Skip to main content
Log in

Experimental demonstration of the coupling effect of vertical velocity on latent heat flux

  • Research Paper
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

According to the cross coupling theorem of atmospheric turbulence, latent heat flux comprises two components, a vertical humidity gradient flux and a coupling flux of vertical velocity. In this paper, observational data are employed to demonstrate and analyze the coupling effect of vertical velocity on latent heat flux. The results highlight the presence of a coupling zero-effect height. When the observational level exceeds or underlies the coupling zero-effect height, the coupling effect suppresses or enhances the latent heat flux, respectively. Above the heterogeneous terrain in the experimental region, the overall difference between the estimated and the observed latent heat fluxes decreases from 27% to 2% (for ascending flow) and from 47% to 28% (for descending flow), after compensating for gradient flux. The coupling theorem of atmospheric turbulence is well validated by our analysis, supporting a role for experimental datasets in unraveling the mysteries of atmospheric turbulence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Monin A S, Obukhov A M. Basic turbulent mixing laws in the at mospheric surface layer. Tr Akad Nauk SSSR Geofiz Inst, 1954, 24: 163–187

    Google Scholar 

  2. Baldocchi D, Falge E, Gu L, et al. FLUXNET: A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. Bull Amer Meteorol Soc, 2001, 82: 2415–2434

    Article  Google Scholar 

  3. Baldocchi D D. Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: Past, present and future. Glob Change Biol, 2003, 9: 479–492

    Article  Google Scholar 

  4. Black T A, den Hartog G, Neumann H H, et al. Annual cycles of water vapour and carbon dioxide fluxes in and above a boreal aspen forest. Glob Change Biol, 1996, 2: 219–229

    Article  Google Scholar 

  5. Segal M, Avissar R, McCumber M C, et al. Evaluation of vegetation effects on the generation and modification of mesoscale circulations. J Atmos Sci, 1988, 45: 2268–2292

    Article  Google Scholar 

  6. Mahrt L, Sun J, Vickers D, et al. Observations of fluxes and inland breezes over a heterogeneous surface. J Atmos Sci, 1994, 51: 2484–2499

    Article  Google Scholar 

  7. Sun J, Desjardins R, Mahrt L, et al. Transport of carbon dioxide, water vapor and ozone over Candle Lake. J Geophys Res, 1997, 103: 25873–25885

    Article  Google Scholar 

  8. Finnigan J J, Brunet Y. Turbulent airflow in forests on flat and hilly terrain. In: Coutts, M P, Grace J, eds. Wind and Trees, London: Cambridge University Press, 1995

    Google Scholar 

  9. Lee X. On micrometeorological observations of surface-air exchange over tall vegetation. Agric For Meteorol, 1998, 91: 39–49

    Article  Google Scholar 

  10. Zhang Q, Li H Y. The relationship between surface energy balance unclosure and vertical sensible heat advection over the loess plateau (in Chinese). Acta Phys Sin, 2010, 59: 5888–5895

    Google Scholar 

  11. Webb E K, Pearman G I, Leuning R. Correction of the flux measurements for density effects due to heat and water vapour transfer. Q J R Meteorol Soc, 1980, 106: 85–100

    Article  Google Scholar 

  12. Han B, Lu S, Ao Y. Analysis on the interaction between turbulence and secondary circulation of surface layer in Jinta oasis on summer. Adv Atmos Sci, 2010, 27: 605–620

    Article  Google Scholar 

  13. Hu Y, Chen J. Nonequilibrium thermodynamic theory of the atmospheric turbulence. In: Lang P R, Lombargo F S, ed. Atmospheric Turbulence, Meteorological Modeling and Aerodynamics, New York: Nova Science Publishers Inc, 2009. 59–110

    Google Scholar 

  14. Hu Y. Application of the linear thermodynamics to atmosphere system (I): Linear phenomenological relation and thermodynamic property of the atmosphere. Adv Atmos Sci, 2002a, 19: 448–458

    Article  Google Scholar 

  15. Hu Y. Application of the linear thermodynamics to atmosphere system (II), Exemplification of the linear phenomenological relation in the atmosphere system. Adv Atmos Sci, 2002b, 19: 767–776

    Article  Google Scholar 

  16. Hu Y. The influence of convergence movement on turbulent transportation in the atmospheric boundary layer. Adv Atmos Sci, 2003, 20: 794–798

    Article  Google Scholar 

  17. Onsager L. Reciprocal relations in irreversible processes I. Phys Rev, 1931, 37: 405–426

    Article  Google Scholar 

  18. Onsager L. Reciprocal relations in irreversible processes II. Phys Rev, 1931, 38: 2265–2279

    Article  Google Scholar 

  19. Oncley S P, Foken T, Vogt R, et al. The Energy Balance Experiment EBEX-2000. Part I: Overview and energy balance. Bound-Layer Meteor, 2007, 123: 1–28

    Article  Google Scholar 

  20. Chen J, Hu Y, Zhang L. Principle of cross coupling between vertical heat turbulent transport and vertical velocity and determination of cross coupling coefficient. Adv Atmos Sci, 2007, 24: 89–100

    Article  Google Scholar 

  21. Businger J A, Wyngaard J C, Izumi Y, et al. Flux-profile relationships in the atmospheric surface layer. J Atoms Sci, 1971, 28: 181–189

    Article  Google Scholar 

  22. Dyer A J. A review of flux-profile-relationships. Bound-Layer Meteor, 1974, 7: 363–372

    Article  Google Scholar 

  23. Högström U. Non-dimensional wind and temperature profiles in the atmospheric surface: A re-evaluation. Bound-Layer Meteor, 1988, 42: 55–78

    Article  Google Scholar 

  24. Högström U. A critical evaluation of the aerodynamical error of a turbulence instrument. J Appl Meteorol, 1982, 21: 1838–1844

    Article  Google Scholar 

  25. Deacon E L. The levelling error in Reynolds stress measurement. Bull Amer Meteorol Soc, 1968, 49: 836

    Google Scholar 

  26. Kaimal J C, Haugen D A. Some errors in the measurement of Reynolds stress. J Appl Meteorol, 1969, 8: 460–462

    Article  Google Scholar 

  27. Wilczak J M, Oncley S P, Stage S A. Sonic anemometer tilt correction algorithms. Bound-Layer Meteor, 2001, 99: 127–150

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JinBei Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, J., Hu, Y., Lü, S. et al. Experimental demonstration of the coupling effect of vertical velocity on latent heat flux. Sci. China Earth Sci. 56, 684–692 (2013). https://doi.org/10.1007/s11430-012-4574-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-012-4574-1

Keywords

Navigation