Advertisement

Science China Earth Sciences

, Volume 62, Issue 1, pp 7–24 | Cite as

Ediacaran integrative stratigraphy and timescale of China

  • Chuanming ZhouEmail author
  • Xunlai Yuan
  • Shuhai Xiao
  • Zhe Chen
  • Hong Hua
Review
  • 160 Downloads

Abstract

Ediacaran successions occur widely in various depositional facies in South China and yield a series of fossil Lagerstätten, providing a complete fossil record for the evolution of marine ecosystems after the terminal Cryogenian global glaciation. Carbonate-dominated Ediacaran successions in shallow water facies in South China record a nearly complete δ13C profile that may reflect variations of marine carbon isotopic composition during the Ediacaran Period. The Ediacaran fossils and δ13C profiles from South China permit stratigraphic correlation and subdivision of the Ediacaran strata. Based on biostratigraphic, chemostratigraphic, and geochronometric data from the Ediacaran successions in South China, we propose that the Ediacaran System in China can be subdivided into two series, with three stages in each series. The lower series is characterized by acanthomorphic acritarchs and the upper series by Ediacara-type macrofossils, and the two series are separated by the declining limb of a pronounced δ13C negative excursion (EN3) in the upper Doushantuo Formation. The basal boundary of Stage 1 is the same as the basal boundary of Ediacaran System, which has been defined at the base of the cap carbonate unit. Stage 2 represents the first radiation of Ediacaran microscopic organisms, with δ13C feature representing by positive values (EP1). The base of the Stage 2 is placed at the first appearance level of a spiny acritarch species. Stage 3 is characterized by the occurrence of more diverse acritarchs and δ13C feature EP2, with its basal boundary defined by a δ13C negative excursion (EN2) occurring in the middle Doushantuo Formation. The basal boundary of Stage 4 is the same as the upper series. Stage 5 is marked by the occurrence of macrfossils of Miaohe biota, and its lower boundary can be placed at the level where δ13C values transition from positive to negative in MNE, or the first appearance level of macrofossils of the Miaohe biota. Stage 6 is characterized by the occurrences of Ediacara-type Shibantan biota and Gaojiashan biota, with its lower boundary defined by the first appearance level of Conotubus hemiannulatus. The formal establishment of the aforementioned series and stages requires further and more detailed integrative stratigraphic study on the Ediacaran successions in China. Some of the Ediacaran successions in South China have great potential to become global standards in Ediacaran subdivision.

Keywords

Ediacaran Biostratigraphy Chemostratigraphy Stratotype section South China 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

We are grateful to two anonymous reviewers for their constructive comments and suggestions. This work was supported by the Strategic Priority Research Program (B) of Chinese Academy of Sciences (Grant No. XDB18000000) and the National Natural Science Foundation of China (Grant No. 41672027).

References

  1. Adam Z R, Skidmore M L, Mogk D W, Butterfield N J. 2017. A Laurentian record of the earliest fossil eukaryotes. Geology, 45: 387–390Google Scholar
  2. An Z, Jiang G, Tong J, Tian L, Ye Q, Song H, Song H. 2015. Stratigraphic position of the Ediacaran Miaohe biota and its constrains on the age of the upper Doushantuo δ 13C anomaly in the Yangtze Gorges area, South China. Precambrian Res, 271: 243–253Google Scholar
  3. Anderson R P, Macdonald F A, Jones D S, McMahon S, Briggs D E G. 2017. Doushantuo-type microfossils from latest Ediacaran phosphorites of northern Mongolia. Geology, 45: 1079–1082Google Scholar
  4. Cai Y, Hua H, Zhuravlev A Y, Gámez Vintaned J A, Ivantsov A Y. 2011. Discussion of ‘First finds of problematic Ediacaran fossil Gaojiashania in Siberia and its origin’. Geol Mag, 148: 329–333Google Scholar
  5. Cai Y, Xiao S, Hua H, Yuan X. 2015. New material of the biomineralizing tubular fossil Sinotubulites from the late Ediacaran Dengying Formation, South China. Precambrian Res, 261: 12–24Google Scholar
  6. Chen M, Wang Y. 1977. Tubular animal fossils in the middle Dengying Formation, Upper Sinian, East Yangtze Gorge (in Chinese). Chin Sci Bull, 22: 219–221Google Scholar
  7. Chen Z, Zhou C, Meyer M, Xiang K, Schiffbauer J D, Yuan X, Xiao S. 2013. Trace fossil evidence for Ediacaran bilaterian animals with complex behaviors. Precambrian Res, 224: 690–701Google Scholar
  8. Chen Z, Zhou C, Xiao S, Wang W, Guan C, Hua H, Yuan X. 2014. New Ediacara fossils preserved in marine limestone and their ecological implications. Sci Rep, 4: 4180Google Scholar
  9. Cloud P, Glaessner M F. 1982. The Ediacarian Period and System: Metazoa inherit the Earth. Science, 217: 783–792Google Scholar
  10. Condon D, Zhu M, Bowring S, Wang W, Yang A, Jin Y. 2005. U-Pb ages from the Neoproterozoic Doushantuo Formation, China. Science, 308: 95–98Google Scholar
  11. Cortijo I, Martí Mus M, Jensen S, Palacios T. 2015. Late Ediacaran skeletal body fossil assemblage from the Navalpino anticline, central Spain. Precambrian Res, 267: 186–195Google Scholar
  12. Cui H, Kaufman A J, Xiao S, Zhou C, Liu X M. 2017. Was the Ediacaran Shuram Excursion a globally synchronized early diagenetic event? Insights from methane-derived authigenic carbonates in the uppermost Doushantuo Formation, South China. Chem Geol, 450: 59–80Google Scholar
  13. Darroch S A F, Boag T H, Racicot R A, Tweedt S, Mason S J, Erwin D H, Laflamme M. 2016. A mixed Ediacaran-metazoan assemblage from the Zaris Sub-basin, Namibia. Palaeogeogr Palaeoclimatol Palaeoecol, 459: 198–208Google Scholar
  14. Ding L, Li Y, Hu X, Xiao Y, Su C, Huang J. 1996. Sinian Miaohe Biota (in Chinese). Beijing: Geological Publishing House. 1–221Google Scholar
  15. Glaessner M F. 1966. Precambrian palaeontology. Earth-Sci Rev, 1: 29–50Google Scholar
  16. Grabau A W. 1922. The Sinian System. Bull Geol Soc China, 1: 44–88Google Scholar
  17. Gradstein F M, Ogg J G, Smith A G, Bleeker W, Lourens L J. 2004. A new Geologic Time Scale, with special reference to Precambrian and Neogene. Episodes, 27: 83–100Google Scholar
  18. Grey K. 2005. Ediacaran palynology of Australia. Mem Ass Australasian Palaeont, 31: 1–439Google Scholar
  19. Grotzinger J P, Fike D A, Fischer W W. 2011. Enigmatic origin of the largest-known carbon isotope excursion in Earth’s history. Nat Geosci, 4: 285–292Google Scholar
  20. Harland W B, Armstrong R L, Cox A V, Craig L E, Smith A G, Smith D G. 1990. A Geologic Time Scale 1989. Cambridge: Cambridge University Press. 1–263Google Scholar
  21. Harland W B, Rudwick M S. 1964. The great Infra-Cambrian ice age. Sci Amer, 211: 28–36Google Scholar
  22. Harland W B. 1964. Critical evidence for a great infra-Cambrian glaciation. Geol Rundsch, 54: 45–61Google Scholar
  23. Hawkins A D, Xiao S, Jiang G, Wang X, Shi X. 2017. New biostratigraphic and chemostratigraphic data from the Ediacaran Doushantuo Formation in intra-shelf and upper slope facies of the Yangtze platform: Implications for biozonation of acanthomorphic acritarchs in South China. Precambrian Res, 300: 28–39Google Scholar
  24. He X B, Xu B, Yuan Z Y. 2007. C-isotope composition and correlation of the Upper Neoproterozoic in Keping area, Xinjiang (in Chinese). Chin Sci Bull, 52: 504–511Google Scholar
  25. Hu G, Zhao T, Zhou Y. 2014. Depositional age, provenance and tectonic setting of the Proterozoic Ruyang Group, southern margin of the North China Craton. Precambrian Res, 246: 296–318Google Scholar
  26. Hua H, Chen Z, Yuan X. 2007. The advent of mineralized skeletons in Neoproterozoic Metazoa—New fossil evidence from the Gaojiashan Fauna. Geol J, 42: 263–279Google Scholar
  27. Hua H, Zhang L, Zhang Z, Wang J. 2001. Assemblage zones of Gaojiashan biota and their characteristic. J Stratigr, 25: 10–17Google Scholar
  28. Javaux E, Knoll A H, Walter M R. 2001. Morphological and ecological complexity in early eukaryotic Ecosystems. Nature, 412: 66–69Google Scholar
  29. Jenkins R J F. 1981. The concept of an ′Ediacaran Period′ and its stratigraphic significance in Australia. T Roy Soc South Aust, 105: 179–194Google Scholar
  30. Jiang G, Kaufman A J, Christie-Blick N, Zhang S, Wu H. 2007. Carbon isotope variability across the Ediacaran Yangtze platform in South China: Implications for a large surface-to-deep ocean δ 13C gradient. Earth Planet Sci Lett, 261: 303–320Google Scholar
  31. Joshi H, Tiwari M. 2016. Tianzhushania spinosa and other large acanthomorphic acritarchs of Ediacaran Period from the Infrakrol Formation, Lesser Himalaya, India. Precambrian Res, 286: 325–336Google Scholar
  32. Kao C S, Hsiung Y H, Kao P. 1934. Preliminary notes on Sinian stratigraphy of North China. Bull Geol Soc China, 13: 243–288Google Scholar
  33. Knoll A, Walter M, Narbonne G, Christie-Blick N. 2006. The Ediacaran Period: A new addition to the geologic time scale. Lethaia, 39: 13–30Google Scholar
  34. Knoll A H. 1992. Microfossils in metasedimentary cherts of the Scotia Group, Prins Karls Forland, western Svalbard. Palaeontology, 35: 751–774Google Scholar
  35. Lambert I B, Walter M R, Wenlong Z, Songnian L, Guogan M. 1987. Palaeoenvironment and carbon isotope stratigraphy of Upper Proterozoic carbonates of the Yangtze Platform. Nature, 325: 140–142Google Scholar
  36. Lan Z, Li X, Chen Z Q, Li Q, Hofmann A, Zhang Y, Zhong Y, Liu Y, Tang G, Ling X, Li J. 2014. Diagenetic xenotime age constraints on the Sanjiaotang Formation, Luoyu Group, southern margin of the North China Craton: Implications for regional stratigraphic correlation and early evolution of eukaryotes. Precambrian Res, 251: 21–32Google Scholar
  37. Lee J S, Chao. Y T. 1924. Geology of the Gorge district of the Yangtze from Ichang to Tzekuei with special reference to development of the Gorges. Bull Geol Soc China, 3: 351–392Google Scholar
  38. Liu H. 1991. The Sinian System in China (in Chinese). Beijing: Science Press. 1–388Google Scholar
  39. Liu P, Chen S, Zhu M, Li M, Yin C, Shang X. 2014a. High-resolution biostratigraphic and chemostratigraphic data from the Chenjiayuanzi section of the Doushantuo Formation in the Yangtze Gorges area, South China: Implication for subdivision and global correlation of the Ediacaran System. Precambrian Res, 249: 199–214Google Scholar
  40. Liu P, Xiao S, Yin C, Chen S, Zhou C, Li M. 2014b. Ediacaran acanthomorphic acritarchs and other microfossils from chert nodules of the upper Doushantuo Formation in the Yangtze Gorges area, South China. J Paleontol, 88: 1–139Google Scholar
  41. Liu P, Yin C, Chen S, Li M, Gao L, Tang F. 2012. Discussion on the Chronostratigraphic Subdivision of the Ediacaran (Sinian) in the Yangtze Gorges Area, South China. Acta Geol Sin, 86: 849–866Google Scholar
  42. Liu P, Yin C, Chen S, Tang F, Gao L. 2013. The biostratigraphic succession of acanthomorphic acritarchs of the Ediacaran Doushantuo Formation in the Yangtze Gorges area, South China and its biostratigraphic correlation with Australia. Precambrian Res, 225: 29–43Google Scholar
  43. Liu P, Yin C, Gao L, Tang F, Chen S. 2009. New material of microfossils from the Ediacaran Doushantuo Formation in the Zhangcunping area, Yichang, Hubei Province and its zircon SHRIMP U-Pb age. Chin Sci Bull, 54: 1058–1064Google Scholar
  44. Liu P, Yin C, Tang F. 2016. Research progress in the Ediacaran biostratigraphy of South China (in Chinese). In: Sun S, Wang T, eds. The Mesoand Neoproterozoic Geology and Oil Resources in Eastern China. Beijing: Science Press. 89–103Google Scholar
  45. Lu M, Zhu M, Zhang J, Shields-Zhou G, Li G, Zhao F, Zhao X, Zhao M. 2013. The DOUNCE event at the top of the Ediacaran Doushantuo Formation, South China: Broad stratigraphic occurrence and non-diagenetic origin. Precambrian Res, 225: 86–109Google Scholar
  46. McFadden K A, Xiao S, Zhou C, Kowalewski M. 2009. Quantitative evaluation of the biostratigraphic distribution of acanthomorphic acritarchs in the Ediacaran Doushantuo Formation in the Yangtze Gorges area, South China. Precambrian Res, 173: 170–190Google Scholar
  47. Moczydłowska M, Nagovitsin K E. 2012. Ediacaran radiation of organicwalled microbiota recorded in the Ura Formation, Patom Uplift, East Siberia. Precambrian Res, 198-199: 1–24Google Scholar
  48. Narbonne G M, Xiao S, Shields G A, Gehling J G. 2012. The Ediacaran Period. In: Gradstein F M, Ogg J G, Schmitz M D, Ogg G M, eds. The Geologic Time Scale. Boston: Elsevier. 413–435Google Scholar
  49. National Commission on Stratigraphy of China. 1983. Note of meeting on the late Precambrian classification and nomenclature (in Chinese). J Stratigr, 7: 28–29Google Scholar
  50. National Commission on Stratigraphy of China. 2001. China Regional Chronostratigraphic (Geochronologic) Scale (1) (in Chinese). J Stratigr, 25(Suppl): 359Google Scholar
  51. National Commission on Stratigraphy of China. 2014. The Stratigraphic Chart of China (in Chinese). Beijing: Geological Publishing House. 1Google Scholar
  52. Ouyang Q, Guan C, Zhou C, Xiao S. 2017. Acanthomorphic acritarchs of the Doushantuo Formation from an upper slope section in northwestern Hunan Province, South China, with implications for early-middle Ediacaran biostratigraphy. Precambrian Res, 298: 512–529Google Scholar
  53. Ouyang Q, Zhou C, Guan C, Wang W. 2015. New microfossils from the Ediacaran Doushantuo Formation in the Yangtze Gorges area, South China, and their biostratigraphic implications (in Chinese). Acta Palaeontol Sin, 54: 207–229Google Scholar
  54. Peng S, Wang X, Xiao S, Tong J, Hua H, Zhu M, Zhao Y. 2012. A call to replace the Chronostratigraphic unit Sinian System (Period) with the global Ediacaran System (Period) (in Chinese). J Stratigr, 36: 55–59Google Scholar
  55. Plumb K A. 1991. New Precambrian time scale. Episodes, 14: 139–140Google Scholar
  56. Pu J P, Bowring S A, Ramezani J, Myrow P, Raub T D, Landing E, Mills A, Hodgin E, Macdonald F A. 2016. Dodging snowballs: Geochronology of the Gaskiers glaciation and the first appearance of the Ediacaran biota. Geology, 44: 955–958Google Scholar
  57. Shen B, Xiao S, Dong L, Zhou C, Liu J. 2007. Problematic macrofossils from Ediacaran successions in the North China and Chaidam blocks: Implications for their evolutionary roots and biostratigraphic significance. J Paleontology, 81: 1396–1411Google Scholar
  58. Shen B, Xiao S, Zhou C, Kaufman A J, Yuan X. 2010. Carbon and sulfur isotope chemostratigraphy of the Neoproterozoic Quanji Group of the Chaidam Basin, NW China: Basin stratification in the aftermath of an Ediacaran glaciation postdating the Shuram event? Precambrian Res, 177: 241–252Google Scholar
  59. Smith E F, Nelson L L, Strange M A, Eyster A E, Rowland S M, Schrag D P, Macdonald F A. 2016. The end of the Ediacaran: Two new exceptionally preserved body fossil assemblages from Mount Dunfee, Nevada, USA. Geology, 44: 911–914Google Scholar
  60. Sokolov B S. 1952. On the age of the old sedimentary cover of the Russian Platform (in Russian). Izvestiya Akademii Nauk SSSR, 5: 21–31Google Scholar
  61. Su W, Li H, Xu L, Jia S, Geng J, Zhou H, Wang Z, Pu H. 2012. Luoyu and Ruyang Group at the south margin of the North China craton (NCC) should belong in the Mesoproterozoic Changchengian System: Direct constraints from the LA-MC-ICPMS U-Pb age of the tuffite in the Luoyukou Formation, Ruzhou, Henan, China (in Chinese). Geol Surv Res, 35: 96–108Google Scholar
  62. Tang F, Bengtson S, Wang Y, Wang X, Yin C. 2011. Eoandromeda and the origin of Ctenophora. Evol Dev, 13: 408–414Google Scholar
  63. Tang F, Yin C, Bengtson S, Liu P, Wang Z, Gao L. 2008. Octoradiate Spiral Organisms in the Ediacaran of South China. Acta Geol Sin, 82: 27–34Google Scholar
  64. Tang Q, Pang K, Xiao S, Yuan X, Ou Z, Wan B. 2013. Organic-walled microfossils from the early Neoproterozoic Liulaobei Formation in the Huainan region of North China and their biostratigraphic significance. Precambrian Res, 236: 157–181Google Scholar
  65. Tang Q, Pang K, Yuan X, Wan B, Xiao S. 2015. Organic-walled microfossils from the Tonian Gouhou Formation, Huaibei region, North China Craton, and their biostratigraphic implications. Precambrian Res, 266: 296–318Google Scholar
  66. Tarhan L G, Hughes N C, Myrow P M, Bhargava O N, Ahluwalia A D, Kudryavtsev A B. 2014. Precambrian-Cambrian boundary interval occurrence and form of the enigmatic tubular body fossil Shaanxilithes ningqiangensis from the Lesser Himalaya of India. Palaeontology, 57: 283–298Google Scholar
  67. Vidal G. 1990. Giant acanthomorph acritarchs from the upper Proterozoic in southern Norway. Palaeontology, 33: 287–298Google Scholar
  68. Wang W, Guan C, Zhou C, Peng Y, Pratt L M, Chen X, Chen L, Chen Z, Yuan X, Xiao S. 2017a. Integrated carbon, sulfur, and nitrogen isotope chemostratigraphy of the Ediacaran Lantian Formation in South China: Spatial gradient, ocean redox oscillation, and fossil distribution. Geobiology, 15: 552–571Google Scholar
  69. Wang W, Zhou C, Guan C, Yuan X, Chen Z, Wan B. 2014. An integrated carbon, oxygen, and strontium isotopic studies of the Lantian Formation in South China with implications for the Shuram anomaly. Chem Geol, 373: 10–26Google Scholar
  70. Wang X, Chen X, Wang C, Chen L. 2001. Basal boundary and its inner chronostratigraphic subdivision of the Sinian System in China (in Chinese). J Stratigr, 25(Suppl): 370–376Google Scholar
  71. Wang Z, Wang J, Suess E, Wang G, Chen C, Xiao S. 2017b. Silicified glendonites in the Ediacaran Doushantuo Formation (South China) and their potential paleoclimatic implications. Geology, 45: 115–118Google Scholar
  72. Wen B, Evans D A D, Li Y X, Wang Z, Liu C. 2015. Newly discovered Neoproterozoic diamictite and cap carbonate (DCC) couplet in Tarim Craton, NW China: Stratigraphy, geochemistry, and paleoenvironment. Precambrian Res, 271: 278–294Google Scholar
  73. Willman S, Moczydłowska M. 2008. Ediacaran acritarch biota from the Giles 1 drillhole, Officer Basin, Australia, and its potential for biostratigraphic correlation. Precambrian Res, 162: 498–530Google Scholar
  74. Wood R A, Zhuravlev A Y, Sukhov S S, Zhu M, Zhao F. 2017. Demise of Ediacaran dolomitic seas marks widespread biomineralization on the Siberian Platform. Geology, 45: 27–30Google Scholar
  75. Xiao S, Bao H, Wang H, Kaufman A J, Zhou C, Li G, Yuan X, Ling H. 2004. The Neoproterozoic Quruqtagh Group in eastern Chinese Tianshan: Evidence for a post-Marinoan glaciation. Precambrian Res, 130: 1–26Google Scholar
  76. Xiao S, Bykova N, Kovalick A, Gill B C. 2017. Stable carbon isotopes of sedimentary kerogens and carbonaceous macrofossils from the Ediacaran Miaohe Member in South China: Implications for stratigraphic correlation and sources of sedimentary organic carbon. Precambrian Res, 302: 171–179Google Scholar
  77. Xiao S, Droser M, Gehling J G, Hughes I V, Wan B, Chen Z, Yuan X. 2013. Affirming life aquatic for the Ediacara biota in China and Australia. Geology, 41: 1095–1098Google Scholar
  78. Xiao S, Knoll A H, Kaufman A J, Yin L, Zhang Y. 1997. Neoproterozoic fossils in Mesoproterozoic rocks? Chemostratigraphic resolution of a biostratigraphic conundrum from the North China Platform. Precambrian Res, 84: 197–220Google Scholar
  79. Xiao S, Laflamme M. 2009. On the eve of animal radiation: phylogeny, ecology and evolution of the Ediacara biota. Trends Ecol Evol, 24: 31–40Google Scholar
  80. Xiao S, Muscente A D, Chen L, Zhou C, Schiffbauer J D, Wood A D, Polys N F, Yuan X. 2014a. The Weng’an biota and the Ediacaran radiation of multicellular eukaryotes. Nat Sci Rev, 1: 498–520Google Scholar
  81. Xiao S, Narbonne G M, Zhou C, Laflamme M, Grazhdankin D V, Moczydlowska-Vidal M, Cui H. 2016. Towards an Ediacaran Time Scale: Problems, protocols, and prospects. Episodes, 39: 540–555Google Scholar
  82. Xiao S, Yuan X, Steiner M, Knoll A H. 2002. Macroscopic carbonaceous compressions in a terminal Proterozoic shale: A systematic reassessment of the Miaohe biota, south China. J Paleont, 76: 347–376Google Scholar
  83. Xiao S, Zhou C, Liu P, Wang D, Yuan X. 2014b. Phosphatized acanthomorphic acritarchs and related microfossils from the Ediacaran Doushantuo Formation at Weng’an (South China) and their implications for biostratigraphic correlation. J Paleont, 88: 1–67Google Scholar
  84. Xing Y, Gao Z, Wang Z, Gao L, Yin C. 1996. Stratigraphical Lexicon of China: Neoproterozoic (in Chinese). Beijing: Geological Publishing House. 1–117Google Scholar
  85. Xing Y. 1988. Chronostratigraphic units (in Chinese). In: Zhao Z, Xing X, Ding Q, Liu G, Zhao Y, Zhang S, Meng X, Yin C, Ning B, Han P, eds. The Sinian System of Hubei. Wuhan: China University of Geosciences Press. 59–67Google Scholar
  86. Xu B, Xiao S, Zou H, Chen Y, Li Z, Song B, Liu D, Zhou C, Yuan X. 2009. SHRIMP zircon U-Pb age constraints on Neoproterozoic Quruqtagh diamictites in NW China. Precambrian Res, 168: 247–258Google Scholar
  87. Xue Y, Cao R, Tang T, Yin L, Yu C, Yang J. 2001. The Sinian stratigraphic sequence of the Yangtze region and correlation to the late Precambrian strata of North China. J Stratigr, 25: 207–216Google Scholar
  88. Yang C, Li X H, Zhu M, Condon D J. 2017. SIMS U-Pb zircon geochronological constraints on upper Ediacaran stratigraphic correlations, South China. Geol Mag, 154: 1202–1216Google Scholar
  89. Yang J, Sun W, Wang Z, Xue Y, Tao X. 1999. Variations in Sr and C isotopes and Ce anomalies in successions from China: Evidence for the oxygenation of Neoproterozoic seawater? Precambrian Res, 93: 215–233Google Scholar
  90. Ye Q, Tong J, An Z, Hu J, Tian L, Guan K, Xiao S. 2017. A systematic description of new macrofossil material from the upper Ediacaran Miaohe Member in South China. J Systatic Palaeont, doi: 10.1080/ 14772019.2017.1404499Google Scholar
  91. Yin C, Liu P, Awramik S M, Chen S, Tang F, Gao L, Wang Z, Riedman L A. 2011. Acanthomorph biostratigraphic succession of the Ediacaran Doushantuo Formation in the east Yangtze Gorges, South China. Acta Geol Sin, 85: 283–295Google Scholar
  92. Yin C, Liu P, Chen S, Tang F, Gao L, Wang Z. 2009. Acritarch biostratigraphic succession of the Ediacaran Doushantuo Formation in the Yangtze Gorges (in Chinese). Acta Palaeontol Sin, 48: 146–154Google Scholar
  93. Yin L, Li Z. 1978. Precambrian microfossils of Southwest China, with reference to their stratigraphic significance (in Chinese). Mem Nanjing Inst Geol Palaeont Aca Sin, 10: 41–108Google Scholar
  94. Yin L, Zhu M, Knoll A H, Yuan X, Zhang J, Hu J. 2007. Doushantuo embryos preserved inside diapause egg cysts. Nature, 446: 661–663Google Scholar
  95. Yuan X, Chen Z, Xiao S, Zhou C, Hua H. 2011. An early Ediacaran assemblage of macroscopic and morphologically differentiated eukaryotes. Nature, 470: 390–393Google Scholar
  96. Yuan X, Wan B, Guan C, Chen Z, Zhou C, Xiao S, Wang W, Pang K, Tang Q, Hua H. 2016. The Lantian Biota (in Chinese). Shanghai: Shanghai Scientific & Technical Publishers. 1–138Google Scholar
  97. Yuan X, Xiao S, Yin L, Knoll A, Zhou C, Mu X. 2002. Doushantuo Fossils: Life on the Eve of Animal Radiation (in Chinese). Hefei: China University of Science and Technology Press. 1–171Google Scholar
  98. Zang W, Walter M R. 1992. Late Proterozoic and Early Cambrian microfossils and biostratigraphy, northern Anhui and Jiangsu, central-eastern China. Precambrian Res, 57: 243–323Google Scholar
  99. Zhang Y, Yin L, Xiao S, Knoll A H. 1998. Permineralized fossils from the terminal Proterozoic Doushantuo Formation, South China. Paleont Soc Mem, 50: 1–52Google Scholar
  100. Zhang Z, Hua H, Zhang Z. 2015. Problematic Ediacaran fossil Shaanxilithes from the Jiucheng Member of Wangjiawan section in Jinning, Yunnan Province (in Chinese). Acta Palaeont Sin, 54: 12–28Google Scholar
  101. Zhao Y, He M, Chen M, Peng J, Yu M, Wang Y, Yang R, Wang P, Zhang Z. 2004. Discovery of a Miaohe-type biota from the Neoproterozoic Doushantuo Formation in Jiangkou County, Guizhou Province, China. Chin Sci Bull, 49: 2224–2228Google Scholar
  102. Zhou C, Guan C, Cui H, Ouyang Q, Wang W. 2016. Methane-derived authigenic carbonate from the lower Doushantuo Formation of South China: Implications for seawater sulfate concentration and global carbon cycle in the early Ediacaran ocean. Palaeogeogr Palaeoclimatol Palaeoecol, 461: 145–155Google Scholar
  103. Zhou C, Li X H, Xiao S, Lan Z, Ouyang Q, Guan C, Chen Z. 2017. A new SIMS zircon U-Pb date from the Ediacaran Doushantuo Formation: Age constraint on the Weng’an biota. Geol Mag, 154: 1193–1201Google Scholar
  104. Zhou C, Xiao S, Wang W, Guan C, Ouyang Q, Chen Z. 2017. The stratigraphic complexity of the middle Ediacaran carbon isotopic record in the Yangtze Gorges area, South China, and its implications for the age and chemostratigraphic significance of the Shuram excursion. Precambrian Res, 288: 23–38Google Scholar
  105. Zhou C, Xiao S. 2007. Ediacaran δ 13C chemostratigraphy of South China. Chem Geol, 237: 89–108Google Scholar
  106. Zhou C, Xie G, McFadden K, Xiao S, Yuan X. 2007. The diversification and extinction of Doushantuo-Pertatataka acritarchs in South China: Causes and biostratigraphic significance. Geol J, 42: 229–262Google Scholar
  107. Zhou C, Yuan X, Xiao S. 2002. Phosphatized biotas from the Neoproterozoic Doushantuo Formation on the Yangtze Platform. Chin Sci Bull, 47: 1918–1924Google Scholar
  108. Zhu M, Gehling J G, Xiao S, Zhao Y, Droser M L. 2008. Eight-armed Ediacara fossil preserved in contrasting taphonomic windows from China and Australia. Geology, 36: 867–870Google Scholar
  109. Zhu M, Lu M, Zhang J, Zhao F, Li G, Aihua Y, Zhao X, Zhao M. 2013. Carbon isotope chemostratigraphy and sedimentary facies evolution of the Ediacaran Doushantuo Formation in western Hubei, South China. Precambrian Res, 225: 7–28Google Scholar
  110. Zhu M, Zhang J, Yang A, Li G, Zhao F, Lv M, Yin Z. 2016. Neoproterozoic stratigraphy, distribution of source-reservoir-cap rocks, and sedimentary environment in South China (in Chinese). In: Sun S, Wang T, eds. The Meso- and Neoproterozoic Geology and Oil resources in Eastern China. Beijing: Science Press. 107–135Google Scholar
  111. Zhu M, Zhang J, Yang A. 2007. Integrated Ediacaran (Sinian) chronostratigraphy of South China. Palaeogeogr Palaeoclimatol Palaeoecol, 254: 7–61Google Scholar
  112. Zhuravlev A Y, Vintaned J A G, Ivantsov A Y. 2009. First finds of problematic Ediacaran fossil Gaojiashania in Siberia and its origin. Geol Mag, 146: 775–780Google Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Chuanming Zhou
    • 1
    Email author
  • Xunlai Yuan
    • 2
  • Shuhai Xiao
    • 3
  • Zhe Chen
    • 2
  • Hong Hua
    • 4
  1. 1.CAS Key Laboratory of Economic Stratigraphy and Palaeogeography, Nanjing Institute of Geology and Palaeontology and Center for Excellence in Life and PalaeoenvironmentChinese Academy of SciencesNanjingChina
  2. 2.State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology and Center for Excellence in Life and PalaeoenvironmentChinese Academy of SciencesNanjingChina
  3. 3.Department of GeosciencesVirginia TechBlacksburgUSA
  4. 4.State Key Laboratory of Continental Dynamics, Department of GeologyNorthwest UniversityXi’anChina

Personalised recommendations