Advertisement

Sicherer Umgang mit Diabetestechnologien

Übersicht über die aktuelle und künftige Schulungssituation in Klinik und Praxis – Anforderungen an Diabetesfachkräfte

Safe handling of diabetes technologies

Overview of clinical and practical aspects of current and future training situations—requirements of personnel specialized in diabetes

  • 12 Accesses

Zusammenfassung

Hintergrund

Neue Technologien erobern die Diabetesszene. Diese Technologien können im Alltag der Patienten hilfreich sein, wenn die richtigen Patienten die entsprechenden Geräte mittels einer guten Schulung vermittelt bekommen.

Zielsetzung

Neue Technologien, die im Alltag helfen sollen, umfassen Apps, aber auch Messsensoren wie „real-time continuous glucose monitoring“ (rtCGM) und „intermittent scanning continuous glucose monitoring“ (iscCGM), sensorunterstützte Pumpentherapie mit „low glucose suspend“, Weiteres erstreckt sich demnächst bis hin zu Hybrid- und Semi-closed-loop-Systemen. Nicht jeder Patient ist für jedes System geeignet. Dies setzt voraus, dass die Schulungsteams fähig sind, die Patienten richtig einzuschätzen und die richtige Auswahl für entsprechende Geräte zu treffen. Die neuen Möglichkeiten bieten aber Hilfen bei der Einstellung und Therapie. Um diese Vorteile zu nutzen, müssen die Patienten trainiert werden.

Ausblick

Es werden noch weitere Technologien auf den Markt kommen, die mit den Big Datas über Fuzzy-Algorithmen und weiteren unterstützenden Systemen (Bionicpankreas) dem Typ-1-Patienten ein Closed-Loop bieten. Hierzu müssen die Patienten eine gute Grundeinstellung erfahren, und im Anschluss muss das System richtig trainiert werden. Um den Patienten dazu zu befähigen, ist es zwingend nötig, dass die Diabetesteams eine gute Ausbildung erfahren.

Schlussfolgerung

Um die Vorteile der neuen Technologien nutzen zu können, müssen Menschen mit Diabetes und ihre Behandlungsteams gut ausgebildet werden.

Abstract

Background

New technologies dominate the diabetes scene. These technologies can be helpful in the daily lives of patients, when the right patients are given the appropriate equipment with a good training.

Objective

New technologies that should help in everyday life include apps and also measurement sensors, such as real-time continuous glucose monitoring (rtCGM), intermittent scanning continuous glucose monitoring (iscCGM) and sensor-assisted pump treatment with low glucose suspend that will soon extend to hybrid and semi-closed loop systems. Not every patient is suitable for each system. A prerequisite is that the training team is capable of correctly assessing the patients and of finding the correct selection for appropriate devices. The new options also provide assistance with the setting up and treatment; however, in order to benefit from these advantages, the patients must be trained.

Perspectives

Further technologies will also come onto the market that provide a closed-loop for type 1 patients with big data through fuzzy algorithms and other supportive systems (bionic pancreas). For this the patients must have a good basic attitude and afterwards the system has to be correctly trained. In order to empower the patient, it is imperative that the diabetes teams receive a good training.

Conclusion

In order to benefit from the advantages of the new technologies, people with diabetes and their treatment teams need to be well trained.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Abbreviations

AID:

„Automated insulin delivery systeme“

CSII:

„Kontinuierliche subkutane Insulininfusion“

iscCGM:

„Intermittent scanning continuous glucose monitoring“

rtCGM:

„Real-time continuous glucose monitoring“

TBR:

„Time below range“

TIR:

„Time in range“

Danksagung

Die Autoren danken Michael Krichbaum, FIDAM, für die Hilfe bei der Literaturrecherche.

Author information

Correspondence to Dr. oec. troph Astrid Tombek.

Ethics declarations

Interessenkonflikt

A. Tombek und K. Boehm geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Anhang

Anhang

Weiterführende Literatur

Für den Beitrag wurden keine Literaturstellen verwendet. Dieser Artikel basiert auf den Erfahrungen der Autorinnen. Folgende Literaturrecherche wurde aufgrund der Überarbeitung des Schulungskonzeptes im Diabetes-Zentrum Bad Mergentheim gemacht und stellt die Grundlage der Überlegungen dieses Beitrags.

Recherche 2019-07-12

PubMed

  • (closed loop OR artificial pancreas): N = 13.103

  • # AND diabetes mellitus: N = 1674

  • # AND (continuous glucose monitoring OR CGM): N = 524

  • # AND review OR meta-analysis: N = 150

PubMed

  • (closed loop artificial pancreas algorithm): N = 242

  • (closed loop artificial pancreas algorithms): N = 197

PubMed

  • (closed loop OR artificial pancreas) AND (continuous glucose monitoring OR CGM)

  • # AND algorithm: N = 205

  • # AND algorithm[TITLE/ABSTRACT]: N = 118

  • # AND algorithm[TITLE]: N = 11

Recherche

  • Bionic Pancreas: N = 7

  • Diabeloop: N = 3

  • Medtronic: N = 7

  • MD-Logic: N = 5

  • OmniPod: N = 5

  • HHM-System: N =3

  • plus verschiedene Übersichtsarbeiten zu Algorithmen

Recherche

  • APCam11 OR AP@Home OR KidsAP: N = 32

Bionic Pancreas

  1. 1.

    El-Khatib FH, Balliro C, Hillard MA, et al. Home use of a bihormonal bionic pancreas versus insulin pump therapy in adults with type 1 diabetes: a multicentre randomised crossover trial. Lancet. 2017; 389(10067):369–380.

  2. 2.

    El-Khatib FH, Russell SJ, Magyar KL, et al. Autonomous and continuous adaptation of a bihormonal bionic pancreas in adults and adolescents with type 1 diabetes. J Clin Endocrinol Metab. 2014; 99(5):1701–1711.

  3. 3.

    Russell SJ, El-Khatib FH, Nathan DM, et al. Blood glucose control in type 1 diabetes with a bihormonal bionic endocrine pancreas. Diabetes Care. 2012;35(11):2148–2155.

  4. 4.

    Russell SJ, El-Khatib FH, Sinha M, et al. Outpatient glycemic control with a bionic pancreas in type 1 diabetes. N Engl J Med. 2014; 371(4):313–325.

  5. 5.

    Russell SJ, Hillard MA, Balliro C, et al. Day and night glycaemic control with a bionic pancreas versus conventional insulin pump therapy in preadolescent children with type 1 diabetes: a randomised crossover trial. Lancet Diabetes Endocrinol. 2016; 4(3):233–243.

  6. 6.

    Buckingham B, Ly T. Closed-loop control in type 1 diabetes. Lancet Diabetes Endocrinol. 2016; 4(3):191–193.

Diabeloop

  1. 1.

    Benhamou PY, Huneker E, Franc S, et al. Customization of home closed-loop insulin delivery in adult patients with type 1 diabetes, assisted with structured remote monitoring: the pilot WP7 Diabeloop study. Acta Diabetol. 2018; 55(6):549–556.

  2. 2.

    Quemerais MA, Doron M, Dutrech F, et al. Preliminary evaluation of a new semi-closed-loop insulin therapy system over the prandial period in adult patients with type 1 diabetes: the WP6.0 Diabeloop study. J Diabetes Sci Technol. 2014; 8(6):1177–1184.

  3. 3.

    Borot S, Franc S, Cristante J, et al. Accuracy of a new patch pump based on a microelectromechanical system (MEMS) compared to other commercially available insulin pumps: results of the first in vitro and in vivo studies. J Diabetes Sci Technol. 2014; 8(6):1133–1141.

Medtronic

  1. 1.

    Stone JY, Haviland N, Bailey TS. Review of a commercially available hybrid closed-loop insulin-delivery system in the treatment of Type 1 diabetes. Ther Deliv. 2018; 9(2):77–87.

  2. 2.

    Weaver KW, Hirsch IB. The Hybrid Closed-Loop System: Evolution and Practical Applications. Diabetes Technol Ther. 2018; 20(S2):S216–S223.

  3. 3.

    Lee MH, Vogrin S, Paldus B, et al. Glucose Control in Adults with Type 1 Diabetes Using a Medtronic Prototype Enhanced-Hybrid Closed-Loop System: A Feasibility Study. Diabetes Technol Ther. 2019 Jul 2. [Epub ahead of print]

  4. 4.

    Paldus B, Lee MH, Jones HM, et al. Glucose Control Using a Standard Versus an Enhanced Hybrid Closed Loop System: A Randomized Crossover Study. Diabetes Technol Ther. 2019; 21(1):56–58.

  5. 5.

    de Bock M, Dart J, Hancock M, et al. Performance of Medtronic Hybrid Closed-Loop Iterations: Results from a Randomized Trial in Adolescents with Type 1 Diabetes. Diabetes Technol Ther. 2018; 20(10):693–697.

  6. 6.

    de Bock M, McAuley SA, Abraham MB, et al. Effect of 6 months hybrid closed-loop insulin delivery in young people with type 1 diabetes: a randomised controlled trial protocol. BMJ Open. 2018; 8(8):e020275.

  7. 7.

    Ly TT, Weinzimer SA, Maahs DM, et al. Automated hybrid closed-loop control with a proportional-integral-derivative based system in adolescents and adults with type 1 diabetes: individualizing settings for optimal performance. Pediatr Diabetes. 2017; 18(5):348–355.

  8. 8.

    Renukuntla VS, Ramchandani N, Trast J, et al. Role of glucagon-like peptide‑1 analogue versus amylin as an adjuvant therapy in type 1 diabetes in a closed loop setting with ePID algorithm. J Diabetes Sci Technol. 2014; 8(5):1011–1017.

MD-Logic

  1. 1.

    Biester T, Nir J, Remus K, et al. DREAM5: An open-label, randomized, cross-over study to evaluate the safety and efficacy of day and night closed-loop control by comparing the MD-Logic automated insulin delivery system to sensor augmented pump therapy in patients with type 1 diabetes at home. Diabetes Obes Metab. 2018 Nov 26. [Epub ahead of print]

  2. 2.

    Nimri R, Danne T, Kordonouri O, et al. The „Glucositter“ overnight automated closed loop system for type 1 diabetes: a randomized crossover trial. Pediatr Diabetes. 2013; 14(3):159–167.

  3. 3.

    Nimri R, Atlas E, Ajzensztejn M, et al. Feasibility study of automated overnight closed-loop glucose control under MD-logic artificial pancreas in patients with type 1 diabetes: the DREAM Project. Diabetes Technol Ther. 2012; 14(8):728–735.

  4. 4.

    Miller S, Nimri R, Atlas E, et al. Automatic learning algorithm for the MD-logic artificial pancreas system. Diabetes Technol Ther. 2011; 13(10):983–990.

  5. 5.

    Atlas E, Nimri R, Miller S, et al. MD-logic artificial pancreas system: a pilot study in adults with type 1 diabetes. Diabetes Care. 2010; 33(5):1072–1076.

OmniPod

  1. 1.

    Forlenza GP, Buckingham BA, Christiansen MP, et al. Performance of Omnipod Personalized Model Predictive Control Algorithm with Moderate Intensity Exercise in Adults with Type 1 Diabetes. Diabetes Technol Ther. 2019; 21(5):265–272.

  2. 2.

    Ly TT, Layne JE, Huyett LM, et al. Novel Bluetooth-Enabled Tubeless Insulin Pump: Innovating Pump Therapy for Patients in the Digital Age. J Diabetes Sci Technol. 2019; 13(1):20–26.

  3. 3.

    Buckingham BA, Christiansen MP, Forlenza GP, et al. Performance of the Omnipod Personalized Model Predictive Control Algorithm with Meal Bolus Challenges in Adults with Type 1 Diabetes. Diabetes Technol Ther. 2018; 20(9):585–595.

  4. 4.

    Buckingham BA, Forlenza GP, Pinsker JE, et al. Safety and Feasibility of the OmniPod Hybrid Closed-Loop System in Adult, Adolescent, and Pediatric Patients with Type 1 Diabetes Using a Personalized Model Predictive Control Algorithm. Diabetes Technol Ther. 2018; 20(4):257–262.

  5. 5.

    Kovatchev BP, Renard E, Cobelli C, et al. Feasibility of outpatient fully integrated closed-loop control: first studies of wearable artificial pancreas. Diabetes Care. 2013; 36(7):1851–1858.

Hypo-Hyper-Minimizer System

  1. 1.

    Finan DA, Dassau E, Breton MD, et al. Sensitivity of the Predictive Hypoglycemia Minimizer System to the Algorithm Aggressiveness Factor. J Diabetes Sci Technol. 2016; 10(1):104–110.

  2. 2.

    Finan DA, McCann TW Jr, Mackowiak L, et al. Closed-Loop Control Performance of the Hypoglycemia-Hyperglycemia Minimizer (HHM) System in a Feasibility Study. J Diabetes Sci Technol. 2014; 8(1):35–42.

  3. 3.

    Finan DA, McCann TW Jr, Rhein K, et al. Effect of algorithm aggressiveness on the performance of the Hypoglycemia-Hyperglycemia Minimizer (HHM) System. J Diabetes Sci Technol. 2014; 8(4):685–690.

Studien – nicht zugeordnet

  1. 1.

    Anderson SM, Dassau E, Raghinaru D, et al. The International Diabetes Closed-Loop Study: Testing Artificial Pancreas Component Interoperability. Diabetes Technol Ther. 2019; 21(2):73–80.

  2. 2.

    Renard E, Tubiana-Rufi N, Bonnemaison-Gilbert E, et al. Closed-loop driven by control-to-range algorithm outperforms threshold-low-glucose-suspend insulin delivery on glucose control albeit not on nocturnal hypoglycaemia in prepubertal patients with type 1 diabetes in a supervised hotel setting. Diabetes Obes Metab. 2019; 21(1):183–187.

  3. 3.

    Weisman A, Bai JW, Cardinez M, et al. Effect of artificial pancreas systems on glycaemic control in patients with type 1 diabetes: a systematic review and meta-analysis of outpatient randomised controlled trials. Lancet Diabetes Endocrinol. 2017; 5(7):501–512.

  4. 4.

    Russell SJ. Artificial pancreas research: you can observe a lot by watching. Lancet Diabetes Endocrinol. 2017; 5(7):484–485.

  5. 5.

    Farrington C. Psychosocial impacts of hybrid closed-loop systems in the management of diabetes: a review. Diabet Med. 2018; 35(4):436–449.

Algorithmen

  1. 1.

    Hovorka R, Canonico V, Chassin LJ, et al. Nonlinear model predictive control of glucose concentration in subjects with type 1 diabetes. Physiol Meas. 2004; 25(4):905–920.

  2. 2.

    Steil GM. Algorithms for a closed-loop artificial pancreas: the case for proportional-integral-derivative control. J Diabetes Sci Technol. 2013; 7(6):1621–31.

  3. 3.

    Bequette BW. Algorithms for a closed-loop artificial pancreas: the case for model predictive control. J Diabetes Sci Technol. 2013; 7(6):1632–1643.

  4. 4.

    Mauseth R, Wang Y, Dassau E, et al. Proposed clinical application for tuning fuzzy logic controller of artificial pancreas utilizing a personalization factor. J Diabetes Sci Technol. 2010; 4(4):913–922.

  5. 5.

    Mauseth R, Hirsch IB, Bollyky J, et al. Use of a „fuzzy logic“ controller in a closed-loop artificial pancreas. Diabetes Technol Ther. 2013; 15(8):628–633.

  6. 6.

    Nimri R, Phillip M. Artificial pancreas: fuzzy logic and control of glycemia. Curr Opin Endocrinol Diabetes Obes. 2014; 21(4):251–256.

  7. 7.

    Bruttomesso D, Farret A, Costa S, et al. Closed-loop artificial pancreas using subcutaneous glucose sensing and insulin delivery and a model predictive control algorithm: preliminary studies in Padova and Montpellier. J Diabetes Sci Technol. 2009; 3(5):1014–1021.

Reviews und Übersichten – gemischt

  1. 1.

    Kovatchev B. A Century of Diabetes Technology: Signals, Models, and Artificial Pancreas Control. Trends Endocrinol Metab. 2019; 30(7):432–444.

  2. 2.

    Quintal A, Messier V, Rabasa-Lhoret R, et al. A critical review and analysis of ethical issues associated with the artificial pancreas. Diabetes Metab. 2019; 45(1):1–10.

  3. 3.

    Ramli R, Reddy M, Oliver N. Artificial Pancreas: Current Progress and Future Outlook in the Treatment of Type 1 Diabetes. Drugs. 2019; 79(10):1089–1101.

  4. 4.

    Nijhoff MF, de Koning EJP. Artificial Pancreas or Novel Beta-Cell Replacement Therapies: a Race for Optimal Glycemic Control? Curr Diab Rep. 2018; 18(11):110.

  5. 5.

    Bally L, Thabit H, Hovorka R. Closed-loop for type 1 diabetes – an introduction and appraisal for the generalist. BMC Med. 2017; 15(1):14.

  6. 6.

    Murphy HR, Stewart ZA. Automated insulin delivery: what’s new, needed, and next? Lancet. 2017; 389(10067):333–334.

  7. 7.

    Trevitt S, Simpson S, Wood A. Artificial Pancreas Device Systems for the Closed-Loop Control of Type 1 Diabetes: What Systems Are in Development? J Diabetes Sci Technol. 2016; 10(3):714–723.

  8. 8.

    Thabit H, Hovorka R. Coming of age: the artificial pancreas for type 1 diabetes. Diabetologia. 2016; 59(9):1795–1805.

  9. 9.

    Hanazaki K, Munekage M, Kitagawa H, et al. Current topics in glycemic control by wearable artificial pancreas or bedside artificial pancreas with closed-loop system. J Artif Organs. 2016; 19(3):209–218.

  10. 10.

    Peyser T, Dassau E, Breton M, et al. The artificial pancreas: current status and future prospects in the management of diabetes. Ann N Y Acad Sci. 2014; 1311:102–123.

  11. 11.

    Bequette BW. Challenges and Recent Progress in the Development of a Closed-loop Artificial Pancreas. Annu Rev Control. 2012; 36(2):255–266.

  12. 12.

    Hovorka R. Closed-loop insulin delivery: from bench to clinical practice. Nat Rev Endocrinol. 2011; 7(7):385–395.

  13. 13.

    Renard E. Insulin delivery route for the artificial pancreas: subcutaneous, intraperitoneal, or intravenous? Pros and cons. J Diabetes Sci Technol. 2008; 2(4):735–738.

  14. 14.

    Howsmon D, Bequette BW. Hypo- and Hyperglycemic Alarms: Devices and Algorithms. J Diabetes Sci Technol. 2015; 9(5):1126–1137.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tombek, A., Boehm, K. Sicherer Umgang mit Diabetestechnologien. Diabetologe 16, 19–26 (2020). https://doi.org/10.1007/s11428-019-00566-x

Download citation

Schlüsselwörter

  • Real-time continuous glucose monitoring
  • Intermittent scanning continuous glucose monitoring
  • Automated insulin delivery systeme
  • Diabetesschulung
  • Diabetesteam

Keywords

  • Real-time continuous glucose monitoring
  • Intermittent scanning continuous glucose monitoring
  • Automated insulin delivery system
  • Diabetes education
  • Diabetes team