Advertisement

Science China Earth Sciences

, Volume 61, Issue 10, pp 1491–1509 | Cite as

Air temperature feedback and its contribution to global warming

  • Xiaoming Hu
  • Ming Cai
  • Song Yang
  • Sergio A. Sejas
Research Paper

Abstract

Air temperature feedback results from the thermal-radiative coupling between the atmosphere and the surface and plays an important role in surface energy balance. This paper reveals the contribution of air temperature feedback to the global warming from 1980 to 2000. The air temperature feedback kernel, evaluated using the ERA-Interim reanalysis data, is used to discuss the physical mechanism for air temperature feedback, the dependency of the strength of air temperature feedback on the climatological spatial distributions of air temperature, water vapor and cloud content, and the contributions of air temperature feedback to rapid global warming. The coupling between temperature feedback and each of the external forcings and individual feedback processes will amplify the anomaly of direct energy flux convergence at the surface induced by the external forcings and individual processes. The air temperature feedback amplifies the initial surface warming due to the increase in CO2 concentration, ice and snow melting, increase in water vapor, and change in ocean heat storage. It also amplifies the surface warming due to the longwave radiaitve forcing associated with the increase in cloud cover, which acts to suppress the cooling of the shortwave effect of cloud forcing. Overall, temperature feedback plays an important role in the global warming from 1980 to 2000, as the net positive contribution to the perturbation of global mean energy flux at the surface from the air temperature feedback is larger than the net negative contribution from external forcing and all non-temperature feedbacks.

Keywords

Global warming Air temperature feedback Surface energy budget 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This study was supported by the National Key Scientific Research Plan of China (Grant No. 2014CB953900), the Natural Science Foundation of Guangdong Province (Grant No. 2017A030310571), and the Fundamental Research Funds for the Central Universities (Grant No. 17LGPY21).

References

  1. Adler R F, Huffman G J, Chang A, Ferraro R, Xie P P, Janowiak J, Rudolf B, Schneider U, Curtis S, Bolvin D, Gruber A, Susskind J, Arkin P, Nelkin E. 2003. The version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979–present). J Hydrometeorol, 4: 1147–1167CrossRefGoogle Scholar
  2. Albrecht B A. 1989. Aerosols, cloud microphysics, and fractional cloudiness. Science, 245: 1227–1230CrossRefGoogle Scholar
  3. Auer I, Böhm R, Jurkovic A, Lipa W, Orlik A, Potzmann R, Schöner W, Ungersböck M, Matulla C, Briffa K, Jones P, Efthymiadis D, Brunetti M, Nanni T, Maugeri M, Mercalli L, Mestre O, Moisselin J M, Begert M, Müller-Westermeier G, Kveton V, Bochnicek O, Stastny P, Lapin M, Szalai S, Szentimrey T, Cegnar T, Dolinar M, Gajic-Capka M, Zaninovic K, Majstorovic Z, Nieplova E. 2007. HISTALP—Historical instrumental climatological surface time series of the greater alpine region. Int J Climatol, 27: 17–46CrossRefGoogle Scholar
  4. Brasseur G, Hitchman M H. 1988. Stratospheric response to trace gas perturbations: Changes in ozone and temperature distributions. Science, 240: 634–637CrossRefGoogle Scholar
  5. Cai M, Lu J H. 2009. A new framework for isolating individual feedback processes in coupled general circulation climate models. Part II: Method demonstrations and comparisons. Clim Dyn, 32: 887–900Google Scholar
  6. Cai M, Tung K K. 2012. Robustness of dynamical feedbacks from radiative forcing: 2% solar versus 2×CO2 experiments in an idealized GCM. J Atmos Sci, 69: 2256–2271CrossRefGoogle Scholar
  7. Dai A, Karl T R, Sun B, Trenberth K E. 2006. Recent trends in cloudiness over the United States: A tale of monitoring inadequacies. Bull Amer Meteorol Soc, 87: 597–606CrossRefGoogle Scholar
  8. Dee D P, Uppala S M, Simmons A J, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda M A, Balsamo G, Bauer P, Bechtold P, Beljaars A C M, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer A J, Haimberger L, Healy S B, Hersbach H, Hólm E V, Isaksen L, Kållberg P, Köhler M, Matricardi M, McNally A P, Monge-Sanz B M, Morcrette J J, Park B K, Peubey C, de Rosnay P, Tavolato C, Thépaut J N, Vitart F. 2011. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q J R Meteorol Soc, 137: 553–597CrossRefGoogle Scholar
  9. Ding S, Zhao C, Shi G, Wu C. 2005. Analysis of global total cloud amount variation over the past 20 years (in Chinese). J Appl Meteorol, 16: 670–677Google Scholar
  10. Eastman R, Warren S G. 2013. A 39-yr survey of cloud changes from land stations worldwide 1971–2009: Long-term trends, relation to aerosols, and expansion of the tropical belt. J Clim, 26: 1286–1303CrossRefGoogle Scholar
  11. Fu Q, Liou K N. 1993. Parameterization of the radiative properties of cirrus clouds. J Atmos Sci, 50: 2008–2025CrossRefGoogle Scholar
  12. Guan X, Huang J, Guo R, Lin P. 2015a. The role of dynamically induced variability in the recent warming trend slowdown over the Northern Hemisphere. Sci Rep, 5: 12669CrossRefGoogle Scholar
  13. Guan X, Huang J, Guo R, Yu H, Lin P, Zhang Y. 2015b. Role of radiatively forced temperature changes in enhanced semi-arid warming in the cold season over east Asia. Atmos Chem Phys, 15: 13777–13786CrossRefGoogle Scholar
  14. Hall A, Manabe S. 1999. The role of water vapor feedback in unperturbed climate variability and global warming. J Clim, 12: 2327–2346CrossRefGoogle Scholar
  15. Hansen J, Ruedy R, Sato M, Lo K. 2010. Global surface temperature change. Rev Geophys, 48: RG4004CrossRefGoogle Scholar
  16. Hansen J, Sato M, Ruedy R. 1997. Radiative forcing and climate response. J Geophys Res, 102: 6831–6864CrossRefGoogle Scholar
  17. Held I M, Soden B J. 2000. Water vapor feedback and global warming. Annu Rev Energy Environ, 25: 441–475CrossRefGoogle Scholar
  18. Held I M, Soden B J. 2006. Robust responses of the hydrological cycle to global warming. J Clim, 19: 5686–5699CrossRefGoogle Scholar
  19. Holland M M, Bitz C M. 2003. Polar amplification of climate change in coupled models. Clim Dyn, 21: 221–232CrossRefGoogle Scholar
  20. Hu X, Li Y, Yang S, Deng Y, Cai M. 2017. Process-based decomposition of the decadal climate difference between 2002–13 and 1984–95. J Clim, 30: 4373–4393CrossRefGoogle Scholar
  21. Huang J, Xie Y, Guan X, Li D, Ji F. 2017. The dynamics of the warming hiatus over the Northern Hemisphere. Clim Dyn, 48: 429–446CrossRefGoogle Scholar
  22. IPCC. 2013. Climate change 2013. In: Stocker T F, Qin D, Plattner G K, Tignor M, Allen S K, Boschung J, Nauels A, Xia Y, Bex V, Midgley P M, eds. The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press. 1535Google Scholar
  23. IPCC. 2007: Climate change 2007. In: Solomon S, Qin D, Manning M. Chen Z, Marquis M, Averyt K B, Tignor M, Miller H L, eds. The Physical Science Basis, Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University PressGoogle Scholar
  24. Jones P D, Moberg A. 2003. Hemispheric and large-scale surface air temperature variations: An extensive revision and an update to 2001. J Clim, 16: 206–223CrossRefGoogle Scholar
  25. Kaiser D P. 1998. Analysis of total cloud amount over China, 1951–1994. In: Proceedings of the Ninth Symposium on Global Change Studies. American Meteorological Society. Boston. 168–171Google Scholar
  26. Li C, Weng H, Gao X, Zhong M. 2003. Initial investigation of another possible reason to cause global warming (in Chinese). Chin J Atmos Sci, 27: 789–797CrossRefGoogle Scholar
  27. Li J, Ren R, Qi Y, Wang F, Lu R, Zhang P, Jiang Z, Duan W, Yu F, Yang Y. 2013. Progress in air-land-sea interactions in Asia and their role in global and Asian climate change (in Chinese). Chin J Atmos Sci, 37: 518–538Google Scholar
  28. Li L J, Wang B, Zhou T J. 2007. Impacts of external forcing on the 20th century global warming. Chin Sci Bull, 52: 3148–3154CrossRefGoogle Scholar
  29. Lu J H, Cai M. 2009. A new framework for isolating individual feedback processes in coupled general circulation climate models. Part I: Formulation. Clim Dyn, 32: 873–885Google Scholar
  30. Maugeri M, Bagnati Z, Brunetti M, Nanni T. 2001. Trends in Italian total cloud amount, 1951–1996. Geophys Res Lett, 28: 4551–4554CrossRefGoogle Scholar
  31. Polyakov I V, Alekseev G V, Bekryaev R V, Bhatt U, Colony R L, Johnson M A, Karklin V P, Makshtas A P, Walsh D, Yulin A V. 2002. Observationally based assessment of polar amplification of global warming. Geophys Res Lett, 29: 25-1–25-4CrossRefGoogle Scholar
  32. Qian Y, Kaiser D P, Leung L R, Xu M. 2006. More frequent cloud-free sky and less surface solar radiation in China from 1955 to 2000. Geophys Res Lett, 33: L01812Google Scholar
  33. Ramanathan V. 1977. Interactions between ice-albedo, lapse-rate and cloud-top feedbacks: An analysis of the nonlinear response of a GCM climate model. J Atmos Sci, 34: 1885–1897CrossRefGoogle Scholar
  34. Ramanathan V, Carmichael G. 2008. Global and regional climate changes due to black carbon. Nat Geosci, 1: 221–227CrossRefGoogle Scholar
  35. Rudolf B, Hauschild H, Rueth W, Schneider U. 1994. Terrestrial precipitation analysis: Operational method and required density of point measurements. In: Desbois M, Désalmand F, eds. Global Precipitations and Climate Change. NATO ASI Series (Series I: Global Environmental Change), vol 26. Berlin: SpringerGoogle Scholar
  36. Schneider E K, Kirtman B P, Lindzen R S. 1999. Tropospheric water vapor and climate sensitivity. J Atmos Sci, 56: 1649–1658CrossRefGoogle Scholar
  37. Sejas S A, Cai M. 2016. Isolating the temperature feedback loop and its effects on surface temperature. J Atmos Sci, 73: 3287–3303CrossRefGoogle Scholar
  38. Shell K M, Kiehl J T, Shields C A. 2008. Using the radiative kernel technique to calculate climate feedbacks in NCAR’s community atmospheric model. J Clim, 21: 2269–2282CrossRefGoogle Scholar
  39. Simmons A J, Jones P D, da Costa Bechtold V, Beljaars A C M, Kållberg P W, Saarinen S, Uppala S M, Viterbo P, Wedi N. 2004. Comparison of trends and low-frequency variability in CRU, ERA-40, and NCEP/NCAR analyses of surface air temperature. J Geophys Res, 109: D24115CrossRefGoogle Scholar
  40. Soden B J, Held I M, Colman R C, Shell K M, Kiehl J T, Shields C A. 2008. Quantifying climate feedbacks using radiative kernels. J Clim, 21: 3504–3520CrossRefGoogle Scholar
  41. Stephens G L, Li J, Wild M, Clayson C A, Loeb N, Kato S, L’Ecuyer T, Stackhouse P W, Lebsock M, Andrews T. 2012a. An update on Earth’s energy balance in light of the latest global observations. Nat Geosci, 5: 691–696CrossRefGoogle Scholar
  42. Stephens G L, Wild M, Stackhouse Jr P W, L’Ecuyer T, Kato S, Henderson D S. 2012b. The global character of the flux of downward longwave radiation. J Clim, 25: 2329–2340CrossRefGoogle Scholar
  43. Sun B, Groisman P Y. 2000. Cloudiness variations over the former Soviet Union. Int J Climatol, 20: 1097–1111CrossRefGoogle Scholar
  44. Taylor P C, Cai M, Hu A, Meehl J, Washington W, Zhang G J. 2013. A decomposition of feedback contributions to polar warming amplification. J Clim, 26: 7023–7043CrossRefGoogle Scholar
  45. Trenberth K E, Fasullo J, Smith L. 2005. Trends and variability in columnintegrated atmospheric water vapor. Clim Dyn, 24: 741–758CrossRefGoogle Scholar
  46. Tyndall J. 1861. On the absorption and radiation of heat by gases and vapours. Philos Mag, 22: 169–194, 273–285CrossRefGoogle Scholar
  47. Wang K C, Dickinson R E. 2013. Global atmospheric downward longwave radiation at the surface from ground-based observations, satellite retrievals, and reanalyses. Rev Geophys, 51: 150–185CrossRefGoogle Scholar
  48. Wetherald R T, Manabe S. 1988. Cloud feedback processes in a general circulation model. J Atmos Sci, 45: 1397–1416CrossRefGoogle Scholar
  49. Wu Z, Huang N E, Long S R, Peng C K. 2007. On the trend, detrending, and variability of nonlinear and nonstationary time series. Proc Natl Acad Sci USA, 104: 14889–14894CrossRefGoogle Scholar
  50. Zheng B, Shi C. 2006. Temperature cooling in lower stratosphere and its effects on zonal wind (in Chinese). Meteorol Sci Technol, 34: 538–541Google Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Xiaoming Hu
    • 1
    • 2
  • Ming Cai
    • 3
  • Song Yang
    • 1
    • 2
    • 4
  • Sergio A. Sejas
    • 5
  1. 1.School of Atmospheric SciencesSun Yat-sen UniversityGuangzhouChina
  2. 2.Guangdong Province Key Laboratory for Climate Change and Natural Disaster StudiesGuangzhouChina
  3. 3.Department of Earth, Ocean and Atmospheric SciencesFlorida State UniversityTallahasseeUSA
  4. 4.Institute of Earth Climate and Environment SystemSun Yat-sen UniversityGuangzhouChina
  5. 5.NASA Langley Research CenterClimate Science BranchHamptonUSA

Personalised recommendations