004a. Approach to the extinction pattern of Permian bivalvia of South China. In: Rong J Y, Fang Z J eds. Mass Extinction and Recovery—Evidence from the Paleozoic and Triassic of South China (in Chinese). Hefei: University of Science and Technology Press. 571–646Google Scholar
  45. Fang Z J. 2004b. The Permian-Triassic boundary crisis: Patterns of extinction, collapse of various ecosystems, and their causes. In: Rong J Y, Fang Z J eds. Mass extinction and recovery—Evidences from the Paleozoic and Triassic of South China (in Chinese). Hefei: University of Science and Technology of China Press. 785–928Google Scholar
  46. Feng Q, He W, Gu S, Meng Y, Jin Y, Zhang F. 2007. Radiolarian evolution during the latest Permian in South China. Glob Planet Change, 55: 177–192Google Scholar
  47. Feng Q, Shen S, Liu B, Helmcke D, Qian X, Zhang W. 2002. Permian radiolarians, chert and basalt from the Daxinshan Formation in Lancangjiang belt of southwestern Yunnan, China. Sci China Ser D-Earth Sci, 45: 63–71Google Scholar
  48. Feng Q L, Ye M. 2000. Principles, Methods, and Examples on the Regional Stratigraphy in Orogenic Belt (in Chinese). Wuhan: China University of Geosciences Press. 1–94Google Scholar
  49. Fielding C R, Frank T D, Isbell J L. 2008. The Late Paleozoic ice age-A review of current understanding and synthesis of global climate patterns. Geol Soc Am Bull Spec Paper, 441: 343–354Google Scholar
  50. Foster C B, Afonin S A. 2005. Abnormal pollen grains: an outcome of deteriorating atmospheric conditions around the Permian-Triassic boundary. J Geol Soc, 162: 653–659Google Scholar
  51. Frakes L A, Francis J E, Syktus J I. 1992. Climate Modes of the Phanerozoic. Cambridge: Cambridge University Press. 274Google Scholar
  52. Furnish W M. 1973. Permian stage names. Mem Can Soc Petrol Geol, 2: 522–548Google Scholar
  53. Gao L F, Ding H, Wan X Q. 2005. Taxonomic revision of conodont (Sweetognathus) species in the uppermost Taiyuan formation, Yuhuai Basin and its significance (in Chinese). Acta Micropalaeont Sin, 22: 370–382Google Scholar
  54. Giles J M, Soreghan M J, Benison K C, Soreghan G S, Hasiotis S T. 2013. Lakes, Loess, and Paleosols In the Permian Wellington Formation of Oklahoma, U.S.A.: Implications For Paleoclimate and Paleogeography of the Midcontinent. J Sediment Res, 83: 825–846Google Scholar
  55. Glen J M G, Nomade S, Lyons J J, Metcalfe I, Mundil R, Renne P R. 2009. Magnetostratigraphic correlations of Permian–Triassic marine-to-terrestrial sections from China. J Asian Earth Sci, 36: 521–540Google Scholar
  56. Glenister B F, Baker C, Furnish W M, Dickins J M. 2015. Late Permian ammonoid cephalopod Cyclolobus from Western Australia. J Paleont, 64: 399–402Google Scholar
  57. Groves J R, Wang Y. 2013. Timing and size selectivity of the Guadalupian (Middle Permian) fusulinoidean extinction. J Paleont, 87: 183–196Google Scholar
  58. Guo T Y, Liang D Y, Zhang Y Z, Zhao C H. 1991. Geology of Ngari Tibet (Xizang) (in Chinese). Wuhan: China University of Geoscience Press. 464Google Scholar
  59. Hallam A, Wignall P B. 1999. Mass extinctions and sea-level changes. Earth-Sci Rev, 48: 217–250Google Scholar
  60. Haq B U, Schutter S R. 2008. A chronology of Paleozoic sea-level changes. Science, 322: 64–68Google Scholar
  61. He B, Xu Y G, Huang X L, Luo Z Y, Shi Y R, Yang Q J, Yu S Y. 2007. Age and duration of the Emeishan flood volcanism, SW China: Geochemistry and SHRIMP zircon U-Pb dating of silicic ignimbrites, postvolcanic Xuanwei Formation and clay tuff at the Chaotian section. Earth Planet Sci Lett, 255: 306–323Google Scholar
  62. He B, Xu Y G, Wang Y M, Xiao L. 2005. Nature of the Dongwu Movement and its temporal and spatial evolution. Earth Sci J China Univ Geosci, 30: 89–96Google Scholar
  63. He B, Zhong Y T, Xu Y G, Li X H. 2014. Triggers of Permo-Triassic boundary mass extinction in South China: The Siberian Traps or Paleo- Tethys ignimbrite flare-up? Lithos, 204: 258–267Google Scholar
  64. He W, Zhang Y, Zhang Q, Zhang K, Yuan A, Feng Q. 2011. A latest Permian radiolarian fauna from Hushan, South China, and its geological implications. Alcheringa, 35: 471–496Google Scholar
  65. He W, Zhang Y, Zheng Y, Zhang K, Gui B, Feng Q. 2008. A late Changhsingian (latest Permian) radiolarian fauna from Chaohu, Anhui and a comparison with its contemporary faunas of South China. Alcheringa, 32: 199–222Google Scholar
  66. Henderson C M, Davydov V I, Wardlaw B R. 2012a. The Permian Period. In: Gradstein F M, Ogg J G, Schmitz M D, Ogg G M, eds. The Geological Time Scale 2012. Vol. 2. Amsterdam: Elsevier. 653–680Google Scholar
  67. Henderson C M, Mei S. 2003. Stratigraphic versus environmental significance of Permian serrated conodonts around the Cisuralian–Guadalupian boundary: new evidence from Oman. Palaeogeogr Palaeoclimatol Palaeoecol, 191: 301–328Google Scholar
  68. Henderson C M, Wardlaw B R, Davydov V I, Schmitz M D, Schiappa T A, Tierney K E, Shen S Z. 2012b. Proposal for base-Kungurian GSSP. Permophiles, 56: 8–21Google Scholar
  69. Henderson C M. 2018. Permian conodont biostratigraphy. In: Lucas S G, Shen S Z, eds. The Permian Timescale. Geol Soc London Spec Publ, 450: 119–142Google Scholar
  70. Hounslow M W, Balabanov Y P. 2018. A geomagnetic polarity timescale for the Permian, calibrated to stage boundaries. Geol Soc London Spec Publ, 450: 61–103Google Scholar
  71. Hu S Z. 1994. On the event of Dongwu Movement and its relation with Permian subdivision. J Stratigraphy, 18: 309–315Google Scholar
  72. Hu Z W, Huang S J, Liu L H, Tong H P. 2010. Strontium isotopic composition near marine Permian/Trissic boundary of the Huaying mountain, eastern Sichuan (in Chinese). Acta Geosci Sin, 31: 853–859Google Scholar
  73. Huang S J, Ma J M, Leng D X. 1999. The Strontium Isotopes of Deep-sea Siliceous Rocks from Earlier Carboniferous to Earlier Permian, Qinzhou, Guangxi (in Chinese). Acta Sediment Sin, 17: 542–546Google Scholar
  74. Huang S J, Qing H R, Huang P P, Hu Z W, Wang Q D, Zou M L, Liu H N. 2008. Evolution of strontium isotopic composition of seawater from Late Permian to Early Triassic based on study of marine carbonates, Zhongliang Mountain, Chongqing, China. Sci China Ser D-Earth Sci, 51: 528–539Google Scholar
  75. Huang S J. 1997. A study on carbon and strontium isotopes of Late Palaeozoic carbonate rock in the Upper Yangtze platform (in Chinese). Acta Geol Sin, 71: 45–53Google Scholar
  76. Huang T K. 1932a. The Permian Formations of Southern China. Mem Geol Surv China Ser A, 10: 1–140Google Scholar
  77. Huang T K. 1932b. The Permian corals of Southern China. Palaeont Sin Ser B, 8: 1–163Google Scholar
  78. Irving E, Parry L G. 1963. The Magnetism of Some Permian Rocks from New South Wales. Geophys J Int, 7: 395–411Google Scholar
  79. Isbell J L, Miller M F, Wolfe K L, Lenaker P A. 2003. Timing of Late Paleozoic glaciation in Gondwana: Was glaciation responsible for the development of northern hemisphere cyclothems? Geol Soc Am Bull Spec Paper, 370: 5–24Google Scholar
  80. Ishiga H. 1990. Paleozoic radiolarians. In: Ichikawa K, Mizutani S, Hara I, Hada S, Yao A, eds. Pre-Cretaceous Terranes of Japan: Osaka: Nippon Insatsu Shuppan Press. 285–293Google Scholar
  81. Isozaki Y. 2009. Illawarra Reversal: The fingerprint of a superplume that triggered Pangean breakup and the end-Guadalupian (Permian) mass extinction. Gondwana Res, 15: 421–432Google Scholar
  82. Ivanov A V, He H, Yan L, Ryabov V V, Shevko A Y, Palesskii S V, Nikolaeva I V. 2013. Siberian Traps large igneous province: Evidence for two flood basalt pulses around the Permo-Triassic boundary and in the Middle Triassic, and contemporaneous granitic magmatism. Earth-Sci Rev, 122: 58–76Google Scholar
  83. Jia Y Y, Ding H, Zhang W M. 1994. The Taiyuan Formation Conodont Biostratigraphy of Huainan Coalfield (in Chinese). Shanxi Mining Inst Learned J, 12: 133–142Google Scholar
  84. Jin X C, Zhan L P. 2008. Spatial and temporal distribution of the Cryptospirifer fauna (Middle Permian brachiopods) in the Tethyan realm and its paleogeographic implications. Acta Geol Sin, 82: 1–16Google Scholar
  85. Jin Y G, Liang X L, Wen S X. 1977. Additional material of animal fossils from the Permian deposites on the northern slope of mount Qomolangma Feng (in Chinese). Chin J Geol. 3: 236–249, 299–230Google Scholar
  86. Jin Y, Shang Q, Cao C. 2000. Late Permian magnetostratigraphy and its global correlation. Chin Sci Bull, 45: 698–705Google Scholar
  87. Jin Y, Shang Q, Wang X, Wang Y, Sheng J. 1999. Chronostratigraphic subdivision and correlation of the Permian in China. Acta Geol Sin, 73: 127–138Google Scholar
  88. Jin Y G, Shang Q H, Wang X D. 2003. Permian stratigraphy of China. In: Zhang W T, Chen P J, Palmer A R, eds. Biostratigraphy of China. Beijing: Science Press. 331–378Google Scholar
  89. Jin Y G, Shen S Z, Henderson C M, Wang X D, Wang W, Wang Y, Cao C Q, Shang Q H. 2006a. The Global Stratotype Section and Point (GSSP) for the boundary between the Capitanian and Wuchiapingian stage (Permian). Episodes, 29: 253–262Google Scholar
  90. Jin Y G, Wang Y, Henderson C M, Wardlaw B R, Shen S Z, Cao C Q. 2006b. The Global Boundary Stratotype Section and Point (GSSP) for the base of Changhsingian Stage (Upper Permian). Episodes, 29: 175–182Google Scholar
  91. Jin Y G, Wardlaw B R, Glenister B F, Kotlyar C V. 1997. Permian chronostratigraphic subdivisions. Episodes 20: 6–10Google Scholar
  92. Jin Y G, Zhang J, Shang Q H. 1994. Two phases of the end-Permian mass extinction, Pangea: Global environments and resources. Can Soci Petrol Geol Mem, 17: 813–822Google Scholar
  93. Jin Y G. 1993. Pre-Lopingian benthos crisis. Comptes Rendus XII ICC-P, 2: Buenos Aires. 269–278Google Scholar
  94. Joachimski M M, Lai X, Shen S, Jiang H, Luo G, Chen B, Chen J, Sun Y. 2012. Climate warming in the latest Permian and the Permian-Triassic mass extinction. Geology, 40: 195–198Google Scholar
  95. Kang P Q, Wang C Y, Wang Z H. 1987. Carboniferous-Permian conodont biostratigraphy in the shelf facies of Ziyun County, Guizhou (in Chinese). Acta Micropalaeont Sin, 4: 179–192, 171–174Google Scholar
  96. Kani T, Hisanabe C, Isozaki Y. 2013. The Capitanian (Permian) minimum of 87Sr/86Sr ratio in the mid-Panthalassan paleo-atoll carbonates and its demise by the deglaciation and continental doming. Gondwana Res, 24: 212–221Google Scholar
  97. Ke Y, Shen S Z, Shi G R, Fan J X, Zhang H, Qiao L, Zeng Y. 2016. Global brachiopod palaeobiogeographical evolution from Changhsingian (Late Permian) to Rhaetian (Late Triassic). Palaeogeogr Palaeoclimat Palaeoecol, 448: 4–25Google Scholar
  98. Kirschvink J L, Isozaki Y, Shibuya H, Otofuji Y, Raub T D, Hilburn I A, Kasuya T, Yokoyama M, Bonifacie M. 2015. Challenging the sensitivity limits of Paleomagnetism: Magnetostratigraphy of weakly magnetized Guadalupian-Lopingian (Permian) Limestone from Kyushu, Japan. Palaeogeogr Palaeoclimat Palaeoecol, 418: 75–89Google Scholar
  99. Korte C, Jasper T, Kozur H W, Veizer J. 2005. δ 18O and δ13C of Permian brachiopods: A record of seawater evolution and continental glaciation. Palaeogeogr Palaeoclimat Palaeoecol, 224: 333–351Google Scholar
  100. Korte C, Jasper T, Kozur H W, Veizer J. 2006. 87Sr/86Sr record of Permian seawater. Palaeogeogr Palaeoclimat Palaeoecol, 240: 89–107Google Scholar
  101. Korte C, Kozur H W. 2010. Carbon-isotope stratigraphy across the Permian–Triassic boundary: A review. J Asian Earth Sci, 39: 215–235Google Scholar
  102. Kotlyar G V, Belyansky G C, Burago V I, Nikitina A P, Zakharov Y D, Zhuravlev A V. 2006. South Primorye, Far East Russia—A key region for global Permian correlation. J Asian Earth Sci, 26: 280–293Google Scholar
  103. Kozur H W. 2004. Pelagic uppermost Permian and the Permian-Triassic boundary conodonts of Iran. Part 1. Taxonomy: Hallesches Jahrbuch Für Geowissenschaften. Reihe B: Geologie, Paläontologie, Mineralogie, 18: 39–68Google Scholar
  104. Krassilov V, Karasev E. 2009. Paleofloristic evidence of climate change near and beyond the Permian–Triassic boundary. Palaeogeogr Palaeoclimat Palaeoecol, 284: 326–336Google Scholar
  105. Lambert L L, Lehrmann D J, Harris M T. 2000. Correlation of the Road Canyon and Cutoff formations, West Texas, and its relevance to establishing an international Middle Permian (Guadalupian) series. The Guadalupian Series. Smithsonian Contrib Earth Sci, 32: 153–183Google Scholar
  106. Lambert L L, Wardlaw B R, Henderson C M. 2007. Mesogondolella and Jinogondolella (Conodonta): Multielement definition of the taxa that bracket the basal Guadalupian (Middle Permian Series) GSSP. Palaeoworld, 16: 208–221Google Scholar
  107. Lan C H, Sun C, Fan J C, Fang R S. 1982. Carboniferous and Permian stratigraphy of the Zhenkang and Luxi Region in western Yunnan (in Chinese). In: Contribution to the Geology of the Qinghai-Xizang (Tibet) Plateau, 11. Beijing: Geological Publishing House. 79–91Google Scholar
  108. Lanci L, Tohver E, Wilson A, Flint S. 2013. Upper Permian magnetic stratigraphy of the lower Beaufort Group, Karoo Basin. Earth Planet Sci Lett, 375: 123–134Google Scholar
  109. Leonova T B. 2007. Correlation of the Kazanian of the Volga–Urals with the Roadian of the global Permian scale. Palaeoworld, 16: 246–253Google Scholar
  110. Leonova T B. 2011. Permian ammonoids: Biostratigraphic, biogeographical, and ecological analysis. Paleontol J, 45: 1206–1312Google Scholar
  111. Leonova T B. 2018. Permian ammonoid biostratigraphy. In: Lucas S G, Shen S Z, eds. The Permian Timescale. Geol Soc London Spec Publ, 450: 185–203Google Scholar
  112. Leven E J. 2003. The Permian stratigraphy and fusulinids of the Tethys. Rivista Italiana di Paleontologia e Stratigrafia, 109: 267–280Google Scholar
  113. Li H M, Wang J D. 1989. Magnetostratigraphy of Permo-Triassic boundary section of Meishan of Changxing, Zhejiang. Sci China Ser B, 32: 1402–1408Google Scholar
  114. Li L, Yang D L, Feng R L. 1986. Brachiopods and the boundary of Late Carboniferous–Early Permian in Longlin region, Guangxi (in Chinese). Bull Yichang Ins Geol Mine Resour, 11: 199–266Google Scholar
  115. Li Y A, Jin X C, Sun D J. 2003. Paleomagnetic properties of non-marine Permo-Triassic transitional succession of the Dalongkou Section, Jimsar, Xinjiang (in Chinese). Geol Rev, 49: 525–536Google Scholar
  116. Li Z, Chen H, Song B, Li Y, Yang S, Yu X. 2011. Temporal evolution of the Permian large igneous province in Tarim Basin in northwestern China. J Asian Earth Sci, 42: 917–927Google Scholar
  117. Liang W P. 1990. Lengwu Formation of Permian and its brachiopod fauna in Zhejiang Province (in Chinese). Geol Mem Ministry Geol Mine Resour Ser 2, 10: 1–522Google Scholar
  118. Liao S Y, Wang D B, Tang Y, Yin F G, Cao S N, Wang L Q, Wang B D, Sun Z M. 2015. Late Paleozoic Woniusi basaltic province from Sibumasu terrane: Implications for the breakup of eastern Gondwana’s northern margin. Geol Soc Am Bull, 127: 1313–1330Google Scholar
  119. Liu X, Wang W, Shen S, Gorgij M N, Ye F, Zhang Y, Furuyama S, Kano A, Chen X. 2013. Late Guadalupian to Lopingian (Permian) carbon and strontium isotopic chemostratigraphy in the Abadeh section, central Iran. Gondwana Res, 24: 222–232Google Scholar
  120. Liu Y Y, Zhu Y M, Tian W H. 1999. New magnetostratigraphic results from Meishan section. Changxing County, Zhejiang, China (in Chinese). Earth Sci J, 24: 43–46Google Scholar
  121. Lu Y H. 1956. The Permian of Liangshan and its bearing on the classification and correlation of the Permian rocks of South China (in Chinese). Acta Geol Sin. 36: 159–193Google Scholar
  122. Lucas S G, Shen S Z. 2018. The Permian chronostratigraphic scale: history, status and prospectus. Geol Soc London Spec Publ, 450: 21–50Google Scholar
  123. Lucas S G. 2017. Identification and age of the beginning of the Permian-Triassic Illawara Superchron. Permophiles, 64: 11–14Google Scholar
  124. Manankov I N, Shi G R, Shen S. 2006. An overview of Permian marine stratigraphy and biostratigraphy of Mongolia. J Asian Earth Sci, 26: 294–303Google Scholar
  125. Martin E E, Macdougall J D. 1995. Sr and Nd isotopes at the Permian/ Triassic boundary: A record of climate change. Chem Geol, 125: 73–95Google Scholar
  126. McArthur J M, Howarth R J, Shields G A. 2012. Strotium isotope stratigraphy. In: Gradstein F M, Ogg J G, Schmitz M D, Ogg G M, eds. The Geological Time Scale 2012. Vol 2. Amsterdam: Elsevier. 127–144Google Scholar
  127. Mei S, Henderson C M, Cao C. 2004. Conodont sample-population approach to defining the base of the Changhsingian Stage, Lopingian Series, Upper Permian. Geol Soc London Spec Publ, 230: 105–121Google Scholar
  128. Mei S, Henderson C M, Wardlaw B R. 2002. Evolution and distribution of the conodonts Sweetognathus and Iranognathus and related genera during the Permian, and their implications for climate change. Palaeogeogr Palaeoclimat Palaeoecol, 180: 57–91Google Scholar
  129. Mei S, Henderson C M. 2001. Evolution of Permian conodont provincialism and its significance in global correlation and paleoclimate implication. Palaeogeogr Palaeoclimat Palaeoecol, 170: 237–260Google Scholar
  130. Menning M, Jin Y G, Shen S Z. 1996. The Illawarra Reversal (265 Ma) in the marine Permian, Guangxi, South China. In: Proceedings Abstracts to 30th International Geological Congress, Beijing. 2: 9Google Scholar
  131. Menning M. 2001. A Permian time scale 2000 and correlation of marine and continental sequences using the Illawarra Reversal (265 Ma). Natura Bresciana, 25: 355–362Google Scholar
  132. Metcalfe I, Crowley J L, Nicoll R S, Schmitz M. 2015. High-precision UPb CA-TIMS calibration of Middle Permian to Lower Triassic sequences, mass extinction and extreme climate-change in eastern Australian Gondwana. Gondwana Res, 28: 61–81Google Scholar
  133. Miyamoto T, Kuwazuru J, Okimura Y. 1997. The Lower Permian formation discovered from the Kurosegawa Terrane, Kyushu. News Osaka Micropaleont, 10: 33–40Google Scholar
  134. Murchison R I, de Verneuil M E. 1845. On the Permian System as developed in Russia and other Parts of Europe. Q J Geol Soc, 1: 81–87Google Scholar
  135. Nicklen B L. 2011. Establishing a Tephrochronologic Framework for the Middle Permian (Guadalupian) Type Area and Adjacent Portions of the Delaware Basin and Northwestern Shelf, West Texas and Southeastern New Mexico, USA. Doctoral Dissertation. Cincinmati: University of Cincinnati. 1–119Google Scholar
  136. Nurgaliev D K, Silantiev V V, Nikolaeva S V. 2015. Type and reference sections of the Middle and Upper Permian of the Volga and Kama River Regions. In: A Field Guidebook of XVIII International Congress on Carboniferous and Permian. Kazan, August, 16–20, 2015. Kazan: Kazan University Press. 208Google Scholar
  137. Peterson D N, Nairn A E M. 1971. Palaeomagnetism of Permian Redbeds from the South-western United States. Geophys J Int, 23: 191–205Google Scholar
  138. Qiu Z, Sun S, Wei H, Wang Q, Zou C, Zhang Y. 2016. SIMS zircon U-Pb dating from bentonites in the Penglaitan Global Stratotype Section for the Guadalupian-Lopingian boundary (GLB), South China. Geol J, 51: 811–816Google Scholar
  139. Ramezani J, Bowring S A. 2018. Advances in numerical calibration of the Permian timescale based on radioisotopic geochronology. Geol Soc London Spec Publ, 450: 51–60Google Scholar
  140. Ramezani J, Schmitz M D, Davydov V I, Bowring S A, Snyder W S, Northrup C J. 2007. High-precision U-Pb zircon age constraints on the Carboniferous-Permian boundary in the southern Urals stratotype. Earth Planet Sci Lett, 256: 244–257Google Scholar
  141. Rhodes F H T. 1963. Conodonts from the topmost Tensleep sandstone of the eastern Big Horn Mountains, Wyoming. J Paleontol, 37: 401–408Google Scholar
  142. Ross C A, Ross J R P. 1987. Late Paleozoic sea levels and depositional sequences. In: Ross, C A, Haman, D, eds., Timing and Depositional History of Eustatic Sequences: Constraints on Seismic Stratigraphy. Cushman Foundation for Foraminiferal Research: Special Publication, 24. 137–149Google Scholar
  143. Schmitz M D, Davydov V I. 2012. Quantitative radiometric and biostratigraphic calibration of the Pennsylvanian-Early Permian (Cisuralian) time scale and pan-Euramerican chronostratigraphic correlation. Geol Soc Am Bull, 124: 549–577Google Scholar
  144. Schobben M, Joachimski M M, Korn D, Leda L, Korte C. 2014. Palaeotethys seawater temperature rise and an intensified hydrological cycle following the end-Permian mass extinction. Gondwana Res, 26: 675–683Google Scholar
  145. Scotese C R. 2009. Late Proterozoic plate tectonics and palaeogeography: a tale of two supercontinents, Rodinia and Pannotia. Geol Soc London Spec Publ, 326: 67–83Google Scholar
  146. Shen S Z, Archbold N W, Shi G R, Chen Z Q. 2000a. Permian brachiopods from the Selong Xishan section, Xizang (Tibet), China. Part 1: Stratigraphy, Strophomenida, Productida and Rhynchonellida. Geobios, 33: 725–752Google Scholar
  147. Shen S Z, Archbold N W, Shi G R, Chen Z Q. 2001. Permian Brachiopods from the Selong Xishan section, Xizang (Tibet), China. Part 2: Palaeobiogeographical and palaeoecological implications, Spiriferida, Athyridida and Terebratulida. Geobios, 34: 157–182Google Scholar
  148. Shen S Z, Cao C Q, Henderson C M, Wang X D, Shi G R, Wang Y, Wang W. 2006a. End-Permian mass extinction pattern in the northern peri-Gondwanan region. Palaeoworld, 15: 3–30Google Scholar
  149. Shen S Z, Cao C Q, Shi G R, Wang X D, Mei S L. 2003. Lopingian (Late Permian) stratigraphy, sedimentation and palaeobiogeography in southern Tibet. Newslett Stratigr, 39: 157–179Google Scholar
  150. Shen S, Cao C, Zhang H, Bowring S A, Henderson C M, Payne J L, Davydov V I, Chen B, Yuan D, Zhang Y, Wang W, Zheng Q. 2013a. High-resolution δ 13Ccarb chemostratigraphy from latest Guadalupian through earliest Triassic in South China and Iran. Earth Planet Sci Lett, 375: 156–165Google Scholar
  151. Shen S, Crowley J L, Wang Y, Bowring S A, Erwin D H, Sadler P M, Cao C, Rothman D H, Henderson C M, Ramezani J, Zhang H, Shen Y, Wang X, Wang W, Mu L, Li W, Tang Y, Liu X, Liu L, Zeng Y, Jiang Y, Jin Y. 2011. Calibrating the end-Permian mass extinction. Science, 334: 1367–1372Google Scholar
  152. Shen S Z, Henderson C M, Bowring S A, Cao C Q, Wang Y, Wang W, Zhang H, Zhang Y C, Mu L. 2010. High-resolution Lopingian (Late Permian) timescale of South China. Geol J, 45: 122–134Google Scholar
  153. Shen S Z, Jin Y G, Zhang Y, Weldon E A. 2017. Permian brachiopod genera on type species of China. In: Rong J Y, Jin Y G, Shen S Z, Zhan R B, eds. Phanerozoic Brachiopod Genera from China. Vol. 2. Beijing: Science Press. 651–887Google Scholar
  154. Shen S, in Jin Y. 1999. Brachiopods from the Permian-Triassic boundary beds at the Selong Xishan section, Xizang (Tibet), China. J Asian Earth Sci, 17: 547–559Google Scholar
  155. Shen S Z, Mei S L. 2010. Lopingian (Late Permian) high-resolution conodont biostratigraphy in Iran with comparison to South China zonation. Geol J, 45: 135–161Google Scholar
  156. Shen S Z, Schneider J W, Angiolini L, Henderson C M. 2013b. The International Permian Timescale: March 2013 update. New Mexico Mus Nat Hist Sci Bull, 60: 411–416Google Scholar
  157. Shen S Z, Shi G R, Archbold N W. 2003. Lopingian (Late Permian) brachiopods from the Qubuerga Formation at the Qubu section in the Mt. Qomolangma region, southern Tibet (Xizang), China. Palaeontogr Abt A, 268: 49–101Google Scholar
  158. Shen S Z, Shi G R, Zhu K Y. 2000b. Early Permian brachiopods of Gondwana affinity from the Dingjiazhai Formation of the Baoshan Block, western Yunnan, China. Rivista Italiana di Paleontologia e Stratigrafia, 106: 263–282Google Scholar
  159. Shen S, Shi G R. 1996. Diversity and extinction patterns of permian brachiopoda of South China. Hist Biol, 12: 93–110Google Scholar
  160. Shen S Z, Shi G R. 2002. Paleobiogeographical extinction patterns of Permian brachiopods in the Asian-western Pacific region. Paleobiology, 28: 449–463Google Scholar
  161. Shen S Z, Shi G R. 2009. Latest Guadalupian brachiopods from the Guadalupian/ Lopingian boundary GSSP section at Penglaitan in Laibin, Guangxi, South China and implications for the timing of the pre-Lopingian crisis. Palaeoworld, 18: 152–161Google Scholar
  162. Shen S Z, Sun T R, Zhang Y C, Yuan D X. 2016. An upper Kungurian/ lower Guadalupian (Permian) brachiopod fauna from the South Qiangtang Block in Tibet and its palaeobiogeographical implications. Palaeoworld, 25: 519–538Google Scholar
  163. Shen S Z, Wang Y, Henderson C M, Cao C Q, Wang W. 2007. Biostratigraphy and lithofacies of the Permian System in the Laibin-Heshan area of Guangxi, South China. Palaeoworld, 16: 120–139Google Scholar
  164. Shen S, Xie J, Zhang H, Shi G R. 2009. Roadian–Wordian (Guadalupian, Middle Permian) global palaeobiogeography of brachiopods. Glob Planet Change, 65: 166–181Google Scholar
  165. Shen S Z, Yuan D X, Henderson C M, Tazawa J, Zhang Y C. 2012. Implications of Kungurian (Early Permian) conodonts from Hatahoko, Japan, for correlation between the Tethyan and international timescales. Micropaleontology, 58: 505–522Google Scholar
  166. Shen S Z, Zhang H, Shang Q H, Li W Z. 2006b. Permian stratigraphy and correlation of Northeast China: A review. J Asian Earth Sci, 26: 304–326Google Scholar
  167. Shen S, Zhang H, Shi G R, Li W, Xie J, Mu L, Fan J. 2013c. Early Permian (Cisuralian) global brachiopod palaeobiogeography. Gondwana Res, 24: 104–124Google Scholar
  168. Shen S Z. 2018. Global Permian brachiopod biostratigraphy: an overview. In: Lucas S G, Shen S Z, eds. The Permian Timescale. Geol Soc London Spec Publ, 450: 289–320Google Scholar
  169. Sheng J Z. 1962. Permian Stratigraphy of China. Beijing: Science Press. 95Google Scholar
  170. Sheng J Z, Jin Y G. 1994. Correlation of Permian deposits in China. In: Jin Y G, Utting J, Wardlaw B R, eds. Permian Stratigraphy, Environments and Resources. Nanjing: Nanjing University Press. 14–113Google Scholar
  171. Shi G R, Archbold N W, Zhan L P. 1995. Distribution and characteristics of mixed (transitional) mid-Permian (Late Artinskian-Ufimian) marine faunas in Asia and their palaeogeographical implications. Palaeogeogr Palaeoclimat Palaeoecol, 114: 241–271Google Scholar
  172. Shi G R, Archbold N W. 1998. Permian marine biogeography of SE Asia. In: Hall R, Holloway D J, eds. Biogeography and Geological Evolution of SE Asia. Leiden: Backbuys Publishers. 57–72Google Scholar
  173. Shi G R, Shen S. 2001. A biogeographically mixed, Middle Permian brachiopod fauna from the Baoshan Block, western Yunnan, China. Palaeontology, 44: 237–258Google Scholar
  174. Shi G R, Waterhouse J B. 2010. Late Palaeozoic global changes affecting high-latitude environments and biotas: An introduction. Palaeogeogr Palaeoclimat Palaeoecol, 298: 1–16Google Scholar
  175. Shi G R. 2006. The marine Permian of East and Northeast Asia: An overview of biostratigraphy, palaeobiogeography and palaeogeographical implications. J Asian Earth Sci, 26: 175–206Google Scholar
  176. Shi Y, 1982. Some Lower Permian corals of southern China (in Chinese). Acta Palaeont Sin, 21: 249–264Google Scholar
  177. Song H, Wignall P B, Tong J, Song H, Chen J, Chu D, Tian L, Luo M, Zong K, Chen Y, Lai X, Zhang K, Wang H. 2015. Integrated Sr isotope variations and global environmental changes through the Late Permian to early Late Triassic. Earth Planet Sci Lett, 424: 140–147Google Scholar
  178. Stanley S M, Yang X. 1994. A double masse Extinction at the end of the Paleozoic Era. Science, 266: 1340–1344Google Scholar
  179. Steiner M B. 2006. The magnetic polarity time scale across the Permian-Triassic boundary. In: Lucas S G, Cassinis G, Schneider J W, eds. Nonmarine Permian Biostratigraphy and Biochronology. London: The Geological Society. 265: 15–38Google Scholar
  180. Sun Y C. 1939. The uppermost Permian ammonoids from Kwangsi and their stratigraphical significance. Contrib Geol Ins National Univ Peking, 28: 35–49Google Scholar
  181. Sun Y, Joachimski M M, Wignall P B, Yan C, Chen Y, Jiang H, Wang L, Lai X. 2012. Lethally hot temperatures during the Early Triassic greenhouse. Science, 338: 366–370Google Scholar
  182. Tazawa J I. 1991. Middle Permian brachiopod biogeography of Japan and adjacent regions in East Asia. In: Ishii K I, Liu X M, Ichikawa K, Huant B, eds. Pre-Jurassic Geology of Inner Mongolia, China. Osaka: Matsuya Insatsu. 213–230Google Scholar
  183. Tierney K E. 2010. Carbon and strontium isotope stratigraphy of the Permian from Nevada and China: Implications from an icehouse to greenhouse transition. Doctoral Dissertation. Ohio: The Ohio State University. 1–107Google Scholar
  184. Ueno K, Mizuno Y, Wang X, Mei S. 2002. Artinskian conodonts from the Dingjiazhai Formation of the Baoshan Block, west Yunnan, southwest China. J Paleontol, 76: 741–750Google Scholar
  185. Ueno K. 2006. The Permian antitropical fusulinoidean genus Monodiexodina: Distribution, taxonomy, paleobiogeography and paleoecology. J Asian Earth Sci, 26: 380–404Google Scholar
  186. Wang C W, Zhang S M. 2003. Zhesi Brachiopod Fauna (in Chinese). Beijing: Geological Publishing House. 210Google Scholar
  187. Wang C, Wang P, Li W. 2004a. Conodonts from the Permian Jisu Honguer (Zhesi) Formation of Inner Mongolia, China. Geobios, 37: 471–480Google Scholar
  188. Wang C Y, Zhen C Z, Pen Y J, Wang G Q. 2000. A conodont fauna of Permian northern temperate zone from the Fanjiatun Formation at Lijiayao, Jilin (in Chinese). Acta Micropalaeont Sin, 17: 430–442, 500Google Scholar
  189. Wang C Y. 2002. Permian conodonts from Laibin and Heshan, Guangxi. Bull Nanjing Ins Geol Palaeont Acad Sin, 15: 180–190Google Scholar
  190. Wang D, Jiang H, Gu S, Yan J. 2016. Cisuralian-Guadalupian conodont sequence from the Shaiwa section, Ziyun, Guizhou, South China. Palaeogeogr Palaeoclimat Palaeoecol, 457: 1–22Google Scholar
  191. Wang J. 2015. The Geochemistry of the coals at P/T boundary in Xuanwei, Yunnan and its Paleoenvironmental significance (in Chinese). Doctoral Dissertation. Beijing: China University of Mining and Technology. 1–167Google Scholar
  192. Wang L, Wignall P B, Sun Y, Yan C, Zhang Z, Lai X. 2017. New Permian- Triassic conodont data from Selong (Tibet) and the youngest occurrence of Vjalovognathus. J Asian Earth Sci, 146: 152–167Google Scholar
  193. Wang R J. 1995. Radiolarian fauna from Gufeng Formation (Lower Permian) in Hushan area of Nanjing, Jiangsu province (in Chinese). Sci Geol Sin, 30: 139–146Google Scholar
  194. Wang S Y. 2001. On Kayitou Formation (in Chinese). J Stratigr, 25: 129–134, 149Google Scholar
  195. Wang W Q, Garbelli C, Zheng Q F, Chen J, Liu X C, Wang W, Shen S Z, 2018, Permian 87Sr/86Sr chemostratigraphy from carbonate sequences in South China. Palaeogeogr Palaeoclimatol Palaeoecol, 500: 84–94Google Scholar
  196. Wang W, Cao C, Wang Y. 2004b. The carbon isotope excursion on GSSP candidate section of Lopingian–Guadalupian boundary. Earth Planet Sci Lett, 220: 57–67Google Scholar
  197. Wang W, Dong Z Z, Wang C Y. 2004c. The conodont ages of the Dingjiazhai and Woniusi Formations in the Baoshan area, western Yunnan. Acta Micropalaeont Sin, 21: 273–282Google Scholar
  198. Wang X D, Shen S Z, Sugiyama T, West R R. 2003. Late Palaeozoic corals of Tibet (Xizang) and West Yunnan, Southwest China: successions and palaeobiogeography. Palaeogeogr Palaeoclimatol Palaeoecol, 191: 385–397Google Scholar
  199. Wang X D, Sugiyama T. 2000. Diversity and extinction patterns of Permian coral faunas of China. Lethaia, 33: 285–294Google Scholar
  200. Wang X D, Sugiyama T. 2001. Middle Permian rugose corals from Laibin, Guangxi, South China. J Paleontol, 75: 758–782Google Scholar
  201. Wang Y J, Shang Q H. 2001. Discovery of the Neoalbaillella radiolarian fauna in the Shaiwa Group of Ziyun District, Guizhou (in Chinese). Acta Micropalaeont Sin, 18: 111–121Google Scholar
  202. Wang Y J, Yang Q. 2011. Biostratigraphy, phylogeny and paleobiogeography of Carboniferous–Permian radiolarians in South China. Palaeoworld, 20: 134–145Google Scholar
  203. Wang Y J, Zhou J P. 1986. New material of fusulinids from Xainza, Xizang (in Chinese). Bull Nanjing Ins Geol Palaeont Acad Sin,10: 141–156Google Scholar
  204. Wang Y, Wang W J, Zhang Y C, Qi Y P, Liao Z T. 2011. Late Carboniferous to Early Permian fusuline assemblages from the Wuzunbulake section, Keping area, Xinjiang (in Chinese). Acta Palaeont Sin, 50: 409–419Google Scholar
  205. Wang Z G, Zhao J M. 1998. Middle Permian corals from Laibin County, Guangxi (in Chinese). Acta Palaeont Sin, 37: 41–66Google Scholar
  206. Wang Z H, Li R L. 1984. Discovery of Late Carboniferous conodonts from Shanxi Province and its significance (in Chinese). Acta Palaeont Sin, 23: 196–203Google Scholar
  207. Ward P D. 2005. Global Warming, the Mass Extinction of the Past, and What They Can Tell Us About Our Future Under a Green Sky. New York, Harper Collins Publishers Pty. Ltd. 242Google Scholar
  208. Wardlaw B R, Collinson J W. 1979. Youngest Permian conodont faunas from the Great Basin and Rocky Mountain regions: Conodont biostratigraphy of the Great Basin and Rocky Mountains. Geol Stud, 26: 151–164Google Scholar
  209. Wei X, Xu Y G, Feng Y X, Zhao J X. 2014. Plume-lithosphere interaction in the generation of the Tarim large igneous province, NW China: Geochronological and geochemical constraints. Am J Sci, 314: 314–356Google Scholar
  210. Wignall P B, Sun Y, Bond D P G, Izon G, Newton R J, Védrine S, Widdowson M, Ali J R, Lai X, Jiang H, Cope H, Bottrell S H. 2009. Volcanism, mass extinction, and carbon isotope fluctuations in the Middle Permian of China. Science, 324: 1179–1182Google Scholar
  211. Wu G, Ji Z, Trotter J A, Yao J, Zhou L. 2014. Conodont biostratigraphy of a new Permo-Triassic boundary section at Wenbudangsang, north Tibet. Palaeogeogr Palaeoclimat Palaeoecol, 411: 188–207Google Scholar
  212. Wu H T, He W H, Zhang Y, Yang T L, Xiao Y F, Chen B, Weldon E A. 2016. Palaeobiogeographic distribution patterns and processes of Neochonetes and Fusichonetes (Brachiopoda) in the late Palaeozoic and earliest Mesozoic. Palaeoworld, 25: 508–518Google Scholar
  213. Wu Q, Ramezani J, Zhang H, Wang T, Yuan D, Mu L, Zhang Y, Li X, Shen S. 2017. Calibrating the Guadalupian Series (Middle Permian) of South China. Palaeogeogr Palaeoclimat Palaeoecol, 466: 361–372Google Scholar
  214. Wu W S, Zhang L X, Jin Y G. 1974. The Carboniferous system of western Guizhou. Mem Nanjing Ins Geol Paleont Acad Sin, 6: 72–87Google Scholar
  215. Wu W S, Zhao J M. 1984. On the biological characteristics and the stratigraphical significance of the family Kepingophyllidae (in Chinese). Acta Palaeont Sin, 23: 411–419Google Scholar
  216. Wu W S, Zhao J M. 1989. Carboniferous and Early Permian Rugosa from Western Guizhou and Eastern Yunnan, SW China (in Chinese). Beijing: Science Press. 230Google Scholar
  217. Xiao W M, Wang H D, Zhang L X, Dong W L. 1986. Early Permian Stratigraphy and Faunas in Southern Guizhou (in Chinese). Guiyang: Guizhou People’s Publishing House. 364Google Scholar
  218. Xiao Y, Suzuki N, He W. 2017. Water depths of the latest Permian (Changhsingian) radiolarians estimated from correspondence analysis. Earth-Sci Rev, 173: 141–158Google Scholar
  219. Xie S, Pancost R D, Huang J, Wignall P B, Yu J, Tang X, Chen L, Huang X, Lai X. 2007. Changes in the global carbon cycle occurred as two episodes during the Permian–Triassic crisis. Geology, 35: 1083–1086Google Scholar
  220. Xu H P, Cao C Q, Yuan D X, Zhang Y C, Shen S Z. 2018. Lopingian (Late Permian) brachiopod faunas from the Qubuerga Formation at Tulong and Kujianla in the Mt. Everest area of southern Tibet, China. Riv Ital Paleontol S, 124: 139–162Google Scholar
  221. Xu S Y, Xia G Y, Yang D L, Li J X, Liang Z F, Li L, Zhang Y X. 1986. The Carboniferous-Permian boundary in Longlin region, Guangxi (in Chinese). Bull Yichang Ins Geol Mine Resour, 11: 1–32Google Scholar
  222. Xu S Y. 1984. The characters of the Permian coral faunas from Hunan and Hubei provinces (in Chinese). Acta Palaeont Sin, 23: 605–616Google Scholar
  223. Xu Y G, Wei X, Luo Z Y, Liu H Q, Cao J. 2014. The Early Permian Tarim Large Igneous Province: Main characteristics and a plume incubation model. Lithos, 204: 20–35Google Scholar
  224. Yang D L. 1991. The brachiopod fauna of Early Permian early Qixia Stage, Yishan area, Guangxi and its significance (in Chinese). Bull Yichang Ins Geol Mine Resour, 17: 81–92Google Scholar
  225. Yang W, Feng Q, Liu Y, Tabor N, Miggins D, Crowley J L, Lin J, Thomas S. 2010. Depositional environments and cyclo- and chronostratigraphy of uppermost Carboniferous-Lower Triassic fluvial-lacustrine deposits, southern Bogda Mountains, NW China—A terrestrial paleoclimatic record of mid-latitude NE Pangea. Glob Planet Change, 73: 15–113Google Scholar
  226. Yao Z Q, Xu J T, Zheng Z G, Zhao X G, Mo Z G. 1980. Late Permian Biostratigraphy and Problem of Permian-Triassic Boundary in Western Guizhou and Eastern Yunnan (in Chinese). Beijing: Science Press, 69Google Scholar
  227. Yin H F, Jiang H S, Xia W C, Feng Q L, Zhang N, Shen J. 2014. The end-Permian regression in South China and its implication on mass extinction. Earth-Sci Rev, 137: 19–33Google Scholar
  228. Yu J X, Peng Y Q, Zhang S X, Yang F Q, Zhao Q M, Huang Q S. 2007. Terrestrial events across the Permian-Triassic boundary along the Yunnan-Guizhou border, SW China. Global Planet Change, 55: 193–208Google Scholar
  229. Yuan D, Chen J, Zhang Y, Zheng Q, Shen S. 2015. Changhsingian conodont succession and the end-Permian mass extinction event at the Daijiagou section in Chongqing, Southwest China. J Asian Earth Sci, 105: 234–251Google Scholar
  230. Yuan D, Shen S, Henderson C M, Chen J, Zhang H, Feng H. 2014a. Revised conodont-based integrated high-resolution timescale for the Changhsingian Stage and end-Permian extinction interval at the Meishan sections, South China. Lithos, 204: 220–245Google Scholar
  231. Yuan D, Shen S, Henderson C M. 2017. Revised Wuchiapingian conodont taxonomy and succession of South China. J Paleont, 91: 1199–1219Google Scholar
  232. Yuan D, Zhang Y, Shen S, Henderson C M, Zhang Y, Zhu T, An X, Feng H. 2016. Early Permian conodonts from the Xainza area, central Lhasa Block, Tibet, and their palaeobiogeographical and palaeoclimatic implications. J Systatic Palaeont, 14: 365–383Google Scholar
  233. Yuan D X, Zhang Y C, Shen S Z. 2018. Conodont succession and reassessment of major events around the Permian-Triassic boundary at the Selong Xishan section, southern Tibet, China. Glob Planet Change, 161: 194–210Google Scholar
  234. Yuan D X, Zhang Y C, Zhang Y J, Zhu T X, Shen S Z. 2014b. First records of Wuchiapingian (Late Permian) conodonts in the Xainza area, Lhasa Block, Tibet, and their palaeobiogeographic implications. Alcheringa, 38: 546–556Google Scholar
  235. Zeng J, Cao C, Davydov V I, Shen S. 2012. Carbon isotope chemostratigraphy and implications of palaeoclimatic changes during the Cisuralian (Early Permian) in the southern Urals, Russia. Gondwana Res, 21: 601–610Google Scholar
  236. Zhang C L, Li Z X, Li X H, Xu Y G, Zhou G, Ye H M. 2010a. A Permian large igneous province in Tarim and Central Asian orogenic belt, NW China: Results of a ca. 275 Ma mantle plume? Geol Soc Am Bull, 122: 2020–2040Google Scholar
  237. Zhang D Y, Zhou T F, Yuan F, Fan Y, Liu S, Du H X. 2010. LA-ICPMS UPb ages, Hf isotope characteristics of zircons from basalts in the Kupukuziman Formation, Keping area, Tarim Basin (in Chinese). Acta Petrol Sin, 26: 963–974Google Scholar
  238. Zhang H, Cao C, Liu X, Mu L, Zheng Q, Liu F, Xiang L, Liu L, Shen S. 2016. The terrestrial end-Permian mass extinction in South China. Palaeogeogr Palaeoclimat Palaeoecol, 448: 108–124Google Scholar
  239. Zhang K, Huang J, Yin H, Wang G, Wang Y, Feng Q, Tian J. 2000. Application of radiolarians and other fossils in non-Smith strata. Sci China Ser D-Earth Sci, 43: 364–374Google Scholar
  240. Zhang L, Feng Q L, He W H. 2018. Permian radiolarian biostratigraphy. In: Lucas S G, Shen S Z, eds. The Permian Timescale. London Geol Soc, 450: 143–163Google Scholar
  241. Zhang S X, Jin Y G. 1976. Late Paleozoic brachiopods from the Mount Jolmo Lungma Region. in Xizang Scientific expedition team of Chinese Academy of Sciences, ed., A Report of Scientific Expedition in the Mount Jolmo Lungma Region (1966–1968), (2). Beijing: Science Press. 159–271Google Scholar
  242. Zhang X H, He X Y. 1980. New genus and species of Rugose corals from the Chuanshan Formation of central Hunan Province, China (in Chinese). Geoscience, 4: 35–45Google Scholar
  243. Zhang Y C, Cheng L R, Shen S Z. 2010b. Late Guadalupian (Middle Permian) Fusuline Fauna from the Xiala Formation in Xainza County, Central Tibet: Implication of the rifting time of the Lhasa Block. J Paleontol, 84: 955–973Google Scholar
  244. Zhang Y, Payne J L. 2012. Size-frequency distributions along a latitudinal Gradient in Middle Permian Fusulinoideans. PLoS ONE, 7: e38603Google Scholar
  245. Zhang Y, Shi G R, Shen S. 2013. A review of Permian stratigraphy, palaeobiogeography and palaeogeography of the Qinghai–Tibet Plateau. Gondwana Res, 24: 55–76Google Scholar
  246. Zhang Y C, Wang Y. 2018. Permian fusuline biostratigraphy. In: Lucas S G, Shen S Z, eds. The Permian Timescale. London Geol Soc, 450: 253–288Google Scholar
  247. Zhang Y, Tian S, Li Z, Gong Y, Xing E, Wang Z, Zhai D, Jie C, Kui S, Meng W. 2014. Discovery of marine fossils in the upper part of the Permian Linxi Formation in Lopingian, Xingmeng area, China. Chin Sci Bull, 59: 62–74Google Scholar
  248. Zhang Y, Shi G R, He W H, Zhang K X, Wu H T. 2014. A new Changhsingian (Late Permian) brachiopod fauna from the Zhongzhai section (South China), Part 2: Lingulida, Orthida, Orthotetida and Spiriferida. Alcheringa, 38: 480–503Google Scholar
  249. Zhang Z C. 1983. Zoning of Fusulinids in the Upper Carboniferous Taiyuan Formation in Western Hills of Taiyuan Shanxi (in Chinese). J Stratigraphy, 7: 272–279Google Scholar
  250. Zhang Z H, Wang Z H, Li C Q. 1988. A suggestion for classification of Permian in South Guizhou. Guiyang: Guizhou People’s Publishing House. 113Google Scholar
  251. Zhang Z Q. 1985. The Permian system in South China. J CSIMM, 43: 19–28Google Scholar
  252. Zhao J K, Liang X L, Zhen Z G. 1978. Late Permian cephalopods of South China (in Chinese). Palaeont Sin New Ser B, 12: 194Google Scholar
  253. Zhao J K, Shen J Z, Yao Z Q, Chen C Z, Rui L, Liao Z T. 1981. The Changhsingian and Permian-Triassic boundary of South China (in Chinese). Bull Nanjing Ins Geol Palaeont Acad Sin, 2: 1–85Google Scholar
  254. Zhao J M, Chen H C. 1963. New fossil corals from the Chihsia Formation of Lower Permian, southern Anhui (in Chinese). Acta Palaeont Sin, 11: 378–403Google Scholar
  255. Zhao Z X, Zhang G Z, Xiao J N. 2000. Paleozoic Stratigraphy and Conodonts in Xinjiang (in Chinese). Beijing: Petroleum Industry Press. 340Google Scholar
  256. Zhong Y T, He B, Mundil R, Xu Y G. 2014. CA-TIMS zircon U–Pb dating of felsic ignimbrite from the Binchuan section: Implications for the termination age of Emeishan large igneous province. Lithos, 204: 14–19Google Scholar
  257. Zhong Y T, He B, Xu Y G. 2013. Mineralogy and geochemistry of claystones from the Guadalupian–Lopingian boundary at Penglaitan, South China: Insights into the pre-Lopingian geological events. J Asian Earth Sci, 62: 438–462Google Scholar
  258. Zhou M F, Malpas J, Song X Y, Robinson P T, Sun M, Kennedy A K, Lesher C M, Keays R R. 2002. A temporal link between the Emeishan large igneous province (SW China) and the end-Guadalupian mass extinction. Earth Planet Sci Lett, 196: 113–122Google Scholar
  259. Zhou T S, Li P X, Yang J D, Hou J P, Liu S W, Chen Z W, Wu S Z, Li Y A. 1997. Stratotype section of non-marine of Permian-Triassic boundary in China (in Chinese). Xinjiang Geol, 15: 211–226Google Scholar
  260. Zhou X D, Li D J, Wang G Q, Sun X Q, Wang C Y. 2013. The age of the Daheshen Formation in Jilin Province based on conodont (in Chinese). Acta Palaeont Sin, 52: 294–308Google Scholar
  261. Zhou Y P, Ren Y L, Tang D Z. 1992. Characteristics of zircons from volcanic ash-derived tonsteins in Late Permian coal fields of eastern Yunnan, China (in Chinese). Acta Sediment Sin, 10: 23–38Google Scholar
  262. Zhou Y P. 1992. Application of Zircon morphological features and trace element marks of tonsteins to the precise identifying coal-lay’s position (in Chinese). Coal Geol Expl, 20: 18–23Google Scholar
  263. Zhou Z R. 1987. Early Permian ammonite-fauna from southeastern Hunan (in Chinese). Collection of Postgraduate Theses. Nanjing: Nanjing Institute of Geology and Palaeontology, Academia Sinica. 1: 285–348Google Scholar
  264. Zhou Z R. 2017. Permian basinal ammonoid sequence in Nanpanjiang area of South China—possible overlap between basinal Guadalupian and platform-based Lopingian. J Paleontol Memoir, 74: 91: 1–95Google Scholar
  265. Zhu H C. 1998. Permian spore and pollen assemblages from the Tarim Basin and their biostratigraphical significance (in Chinese). Acta Palaeont Sin, 36: 40–61Google Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Shuzhong Shen
    • 1
    • 2
    Email author
  • Hua Zhang
    • 1
    • 2
  • Yichun Zhang
    • 1
    • 2
  • Dongxun Yuan
    • 1
    • 2
  • Bo Chen
    • 1
    • 2
  • Weihong He
    • 3
  • Lin Mu
    • 2
    • 4
  • Wei Lin
    • 2
    • 4
  • Wenqian Wang
    • 1
    • 5
  • Jun Chen
    • 6
  • Qiong Wu
    • 1
    • 5
  • Changqun Cao
    • 1
    • 2
  • Yue Wang
    • 1
    • 2
    • 5
  • Xiangdong Wang
    • 2
    • 4
  1. 1.State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology and Center for Excellence in Life and PaleoenvironmentChinese Academy of SciencesNanjingChina
  2. 2.Centre for Research and Education on Biological Evolution and EnvironmentNanjing UniversityNanjingChina
  3. 3.State Key Laboratory of Biogeology and Environmental Geology, School of Earth SciencesChina University of GeosciencesWuhanChina
  4. 4.CAS Key Laboratory of Economic Stratigraphy and Palaeogeography, Nanjing Institute of Geology and Palaeontology and Center for Excellence in Life and PaleoenvironmentChinese Academy of SciencesNanjingChina
  5. 5.University of Chinese Academy of SciencesBeijingChina
  6. 6.State Key Laboratory of Isotope Geochemistry, Guangzhou Institute of GeochemistryChinese Academy of SciencesGuangzhouChina

Personalised recommendations