Science China Life Sciences

, Volume 62, Issue 10, pp 1400–1403 | Cite as

Establishment of an efficient germ-free animal system to support functional microbiome research

  • Jian Li
  • Hong WeiEmail author


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by grants from the National Key Research and Development Program of China (2017YFD0500503 and 2017YFD0501000), the National Natural Science Foundation of China (81770434 and 81370906) and the National Program on Key Basic Research Project of China (973 Program) (2007CB513007 and 2013CB531406).

Compliance and ethics The author(s) declare that they have no conflict of interest.


  1. Cao, S., Su, X., Zeng, B., Yan, H., Huang, Y., Wang, E., Yun, H., Zhang, Y., Liu, F., Li, W., et al. (2016). The gut epithelial receptor LRRC19 promotes the recruitment of immune cells and gut inflammation. Cell Rep 14, 695–707.CrossRefGoogle Scholar
  2. Chen, B., Ni, X., Sun, R., Zeng, B., Wei, H., Tian, Z., and Wei, H. (2018). Commensal bacteria-dependent CD8αβ+ T cells in the intestinal epithelium produce antimicrobial peptides. Front Immunol 9, 1065.CrossRefGoogle Scholar
  3. Hu, J., Ma, L., Nie, Y., Chen, J., Zheng, W., Wang, X., Xie, C., Zheng, Z., Wang, Z., Yang, T., et al. (2018). A microbiota-derived bacteriocin targets the host to confer diarrhea resistance in early-weaned piglets. Cell Host Microbe 24, 817–832.e8.CrossRefGoogle Scholar
  4. Huang, L., Zhu, Q., Qu, X., and Qin, H. (2018). Microbial treatment in chronic constipation. Sci China Life Sci 61, 744–752.CrossRefGoogle Scholar
  5. Jiang, W., Wang, X., Zeng, B., Liu, L., Tardivel, A., Wei, H., Han, J., MacDonald, H.R., Tschopp, J., Tian, Z., et al. (2013). Recognition of gut microbiota by NOD2 is essential for the homeostasis of intestinal intraepithelial lymphocytes. J Exp Med 210, 2465–2476.CrossRefGoogle Scholar
  6. Li, F., Sun, G., Wang, Z., Wu, W., Guo, H., Peng, L., Wu, L., Guo, X., and Yang, Y. (2018a). Characteristics of fecal microbiota in non-alcoholic fatty liver disease patients. Sci China Life Sci 61, 770–778.CrossRefGoogle Scholar
  7. Li, M., Wu, Y., Hu, Y., Zhao, L., and Zhang, C. (2018b). Initial gut microbiota structure affects sensitivity to DSS-induced colitis in a mouse model. Sci China Life Sci 61, 762–769.CrossRefGoogle Scholar
  8. Ma, C., Sun, Z., Zeng, B., Huang, S., Zhao, J., Zhang, Y., Su, X., Xu, J., Wei, H., and Zhang, H. (2018). Cow-to-mouse fecal transplantations suggest intestinal microbiome as one cause of mastitis. Microbiome 6, 200.CrossRefGoogle Scholar
  9. Qin, N., Dong, X., and Zhao, L. (2018). Microbiome: from community metabolism to host diseases. Sci China Life Sci 61, 741–743.CrossRefGoogle Scholar
  10. Ren, W., Wang, P., Yan, J., Liu, G., Zeng, B., Hussain, T., Peng, C., Yin, J., Li, T., Wei, H., et al. (2018). Melatonin alleviates weanling stress in mice: Involvement of intestinal microbiota. J Pineal Res 64, e12448.CrossRefGoogle Scholar
  11. Wang, L., Zeng, B., Zhang, X., Liao, Z., Gu, L., Liu, Z., Zhong, Q., Wei, H., and Fang, X. (2016). The effect of green tea polyphenols on gut microbial diversity and fat deposition in C57BL/6J HFA mice. Food Funct 7, 4956–4966.CrossRefGoogle Scholar
  12. Wong, S.H., Zhao, L., Zhang, X., Nakatsu, G., Han, J., Xu, W., Xiao, X., Kwong, T.N.Y., Tsoi, H., Wu, W.K.K., et al. (2017). Gavage of fecal samples from patients with colorectal cancer promotes intestinal carcinogenesis in germ-free and conventional mice. Gastroenterology 153, 1621–1633.e6.CrossRefGoogle Scholar
  13. Yao, X., Zhang, C., Xing, Y., Xue, G., Zhang, Q., Pan, F., Wu, G., Hu, Y., Guo, Q., Lu, A., et al. (2017). Remodelling of the gut microbiota by hyperactive NLRP3 induces regulatory T cells to maintain homeostasis. Nat Commun 8, 1896.CrossRefGoogle Scholar
  14. Zhang, Q., Pan, Y., Yan, R., Zeng, B., Wang, H., Zhang, X., Li, W., Wei, H., and Liu, Z. (2015). Commensal bacteria direct selective cargo sorting to promote symbiosis. Nat Immunol 16, 918–926.CrossRefGoogle Scholar
  15. Zhang, Q., Pan, Y., Zeng, B., Zheng, X., Wang, H., Shen, X., Li, H., Jiang, Q., Zhao, J., Meng, Z.X., et al. (2019). Intestinal lysozyme liberates Nod1 ligands from microbes to direct insulin trafficking in pancreatic beta cells. Cell Res 29, 516–532.CrossRefGoogle Scholar
  16. Zhang, X., Tian, H., Gu, L., Nie, Y., Ding, C., Ge, X., Yang, B., Gong, J., and Li, N. (2018). Long-term follow-up of the effects of fecal microbiota transplantation in combination with soluble dietary fiber as a therapeutic regimen in slow transit constipation. Sci China Life Sci 61, 779–786.CrossRefGoogle Scholar
  17. Zhao, L., Zhang, F., Ding, X., Wu, G., Lam, Y.Y., Wang, X., Fu, H., Xue, X., Lu, C., Ma, J., et al. (2018). Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes. Science 359, 1151–1156.CrossRefGoogle Scholar
  18. Zheng, P., Zeng, B., Liu, M., Chen, J., Pan, J., Han, Y., Liu, Y., Cheng, K., Zhou, C., Wang, H., et al. (2019). The gut microbiome from patients with schizophrenia modulates the glutamate-glutamine-GABA cycle and schizophrenia-relevant behaviors in mice. Sci Adv 5, eaau8317.CrossRefGoogle Scholar
  19. Zheng, P., Zeng, B., Zhou, C., Liu, M., Fang, Z., Xu, X., Zeng, L., Chen, J., Fan, S., Du, X., et al. (2016). Gut microbiome remodeling induces depressive-like behaviors through a pathway mediated by the host’s metabolism. Mol Psychiatry 21, 786–796.CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Animal Sciences and Technology, State Key Laboratory of Agricultural Microbiology, Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural AffairsHuazhong Agricultural UniversityWuhanChina
  2. 2.Institute of Immunology, PLAThird Military Medical University (Army Medical University)ChongqingChina

Personalised recommendations