Science China Earth Sciences

, Volume 61, Issue 10, pp 1397–1405 | Cite as

Differential physiological responses of the coastal cyanobacterium Synechococcus sp. PCC7002 to elevated pCO2 at lag, exponential, and stationary growth phases

  • Shanli Mou
  • Gang Li
  • Hongmei Li
  • Fazhong Li
  • Zhisheng Shao
  • Jinsong Li
  • Changfeng Qu
  • Yongyu ZhangEmail author
Research Paper


We studied the effects of expected end-of-the-century pCO2 (1000 ppm) on the photosynthetic performance of a coastal marine cyanobacterium Synechococcus sp. PCC7002 during the lag, exponential, and stationary growth phases. Elevated pCO2 significantly stimulated growth, and enhanced the maximum cell density during the stationary phase. Under ambient pCO2 conditions, the lag phase lasted for 6 days, while elevated pCO2 shortened the lag phase to two days and extended the exponential phase by four days. The elevated pCO2 increased photosynthesis levels during the lag and exponential phases, but reduced them during the stationary phase. Moreover, the elevated pCO2 reduced the saturated growth light (Ik) and increased the light utilization efficiency (α) during the exponential and stationary phases, and elevated the phycobilisome:chlorophyll a (Chl a) ratio. Furthermore, the elevated pCO2 reduced the particulate organic carbon (POC):Chl a and particulate organic nitrogen (PON):Chl a ratios during the lag and stationary phases, but enhanced them during the exponential phase. Overall, Synechococcus showed differential physiological responses to elevated pCO2 during different growth phases, thus providing insight into previous studies that focused on only the exponential phase, which may have biased the results relative to the effects of elevated pCO2 in ecology or aquaculture.


Elevated pCO2 Lag Exponential and stationary phases Photosynthetic performance Synechococcus 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the National Key Research and Development Program of China (Grant No. 2016YFA0601402), the China SOA Grant Associated with Task (Grant No. GASI-03-01-02-05), the CNOOC Zhanjiang Branch (Grant No. CNOOC-KJ 125 FZDXM 00 ZJ 001-2014), the National Natural Science Foundation of China (Grant Nos. 41606092 & 41676156). This study is a contribution to the international IMBER project.


  1. Arnon D I. 1949. Copper enzymes in isolated chloroplasts: Polyphenoloxidase in Beta vulgarsis. Plant Physiol, 24: 1–15CrossRefGoogle Scholar
  2. Axmann I M, Hertel S, Wiegard A, Dörrich A K, Wilde A. 2014. Diversity of KaiC-based timing systems in marine Cyanobacteria. Mar Genomics, 14: 3–16CrossRefGoogle Scholar
  3. Badger M R, Price G D. 2003. CO2 concentrating mechanisms in cyanobacteria: Molecular components, their diversity and evolution. J Exp Bot, 54: 609–622CrossRefGoogle Scholar
  4. Chen S, Gao K, Beardall J. 2015. Viral attack exacerbates the susceptibility of a bloom-forming alga to ocean acidification. Glob Change Biol, 21: 629–636CrossRefGoogle Scholar
  5. Chiu W, Dai W, Fu C, Raytcheva D, Flanagan J, Khant H A, Liu X, Rochat R H, Haase-Pettingell C, Piret J, Ludtke S J, Nagayama K, Schmid M F, King J A. 2014. Visualizing virus assembly intermediates inside marine cyanobacteria by zernike phase contrast electron cryo-tomography. Microsc Microanal, 20: 202–203CrossRefGoogle Scholar
  6. Drupp P, De Carlo E H, Mackenzie F T, Bienfang P, Sabine C L. 2011. Nutrient inputs, phytoplankton response, and CO2 variations in a semienclosed subtropical embayment, Kaneohe Bay, Hawaii. Aquat Geochem, 17: 473–498CrossRefGoogle Scholar
  7. Dufresne A, Ostrowski M, Scanlan D J, Garczarek L, Mazard S, Palenik B P, Paulsen I T, Tandeau de Marsac N, Wincker P, Dossat C, Ferriera S, Johnson J, Post A F, Hess W R, Partensky F. 2008. Unravelling the genomic mosaic of a ubiquitous genus of marine cyanobacteria. Genome Biol, 9: R90–16CrossRefGoogle Scholar
  8. Flombaum P, Gallegos J L, Gordillo R A, Rincón J, Zabala L L, Jiao N, Karl D M, Li W K W, Lomas M W, Veneziano D, Vera C S, Vrugt J A, Martiny A C. 2013. Present and future global distributions of the marine Cyanobacteria Prochlorococcus and Synechococcus. Proc Natl Acad Sci USA, 110: 9824–9829CrossRefGoogle Scholar
  9. Flynn K J, Clark D R, Mitra A, Fabian H, Hansen P J, Glibert P M, Wheeler G L, Stoecker D K, Blackford J C, Brownlee C. 2015. Ocean acidification with (de)eutrophication will alter future phytoplankton growth and succession. Proc R Soc B-Biol Sci, 282: 20142604CrossRefGoogle Scholar
  10. Fraser J M, Tulk S E, Jeans J A, Campbell D A, Bibby T S, Cockshutt A M. 2013. Photophysiological and photosynthetic complex changes during iron starvation in Synechocystis sp. PCC6803 and Synechococcus elongatus PCC7942. PLoS One, 8: e59861CrossRefGoogle Scholar
  11. Fu F X, Warner M E, Zhang Y, Feng Y, Hutchins D A. 2007. Effects of increased temperature and CO on photosynthesis, growth, and elemental ratios in marine Synechococcus and Prochlorococcus (cyanobacteria). J Phycology, 43: 485–496CrossRefGoogle Scholar
  12. Gan F, Bryant D A. 2015. Adaptive and acclimative responses of cyanobacteria to far-red light. Environ Microbiol, 17: 3450–3465CrossRefGoogle Scholar
  13. Gattuso J P, Magnan A, Billé R, Cheung W W, Howes EL, Joos F. 2015. Oceanography. contrasting futures for ocean and society from different anthropogenic CO2 emissions scenarios. Science, 349: aac4722CrossRefGoogle Scholar
  14. Gao K, Aruga Y, Asada K, Ishihara T, Akano T, Kiyohara M. 1993. Calcification in the articulated coralline alga Corallina pilulifera, with special reference to the effect of elevated CO2 concentration. Mar Biol, 117: 129–132CrossRefGoogle Scholar
  15. Gao K, Aruga Y, Asada K, Ishihara T, Akano T, Kiyohara M. 1991. Enhanced growth of the red algaPorphyra yezoensis Ueda in high CO2 concentrations. J Appl Phycol, 3: 355–362CrossRefGoogle Scholar
  16. Gao K, Campbell D A. 2014. Photophysiological responses of marine diatoms to elevated CO2 and decreased pH: A review. Funct Plant Biol, 41: 449–459CrossRefGoogle Scholar
  17. Gao K, Zheng Y. 2010. Combined effects of ocean acidification and solar UV radiation on photosynthesis, growth, pigmentation and calcification of the coralline alga Corallina sessilis (Rhodophyta). Glob Change Biol, 16: 2388–2398CrossRefGoogle Scholar
  18. Gao K S, Xu J T, Gao G, Li Y H, Hutchins D A. Huang B Q, Wang L, ZhengY, Jin P, Cai X N, Hader D -P, Li W, Xu K, Liu N N, Riebesell U. 2012. Rising CO2 and increased light exposure synergistically reduce marine primary productivity. Nat Clim Change, 2: 519–523CrossRefGoogle Scholar
  19. Gordillo F J L, Jiménez C, Figueroa F L, Niell F X. 1998. Effects of increased atmospheric CO2 and N supply on photosynthesis, growth and cell composition of the cyanobacterium Spirulina platensis (arthrospira). J Appl Phycology, 10: 461–469CrossRefGoogle Scholar
  20. Harley C D G. 2011. Climate change, keystone predation and biodiversity loss. Science, 334: 1124–1127CrossRefGoogle Scholar
  21. Hong H, Shen R, Zhang F, Wen Z, Chang S, Lin W, Kranz S A, Luo Y W, Kao S J, Morel F M M, Shi D. 2017. The complex effects of ocean acidification on the prominent n2-fixing cyanobacterium. Science, 356: 527–531CrossRefGoogle Scholar
  22. Hopkinson B M, Dupont C L, Allen A E, Morel F M M. 2011. Efficiency of the CO2-concentrating mechanism of diatoms. Proc Natl Acad Sci USA, 108: 3830–3837CrossRefGoogle Scholar
  23. Indermühle A, Stocker T F, Joos F, Fischer H, Smith H J, Wahlen M. 1999. Holocene carbon-cycle dynamics based on CO2 trapped in ice at Taylor Dome, Antarctica. Nature, 29: 605–609Google Scholar
  24. IPCC. 2001. Climate change 2001: The scientific basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge and New York: Cambridge University Press. 881Google Scholar
  25. Kroeker K J, Kordas R L, Crim R, Hendriks I E, Ramajo L, Singh G S, Duarte C M, Gattuso J P. 2013. Impacts of ocean acidification on marine organisms: Quantifying sensitivities and interaction with warming. Glob Change Biol, 19: 1884–1896CrossRefGoogle Scholar
  26. Li F, Beardall J, Collins S, Gao K. 2017. Decreased photosynthesis and growth with reduced respiration in the model diatom Phaeodactylum tricornutum grown under elevated CO2 over 1800 generations. Glob Change Biol, 23: 127–137CrossRefGoogle Scholar
  27. Li G, Campbell D A. 2013. Rising CO2 interacts with growth light and growth rate to alter Photosystem II photoinactivation of the coastal diatom Thalassiosira pseudonana. PLoS ONE, 8: e55562CrossRefGoogle Scholar
  28. Li W, Gao K, Beardall J. 2012. Interactive effects of ocean acidification and nitrogen-limitation on the diatom phaeodactylum tricornutum. PLoS ONE, 7: e51590CrossRefGoogle Scholar
  29. Li F T, Wu Y P, Hutchins D A, Fu F X, Gao K S. 2016. Physiological responses of coastal and oceanic diatoms to diurnal fluctuations in seawater carbonate chemistry under two CO2 concentrations. Biogeosciences, 13: 1–39CrossRefGoogle Scholar
  30. Lomas M, Hopkinson B, Losh J, Ryan D, Shi D, Xu Y, Morel F. 2012. Effect of ocean acidification on cyanobacteria in the subtropical North Atlantic. Aquat Microb Ecol, 66: 211–222CrossRefGoogle Scholar
  31. Mackey K R M, Paytan A, Caldeira K, Grossman A R, Moran D, McIlvin M, Saito M A. 2013. Effect of temperature on photosynthesis and growth in marine Synechococcus spp. Plant Physiol, 163: 815–829CrossRefGoogle Scholar
  32. McCarthy A, Rogers S P, Duffy S J, Campbell D A. 2012. Elevated carbon dioxide differentially alters the photophysiology of Thalassiosira pseudonana (bacillariophyceae) and Emiliania huxleyi (haptophyta). J Phycology, 48: 635–646CrossRefGoogle Scholar
  33. McCoy S J, Kamenos N A. 2015. Coralline algae (Rhodophyta) in a changing world: Iintegrating ecological, physiological, and geochemical responses to global change. J Phycol, 51: 6–24CrossRefGoogle Scholar
  34. Moisan T A, Blattner K L, Makinen C P. 2010. Influences of temperature and nutrients on Synechococcus abundance and biomass in the southern Mid-Atlantic Bight. Cont Shelf Res, 30: 1275–1282CrossRefGoogle Scholar
  35. Mou S, Zhang Y, Li G, Li H, Liang Y, Tang L, Tao J, Xu J, Li J, Zhang C, Jiao N. 2017. Effects of elevated CO2 and nitrogen supply on the growth and photosynthetic physiology of a marine cyanobacterium, Synechococcus sp. PCC7002. J Appl Phycol, 29: 1755–1763CrossRefGoogle Scholar
  36. Murphy J, Riley J P. 1962. A modified single solution method for the determination of phosphate in natural waters. Anal Chim Acta, 27: 31–36CrossRefGoogle Scholar
  37. Nash M C, Martin S, Gattuso J P. 2016. Mineralogical response of the mediterranean crustose coralline alga lithophyllum cabiochae to nearfuture ocean acidification and warming. Biogeosciences, 13: 5937–5945CrossRefGoogle Scholar
  38. Norman R J, Edberg J C, Stucki J W. 1985. Determination of nitrate in soil extracts by dual-wavelength ultraviolet spectrophotometry. Soil Sci Soc Am J, 49: 1182–1185CrossRefGoogle Scholar
  39. Olischläger M, Bartsch I, Gutow L, Wiencke C. 2013. Effects of ocean acidification on growth and physiology of Ulva lactuca (Chlorophyta) in a rockpool-scenario. Phycol Res, 61: 180–190CrossRefGoogle Scholar
  40. Olischläger M, Wiencke C. 2013. Ocean acidification alleviates low-temperature effects on growth and photosynthesis of the red alga Neosiphonia harveyi (Rhodophyta). J Exp Bot, 64: 5587–5597CrossRefGoogle Scholar
  41. Onizuka T, Akiyama H, Endo S, Kanai S, Hirano M, Tanaka S, Miyasaka H. 2002. CO2 response element and corresponding trans-acting factor of the promoter for ribulose-1,5-bisphosphate carboxylase/oxygenase genes in Synechococcus sp. PCC7002 found by an improved electrophoretic mobility shift assay. Plant Cell Physiol, 43: 660–667CrossRefGoogle Scholar
  42. Owens T G, Wold E R. 1986. Light-harvesting function in the diatom phaeodactylum tricornutum i. isolation and characterization of pigmentprotein complexes. Plant Physiol, 80: 732Google Scholar
  43. Partensky F, Blanchot J, Vaulot D. 1999. Differential distribution and ecology of Prochlorococcus and Synechococcus in oceanic waters: A review, in Marine Cyanobacteria, eds L. Charpy and A. Larkum (Monaco: Musée Océanographique), 457–475Google Scholar
  44. Platt T, Gallegos C L, Harrison W G. 1980. Photoinhibition of photosynthesis in natural assemblages of marine phytoplankton. J Mar Res, 38: 687–701Google Scholar
  45. Qu C F, Liu F M, Zheng Z, Wang Y B, Li X G, Yuan H M, Li N, An M L, Wang X X, He Y Y, Li L L, Miao J L. 2017. Effects of ocean acidification on the physiological performance and carbon production of the Antarctic sea ice diatom Nitzschia sp. ICE-H. Mar Pollut Bull, 120: 184–191CrossRefGoogle Scholar
  46. Reinfelder J R. 2011. Carbon concentrating mechanisms in eukaryotic marine phytoplankton. Annu Rev Mar Sci, 3: 291–315CrossRefGoogle Scholar
  47. Riebesell U, Schulz K G, Bellerby R G J, Botros M, Fritsche P, Meyerhöfer M, Neill C, Nondal G, Oschlies A, Wohlers J, Zöllner E. 2007. Enhanced biological carbon consumption in a high CO2 ocean. Nature, 450: 545–548CrossRefGoogle Scholar
  48. Riebesell U, Zondervan I, Rost B, Tortell P D, Zeebe R E, Morel F M M. 2000. Reduced calcification of marine plankton in response to increased atmospheric CO2. Nature, 407: 364–367CrossRefGoogle Scholar
  49. Sidler W A. 1995. The molecular biology of cyanobacteria. Photosynth Res, 45: 177–179CrossRefGoogle Scholar
  50. Suárez-Álvarez S, Gómez-Pinchetti J L, García-Reina G. 2012. Effects of increased CO2 levels on growth, photosynthesis, ammonium uptake and cell composition in the macroalga Hypnea spinella (Gigartinales, Rhodophyta). J Appl Phycol, 24: 815–823CrossRefGoogle Scholar
  51. Traving S J, Clokie M R J, Middelboe M. 2014. Increased acidification has a profound effect on the interactions between the cyanobacterium Synechococcus sp. WH7803 and its viruses. FEMS Microbiol Ecol, 87: 133–141CrossRefGoogle Scholar
  52. Wellburn A R. 1994. The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J Plant Physiol, 144: 307–313CrossRefGoogle Scholar
  53. Woodger F J, Bryant D A, Price G D. 2007. Transcriptional regulation of the CO2-concentrating mechanism in a euryhaline, coastal marine cyanobacterium, Synechococcus sp. strain PCC7002: Role of NdhR/ CcmR. J Bacteriol, 189: 3335CrossRefGoogle Scholar
  54. Wootton J T, Pfister C A, Forester J D. 2008. Dynamic patterns and ecological impacts of declining ocean pH in a high-resolution multi-year dataset. Proc Natl Acad Sci USA, 105: 18848–18853CrossRefGoogle Scholar
  55. Wulff A, Karlberg M, Olofsson M, Torstensson A, Riemann L, Steinhoff F. 2016. Climate-driven change in a Baltic Sea summer microplanktonic community-desalination play a more important role than ocean acidification. Biogeosci Discus, 1–32Google Scholar
  56. Xu D, Wang Y, Fan X, Wang D, Ye N, Zhang X, Mou S, Guan Z, Zhuang Z. 2014. Long-term experiment on physiological responses to synergetic eects of ocean acidication and photoperiod in the Antarctic sea ice algae Chlamydomonas sp. ICE-L. Environ Sci Technol, 48: 7738–7746CrossRefGoogle Scholar
  57. Yoshimura T, Nishioka J, Suzuki K, Hattori H. 2009. Impacts of elevated CO2 on phytoplankton community composition and organic carbon dynamics in nutrient-depleted Okhotsk Sea surface waters. J Exp Mar Biol Ecol, 6: 205–216Google Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Shanli Mou
    • 1
  • Gang Li
    • 1
    • 2
  • Hongmei Li
    • 1
  • Fazhong Li
    • 3
  • Zhisheng Shao
    • 3
  • Jinsong Li
    • 3
  • Changfeng Qu
    • 4
  • Yongyu Zhang
    • 1
    Email author
  1. 1.Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of SciencesQingdaoChina
  2. 2.Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of OceanologyChinese Academy of SciencesGuangzhouChina
  3. 3.Zhanjiang Branch of China National Offshore Oil Corporation Ltd.ZhanjiangChina
  4. 4.Key Laboratory of Marine Bioactive Substance, the First Institute of OceanographyState Oceanic AdministrationQingdaoChina

Personalised recommendations