Advertisement

Der Diabetologe

, Volume 15, Issue 1, pp 55–64 | Cite as

Arterielle Hypertonie bei Menschen mit Diabetes

  • Walter ZidekEmail author
CME
  • 409 Downloads

Zusammenfassung

Diabetes mellitus und arterielle Hypertonie kommen häufig gemeinsam vor. Die zielorientierte Therapie des Bluthochdrucks verbessert die kardiovaskuläre Prognose bei Diabetes signifikant. Gleichzeitig ist die Hypertoniebehandlung bei Menschen mit im Vergleich zu solchen ohne Diabetes schwieriger. Insulinresistenz und Aktivierung des Renin-Angiotensin-Systems (RAS) sind wesentliche pathogenetische Faktoren. Die Zielblutdruckwerte wurden in den letzten Jahren unterschiedlich formuliert. Eine Blutdrucksenkung <130/80 mm Hg dürfte eine optimale kardiovaskuläre Protektion ermöglichen. Ein Blutdruck <120 mm Hg systolisch sollte vermieden werden. Zur Behandlung werden primär RAS-Blocker, Kalziumantagonisten und Diuretika verwendet. Betablocker sind primär nur bei zwingender kardialer Indikation sinnvoll. Bei diabetischer Nephropathie beginnt die Therapie mit einem RAS-Blocker. Die nächtliche Hypertonie bei autonomer Neuropathie erfordert besondere Aufmerksamkeit.

Schlüsselwörter

Blutdruck Blutzucker Glukoseintoleranz Antihypertensiva Nephropathie bei Diabetes 

Arterial hypertension in people with diabetes

Abstract

Diabetes mellitus and arterial hypertension frequently coexist. The treatment of arterial hypertension significantly improves cardiovascular prognosis in diabetic patients. On the other hand, treatment of hypertension in diabetic patients is more difficult than in uncomplicated hypertension. Insulin resistance and activation of the renin–angiotensin system (RAS) are important pathogenetic factors. Different blood pressure targets have been formulated in recent years. Lowering blood pressure to below 130/80 mm Hg likely provides optimal cardiovascular protection. Blood pressure should not be lowered to <120 mm Hg systolic. For initial treatment, RAS blockers, calcium channel blockers, diuretics and beta-blockers are recommended. Beta-blockers should only be used for compelling cardiovascular indications. In diabetic nephropathy treatment should be started with a RAS blocker. Nocturnal hypertension in autonomic neuropathy is especially challenging.

Keywords

Blood pressure Blood glucose Glucose intolerance Antihypertensive agents Diabetic nephropathies 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

W. Zidek gibt an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine vom Autor durchgeführten Studien an Menschen oder Tieren.

Literatur

  1. 1.
    Sowers JR (2013) Diabetes mellitus and vascular disease. Hypertension 61:943–947CrossRefGoogle Scholar
  2. 2.
    Hu G, Jousilahti P, Tuomilehto J (2007) Joint effects of history of hypertension at baseline and type 2 diabetes at baseline and during follow-up on the risk of coronary heart disease. Eur Heart J 28:3059–3066CrossRefGoogle Scholar
  3. 3.
    Reboldi G, Gentile G, Angeli F et al (2011) Effects of intensive blood pressure reduction on myocardial infarction and stroke in diabetes: a meta-analysis in 73,913 patients. J Hypertens 29:1253–1269CrossRefGoogle Scholar
  4. 4.
    De Cosmo S, Viazzi F, Pacilli A et al (2015) Achievement of therapeutic targets in patients with diabetes and chronic kidney disease: insights from the Associazione Medici Diabetologi Annals initiative. Nephrol Dial Transplant 30:1526–1533CrossRefGoogle Scholar
  5. 5.
    Group AS, Cushman WC, Evans GW et al (2010) Effects of intensive blood-pressure control in type 2 diabetes mellitus. N Engl J Med 362:1575–1585CrossRefGoogle Scholar
  6. 6.
    ALLHAT Officers and Coordinators for the ALLHAT Collaborative Research Group, The Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (2002) Major outcomes in high-risk hypertensive patients randomized to angiotensin-converting enzyme inhibitor or calcium channel blocker vs diuretic: The Antihypertensive and Lipid-Lowering treatment to prevent Heart Attack Trial (ALLHAT). JAMA 288:2981–2997CrossRefGoogle Scholar
  7. 7.
    Group SR, Wright JT Jr., Williamson JD et al (2015) A randomized trial of intensive versus standard blood-pressure control. N Engl J Med 373:2103–2116CrossRefGoogle Scholar
  8. 8.
    Buckley LF, Dixon DL, Wohlford GF et al (2017) Intensive versus standard blood pressure control in SPRINT-eligible participants of ACCORD-BP. Diabetes Care 40:1733–1738CrossRefGoogle Scholar
  9. 9.
    Hansson L, Zanchetti A, Carruthers SG et al (1998) Effects of intensive blood-pressure lowering and low-dose aspirin in patients with hypertension: principal results of the Hypertension Optimal Treatment (HOT) randomised trial. Lancet 351:1755–1762CrossRefGoogle Scholar
  10. 10.
    Group AC, Patel A, Macmahon S et al (2008) Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N Engl J Med 358:2560–2572CrossRefGoogle Scholar
  11. 11.
    Jafar TH, Stark PC, Schmid CH et al (2003) Progression of chronic kidney disease: the role of blood pressure control, proteinuria, and angiotensin-converting enzyme inhibition: a patient-level meta-analysis. Ann Intern Med 139:244–252CrossRefGoogle Scholar
  12. 12.
    Grassi G, Mancia G, Nilsson PM (2016) Specific blood pressure targets for patients with diabetic nephropathy? Diabetes Care 39(Suppl 2):S228–S233CrossRefGoogle Scholar
  13. 13.
    Patel A, Macmahon S, Chalmers J et al (2007) Effects of a fixed combination of perindopril and indapamide on macrovascular and microvascular outcomes in patients with type 2 diabetes mellitus (the ADVANCE trial): a randomised controlled trial. Lancet 370:829–840CrossRefGoogle Scholar
  14. 14.
    Williams B, Mancia G, Spiering W et al (2018) 2018 ESC/ESH Guidelines for the management of arterial hypertension: The Task Force for the management of arterial hypertension of the European Society of Cardiology and the European Society of Hypertension. J Hypertens 36:1953–2041CrossRefGoogle Scholar
  15. 15.
    Margolis KL, O’connor PJ, Morgan TM et al (2014) Outcomes of combined cardiovascular risk factor management strategies in type 2 diabetes: the ACCORD randomized trial. Diabetes Care 37:1721–1728CrossRefGoogle Scholar
  16. 16.
    Emdin CA, Rahimi K, Neal B et al (2015) Blood pressure lowering in type 2 diabetes: a systematic review and meta-analysis. JAMA 313:603–615CrossRefGoogle Scholar
  17. 17.
    Magee C, Grieve DJ, Watson CJ et al (2017) Diabetic nephropathy: a tangled web to unweave. Cardiovasc Drugs Ther 31:579–592CrossRefGoogle Scholar
  18. 18.
    Investigators O, Yusuf S, Teo KK et al (2008) Telmisartan, ramipril, or both in patients at high risk for vascular events. N Engl J Med 358:1547–1559CrossRefGoogle Scholar
  19. 19.
    Fernandez Juarez G, Luno J, Barrio V et al (2013) Effect of dual blockade of the renin-angiotensin system on the progression of type 2 diabetic nephropathy: a randomized trial. Am J Kidney Dis 61:211–218CrossRefGoogle Scholar
  20. 20.
    Holtkamp FA, De Zeeuw D, Thomas MC et al (2011) An acute fall in estimated glomerular filtration rate during treatment with losartan predicts a slower decrease in long-term renal function. Kidney Int 80:282–287CrossRefGoogle Scholar
  21. 21.
    Romano S, Idolazzi C, Fava C et al (2018) Prevalence and comorbidities of resistant hypertension: a collaborative population-based observational study. High Blood Press Cardiovasc Prev 25:295–301CrossRefGoogle Scholar
  22. 22.
    Van Schoonhoven AV, Van Asselt ADI, Tomaszewski M et al (2018) Cost-utility of an objective biochemical measure to improve adherence to antihypertensive treatment. Hypertension 72:1117–1124CrossRefGoogle Scholar
  23. 23.
    Williams B, Macdonald TM, Morant S et al (2015) Spironolactone versus placebo, bisoprolol, and doxazosin to determine the optimal treatment for drug-resistant hypertension (PATHWAY-2): a randomised, double-blind, crossover trial. Lancet 386:2059–2068CrossRefGoogle Scholar
  24. 24.
    Chen Y, Liu P, Chen X et al (2018) Effects of different doses of Irbesartan combined with spironolactone on urinary albumin excretion rate in elderly patients with early type 2 diabetic nephropathy. Am J Med Sci 355:418–424CrossRefGoogle Scholar
  25. 25.
    Mahaffey KW, Neal B, Perkovic V et al (2018) Canagliflozin for primary and secondary prevention of cardiovascular events: results from the CANVAS program (Canagliflozin cardiovascular assessment study). Circulation 137:323–334CrossRefGoogle Scholar
  26. 26.
    Zinman B, Wanner C, Lachin JM et al (2015) Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med 373:2117–2128CrossRefGoogle Scholar
  27. 27.
    Thomas MC, Cherney DZI (2018) The actions of SGLT2 inhibitors on metabolism, renal function and blood pressure. Diabetologia 61:2098–2107CrossRefGoogle Scholar
  28. 28.
    Tsimihodimos V, Filippatos TD, Elisaf MS (2018) SGLT2 inhibitors and the kidney: effects and mechanisms. Diabetes Metab Syndr 12:1117–1123CrossRefGoogle Scholar
  29. 29.
    Mancia G, Cannon CP, Tikkanen I et al (2016) Impact of empagliflozin on blood pressure in patients with type 2 diabetes mellitus and hypertension by background antihypertensive medication. Hypertension 68:1355–1364CrossRefGoogle Scholar
  30. 30.
    Mazidi M, Rezaie P, Gao HK et al (2017) Effect of sodium-glucose cotransport-2 inhibitors on blood pressure in people with type 2 diabetes mellitus: a systematic review and meta-analysis of 43 randomized control trials with 22 528 patients. J Am Heart Assoc 6(6):e4007CrossRefGoogle Scholar
  31. 31.
    Jordan J, Shannon JR, Pohar B et al (1999) Contrasting effects of vasodilators on blood pressure and sodium balance in the hypertension of autonomic failure. J Am Soc Nephrol 10:35–42PubMedGoogle Scholar
  32. 32.
    Shibao C, Gamboa A, Abraham R et al (2006) Clonidine for the treatment of supine hypertension and pressure natriuresis in autonomic failure. Hypertension 47:522–526CrossRefGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2019

Authors and Affiliations

  1. 1.Medical Department of NephrologyCharité – Universitätsmedizin BerlinBerlinDeutschland

Personalised recommendations