Advertisement

Three-dimensional reconstruction of Picea wilsonii Mast. pollen grains using automated electron microscopy

  • Weiwei Shen
  • Lingyu Ma
  • Xi Zhang
  • Xixia Li
  • Yuanyuan Zhao
  • Yanping JingEmail author
  • Yun Feng
  • Xueke Tan
  • Fei Sun
  • Jinxing LinEmail author
Cover Article
  • 38 Downloads

Abstract

Three-dimensional electron microscopy (3D-EM) has attracted considerable attention because of its ability to provide detailed information with respect to developmental analysis. However, large-scale high-resolution 3D reconstruction of biological samples remains challenging. Herein, we present a 3D view of a Picea wilsonii Mast. pollen grain with 100 nm axial and 38.57 nm lateral resolution using AutoCUTS-SEM (automatic collector of ultrathin sections-scanning electron microscopy). We established a library of 3,127 100 nm thick serial sections of pollen grains for preservation and observation, demonstrating that the protocol can be used to analyze large-volume samples. After obtaining the SEM images, we reconstructed an entire pollen grain comprising 734 serial sections. The images produced by 3D reconstruction clearly revealed the main components of the P. wilsonii pollen grain, i.e., two sacci and pollen corpus, tube cell, generative cell, and two degenerated prothallial cells, and their internal organization. In addition, we performed a quantitative analysis of the different pollen grain cells, including sacci, and found that there were 202 connections within a saccus SEM image. Thus, for the first time, this study provided a global 3D view of the entire pollen grain, which will be useful for analyzing pollen development and growth.

Keywords

3D reconstruction AutoCUTS-SEM electron microscopy pollen 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

We gratefully acknowledge Xi Chen from the Institute of Automation, Chinese Academy of Sciences for the help provided with image alignment and distortion correction, and Libo Jiang from the College of Biological Sciences & Biotechnology, Beijing Forestry University for discussions. This work was supported by grants from Fundamental Research Funds for the Central Universities (BLX201617), the Program of Introducing Talents of Discipline to Universities (111 projects, B13007), and the National Natural Science Foundation of China (31700250, 31530084, 31761133009, 31670182). This research was also supported by the Center for Biological Imaging, Institute of Biophysics, Chinese Academy of Sciences.

Compliance and ethics The author(s) declare that they have no conflict of interest.

Supplementary material

11427_2019_9820_MOESM1_ESM.avi (30.7 mb)
Supplementary material, approximately 30.6 MB.
11427_2019_9820_MOESM2_ESM.mp4 (3.7 mb)
Supplementary material, approximately 3.73 MB.
11427_2019_9820_MOESM3_ESM.docx (4.8 mb)
3D reconstruction of Picea wilsonii Mast. pollen using automated electron microscopy

References

  1. Bai, S.N. (2019). Plant Morphogenesis 123: a renaissance in modern botany? Sci China Life Sci 62, 453–466.CrossRefPubMedGoogle Scholar
  2. Briggman, K.L., and Denk, W. (2006). Towards neural circuit reconstruction with volume electron microscopy techniques. Curr Opin Neurobiol 16, 562–570.CrossRefPubMedGoogle Scholar
  3. Briggman, K.L., and Bock, D.D. (2012). Volume electron microscopy for neuronal circuit reconstruction. Curr Opin Neurobiol 22, 154–161.CrossRefPubMedGoogle Scholar
  4. Chen, X., Sun, X., Dong, L., and Zhang, S. (2019). Mating patterns and pollen dispersal in a Japanese larch (Larix kaempferi) clonal seed orchard: a case study. Sci China Life Sci 61, 1011–1023.CrossRefGoogle Scholar
  5. Chen, K.M., Wu, G.L., Wang, Y.H., Tian, C.T., Samaj, J., Baluska, F., and Lin, J.X. (2008). The block of intracellular calcium release affects the pollen tube development of Picea wilsonii by changing the deposition of cell wall components. Protoplasma 233, 39–49.CrossRefPubMedGoogle Scholar
  6. Cui, Y., Zhang, X., Yu, M., Zhu, Y., Xing, J., and Lin, J. (2019). Techniques for detecting protein-protein interactions in living cells: principles, limitations, and recent progress. Sci China Life Sci 62, 619–632.CrossRefPubMedGoogle Scholar
  7. Denk, W., and Horstmann, H. (2004). Serial block-face scanning electron microscopy to reconstruct three-dimensional tissue nanostructure. PLoS Biol 2, e329.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Fernando, D.D., Quinn, C.R., Brenner, E.D., and Owens, J.N. (2010). Male gametophyte development and evolution in extant gymnosperms. Int J Plant Dev Biol 4, 47–63.Google Scholar
  9. Grigorjeva, V.V., and Gabarayeva, N. (2018). Pollen wall ontogeny in Polemonium caeruleum (Polemoniaceae) and suggested underlying mechanisms of development. Protoplasma 255, 109–128.CrossRefPubMedGoogle Scholar
  10. Hao, H., Li, Y., Hu, Y., and Lin, J. (2005). Inhibition of RNA and protein synthesis in pollen tube development of Pinus bungeana by actinomycin D and cycloheximide. New Phytol 165, 721–730.CrossRefPubMedGoogle Scholar
  11. Harley, M.M., Morton, C.M., and Blackmore, A.S. (2000). Pollen and spores: morphology and biology. Rev Palaeobot Palyno 99, 254.Google Scholar
  12. Hayworth, K.J., Kasthuri, N., Schalek, R., and Lichtman, J.W. (2006). Automating the collection of ultrathin serial sections for large volume TEM reconstructions. Microsc Microanal 12, 86–87.CrossRefGoogle Scholar
  13. Hayworth, K.J., Morgan, J.L., Schalek, R., Berger, D.R., Hildebrand, D.G. C., and Lichtman, J.W. (2014). Imaging ATUM ultrathin section libraries with WaferMapper: a multi-scale approach to EM reconstruction of neural circuits. Front Neural Circuits 8, 68.CrossRefGoogle Scholar
  14. Heymann, J.A.W., Hayles, M., Gestmann, I., Giannuzzi, L.A., Lich, B., and Subramaniam, S. (2006). Site-specific 3D imaging of cells and tissues with a dual beam microscope. J Struct Biol 155, 63–73.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Hildebrand, D.G.C., Cicconet, M., Torres, R.M., Choi, W., Quan, T.M., Moon, J., Wetzel, A.W., Scott Champion, A., Graham, B.J., Randlett, O., et al. (2017). Whole-brain serial-section electron microscopy in larval zebrafish. Nature 545, 345–349.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Horstmann, H., Körber, C., Sätzler, K., Aydin, D., and Kuner, T. (2012). Serial section scanning electron microscopy (S3EM) on silicon wafers for ultra-structural volume imaging of cells and tissues. PLoS ONE 7, e35172.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Kasthuri, N., Hayworth, K.J., Berger, D.R., Schalek, R.L., Conchello, J.A., Knowles-Barley, S., Lee, D., Vázquez-Reina, A., Kaynig, V., Jones, T. R., et al. (2015). Saturated reconstruction of a volume of neocortex. Cell 162, 648–661.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Knott, G., Marchman, H., Wall, D., and Lich, B. (2008). Serial section scanning electron microscopy of adult brain tissue using focused ion beam milling. J Neurosci 28, 2959–2964.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Leslie, A.B. (2008). Interpreting the function of saccate pollen in ancient conifers and other seed plants. Int J Plant Sci 169, 1038–1045.CrossRefGoogle Scholar
  20. Li, M., Liu, L., Xi, N., and Wang, Y. (2018). Atomic force microscopy studies on cellular elastic and viscoelastic properties. Sci China Life Sci 61, 57–67.CrossRefPubMedGoogle Scholar
  21. Li, X., Wang, X., Yang, Y., Li, R., He, Q., Fang, X., Luu, D.T., Maurel, C., and Lin, J. (2011). Single-molecule analysis of PIP2;1 dynamics and partitioning reveals multiple modes of Arabidopsis plasma membrane aquaporin regulation. Plant Cell 23, 3780–3797.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Li, X., Ji, G., Chen, X., Ding, W., Sun, L., Xu, W., Han, H., and Sun, F. (2017). Large scale three-dimensional reconstruction of an entire Caenorhabditis elegans larva using AutoCUTS-SEM. J Struct Biol 200, 87–96.CrossRefPubMedGoogle Scholar
  23. Lowe, D.G. (2004). Distinctive image features from scale-invariant keypoints. Int J Comput Vision 60, 91–110.CrossRefGoogle Scholar
  24. Lü, S., Li, Y., Chen, Z., and Lin, J. (2003). Pollen development in Picea asperata Mast.. Flora 198, 112–117.CrossRefGoogle Scholar
  25. Morgan, J.L., Berger, D.R., Wetzel, A.W., and Lichtman, J.W. (2016). The fuzzy logic of network connectivity in mouse visual thalamus. Cell 165, 192–206.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Marx, M., Günter, R.H., Hucko, W., Radnikow, G., and Feldmeyer, D. (2012). Improved biocytin labeling and neuronal 3D reconstruction. Nat Protoc 7, 394–407.CrossRefPubMedGoogle Scholar
  27. Ohno, N., Katoh, M., Saitoh, Y., Saitoh, S., and Ohno, S. (2015). Three-dimensional volume imaging with electron microscopy toward connectome. Microscopy 64, 17–26.CrossRefPubMedGoogle Scholar
  28. Park, J.H., Seo, J., Jackman, J.A., and Cho, N.J. (2016). Inflated sporopollenin exine capsules obtained from thin-walled pollen. Sci Rep 6, 28017.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Peddie, C.J., and Collinson, L.M. (2014). Exploring the third dimension: volume electron microscopy comes of age. Micron 61, 9–19.CrossRefPubMedGoogle Scholar
  30. Phipps, C.J., Osborn, J.M., and Stockey, R.A. (1995). Pinus pollen cones from the middle eocene princeton chert (allenby formation) of British Columbia, Canada. Int J Plant Sci 156, 117–124.CrossRefGoogle Scholar
  31. Runions, C.J., Rensing, K.H., Takaso, T., and Owens, J.N. (1999). Pollination of Picea orientalis (Pinaceae): saccus morphology governs pollen buoyancy. Am J Bot 86, 190–197.CrossRefPubMedGoogle Scholar
  32. Salter, J., Murray, B.G., and Braggins, J.E. (2002). Wettable and unsinkable: the hydrodynamics of saccate pollen grains in relation to the pollination mechanism in the two New Zealand species of Prumnopitys phil. (Podocarpaceae). Ann Bot 89, 133–144.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Schaefer, S., McPhail, T., and Warren, J. (2006). Image deformation using moving least squares. ACM Trans Graph 25, 533–540.CrossRefGoogle Scholar
  34. Schalek, R., Wilson, A., Lichtman, J., Josh, M., Kasthuri, N., Berger, D., Seung, S., Anger, P., Hayworth, K., and Aderhold, D. (2012). ATUM-based SEM for high-speed large-volume biological reconstructions. Microsc Microanal 18, 572–573.CrossRefGoogle Scholar
  35. Schwendemann, A.B., Wang, G., Mertz, M.L., McWilliams, R.T., Thatcher, S.L., and Osborn, J.M. (2007). Aerodynamics of saccate pollen and its implications for wind pollination. Am J Bot 94, 1371–1381.CrossRefPubMedGoogle Scholar
  36. Shahbazi, A., Kinnison, J., Vescovi, R., Du, M., Hill, R., Joesch, M., Takeno, M., Zeng, H., da Costa, N.M., Grutzendler, J., et al. (2018). Flexible learning-free segmentation and reconstruction of neural volumes. Sci Rep 8, 14247.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Sheng, X., Hu, Z., Lü, H., Wang, X., Baluska, F., Samaj, J., and Lin, J. (2006). Roles of the ubiquitin/proteasome pathway in pollen tube growth with emphasis on MG132-induced alterations in ultrastructure, cytoskeleton, and cell wall components. Plant Physiol 141, 1578–1590.CrossRefPubMedPubMedCentralGoogle Scholar
  38. Starborg, T., Kalson, N.S., Lu, Y., Mironov, A., Cootes, T.F., Holmes, D.F., and Kadler, K.E. (2013). Using transmission electron microscopy and 3View to determine collagen fibril size and three-dimensional organization. Nat Protoc 8, 1433–1448.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Tánaka, K. (1989). High resolution scanning electron microscopy of the cell. Biol Cell 65, 89–98.CrossRefPubMedGoogle Scholar
  40. Tasdizen, T., Koshevoy, P., Grimm, B.C., Anderson, J.R., Jones, B.W., Watt, C.B., Whitaker, R.T., and Marc, R.E. (2010). Automatic mosaicking and volume assembly for high-throughput serial-section transmission electron microscopy. J Neurosci Methods 193, 132–144.CrossRefPubMedPubMedCentralGoogle Scholar
  41. Teng, N., Huang, Z., Mu, X., Jin, B., Hu, Y., and Lin, J. (2005). Microsporogenesis and pollen development in Leymus chinensis with emphasis on dynamic changes in callose deposition. Flora 200, 256–263.CrossRefGoogle Scholar
  42. Titze, B., and Genoud, C. (2016). Volume scanning electron microscopy for imaging biological ultrastructure. Biol Cell 108, 307–323.CrossRefPubMedGoogle Scholar
  43. Tomlinson, P.B., Braggins, J.E., and Rattenbury, J.A. (1991). Pollination drop in relation to cone morphology in Podocarpaceae: a novel reproductive mechanism. Am J Bot 78, 1289–1303.CrossRefGoogle Scholar
  44. Tomlinson, P.B. (1994). Functional morphology of saccate pollen in conifers with special reference to Podocarpaceae. Int J Plant Sci 155, 699–715.CrossRefGoogle Scholar
  45. Wang, L., Xue, Y., Xing, J., Song, K., and Lin, J. (2018). Exploring the spatiotemporal organization of membrane proteins in living plant cells. Annu Rev Plant Biol 69, 525–551.CrossRefPubMedGoogle Scholar
  46. Wang, Q., Lu, L., Wu, X., Li, Y., and Lin, J. (2003). Boron influences pollen germination and pollen tube growth in Picea meyeri. Tree Physiol 23, 345–351.CrossRefPubMedGoogle Scholar
  47. Wang, X., Teng, Y., Wang, Q., Li, X., Sheng, X., Zheng, M., Samaj, J., Baluska, F., and Lin, J. (2006). Imaging of dynamic secretory vesicles in living pollen tubes of Picea meyeri using evanescent wave microscopy. Plant Physiol 141, 1591–1603.CrossRefPubMedPubMedCentralGoogle Scholar
  48. Wang, Y., Chen, T., Zhang, C., Hao, H., Liu, P., Zheng, M., Baluška, F., Šamaj, J., and Lin, J. (2009). Nitric oxide modulates the influx of extracellular Ca2+ and actin filament organization during cell wall construction in Pinus bungeana pollen tubes. New Phytol 182, 851–862.CrossRefPubMedGoogle Scholar
  49. Wanner, G., Schäfer, T., and Lütz-Meindl, U. (2013). 3-D analysis of dictyosomes and multivesicular bodies in the green alga Micrasterias denticulata by FIB/SEM tomography. J Struct Biol 184, 203–211.CrossRefPubMedPubMedCentralGoogle Scholar
  50. White, J.G., Southgate, E., Thomson, J.N., and Brenner, S. (1986). The structure of the nervous system of the nematode Caenorhabditis elegans. Philos Trans R Soc B-Biol Sci 314, 1–340.CrossRefGoogle Scholar
  51. Xing, S., Li, B., Wang, C., Hu, Y., and Lin, J. (2000). Atomic force microscopic observation on substructure of pollen exine in Cedrus deodara and Metasequoia glyptostroboides. Chin Sci Bull 45, 1500–1503.CrossRefGoogle Scholar
  52. Xu, C.S., Hayworth, K.J., Lu, Z., Grob, P., Hassan, A.M., Garcia-Cerdán, J. G., Niyogi, K.K., Nogales, E., Weinberg, R.J., and Hess, H.F. (2017). Enhanced FIB-SEM systems for large-volume 3D imaging. eLife 6, e25916.CrossRefPubMedPubMedCentralGoogle Scholar
  53. Xu, F., and de Craene, L.P.R. (2013). Pollen morphology and ultrastructure of selected species from Annonaceae. Plant Syst Evol 299, 11–24.CrossRefGoogle Scholar
  54. Yu, Y., Song, J., Tian, X., Zhang, H., Li, L., and Zhu, H. Yu, Y., Song, J., Tian, X., Zhang, H., Li, L., and Zhu, H. (2018). Arabidopsis PRK6 interacts specifically with AtRopGEF8/12 and induces depolarized growth of pollen tubes when overexpressed. Sci China Life Sci 61, 100–112.CrossRefPubMedGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Weiwei Shen
    • 1
    • 2
  • Lingyu Ma
    • 1
    • 2
  • Xi Zhang
    • 1
    • 2
  • Xixia Li
    • 3
  • Yuanyuan Zhao
    • 1
    • 2
  • Yanping Jing
    • 1
    • 2
    Email author
  • Yun Feng
    • 3
  • Xueke Tan
    • 3
  • Fei Sun
    • 3
  • Jinxing Lin
    • 1
    • 2
    Email author
  1. 1.Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignBeijing Forestry UniversityBeijingChina
  2. 2.College of Biological Sciences & BiotechnologyBeijing Forestry UniversityBeijingChina
  3. 3.Center for Biological Imaging, Institute of BiophysicsChinese Academy of SciencesBeijingChina

Personalised recommendations