Advertisement

CRISPR editing-mediated antiviral immunity: a versatile source of resistance to combat plant virus infections

  • Xiang Ji
  • Daowen Wang
  • Caixia GaoEmail author
Insight

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by grants from the National Natural Science Foundation of China (31788103) and the National Key Research and Development Program of China (2016YFD0101804).

Supplementary material

11427_2019_9722_MOESM1_ESM.docx (20 kb)
Table S1. The reports on generating virus resistant plants by different CRISPR/Cas systems

References

  1. Ali, Z., Abulfaraj, A., Idris, A., Ali, S., Tashkandi, M., and Mahfouz, M.M. (2015). CRISPR/Cas9-mediated viral interference in plants. Genome Biol 16, 238.CrossRefGoogle Scholar
  2. Ali, Z., Ali, S., Tashkandi, M., Zaidi, S.S.E.A., and Mahfouz, M.M. (2016). CRISPR/Cas9-mediated immunity to geminiviruses: differential interference and evasion. Sci Rep 6, 26912.CrossRefGoogle Scholar
  3. Aman, R., Ali, Z., Butt, H., Mahas, A., Aljedaani, F., Khan, M.Z., Ding, S., and Mahfouz, M. (2018). RNA virus interference via CRISPR/Cas13a system in plants. Genome Biol 19, 1.CrossRefGoogle Scholar
  4. Baltes, N.J., Hummel, A.W., Konecna, E., Cegan, R., Bruns, A.N., Bisaro, D.M., and Voytas, D.F. (2015). Conferring resistance to geminiviruses with the CRISPR-Cas prokaryotic immune system. Nat Plants 1, 15145.CrossRefGoogle Scholar
  5. Chandrasekaran, J., Brumin, M., Wolf, D., Leibman, D., Klap, C., Pearlsman, M., Sherman, A., Arazi, T., and Gal-On, A. (2016). Development of broad virus resistance in non-transgenic cucumber using CRISPR/Cas9 technology. Mol Plant Pathol 17, 1140–1153.CrossRefGoogle Scholar
  6. Garcia-Doval, C., and Jinek, M. (2017). Molecular architectures and mechanisms of Class 2 CRISPR-associated nucleases. Curr Opin Struct Biol 47, 157–166.CrossRefGoogle Scholar
  7. Gomez, M.A., Lin, Z.D., Moll, T., Chauhan, R.D., Hayden, L., Renninger, K., Beyene, G., Taylor, N.J., Carrington, J.C., Staskawicz, B.J., et al. (2019). Simultaneous CRISPR/Cas9-mediated editing of cassava eIF4E isoforms nCBP-1 and nCBP-2 reduces cassava brown streak disease symptom severity and incidence. Plant Biotechnol J 17, 421–434.CrossRefGoogle Scholar
  8. Ji, X., Si, X., Zhang, Y., Zhang, H., Zhang, F., and Gao, C. (2018). Conferring DNA virus resistance with high specificity in plants using virus-inducible genome-editing system. Genome Biol 19, 197.CrossRefGoogle Scholar
  9. Ji, X., Zhang, H., Zhang, Y., Wang, Y., and Gao, C. (2015). Establishing a CRISPR-Cas-like immune system conferring DNA virus resistance in plants. Nat Plants 1, 15144.CrossRefGoogle Scholar
  10. Jiao, R., and Gao, C. (2017). Anything impossible with CRISPR/Cas9? Sci China Life Sci 60, 445–446.CrossRefGoogle Scholar
  11. Kis, A., Hamar, É., Tholt, G., Bán, R., and Havelda, Z. (2019). Creating highly efficient resistance against wheat dwarf virus in barley by employing CRISPR/Cas9 system. Plant Biotechnol J 17, 1004–1006.CrossRefGoogle Scholar
  12. Langner, T., Kamoun, S., and Belhaj, K. (2018). CRISPR crops: plant genome editing toward disease resistance. Annu Rev Phytopathol 56, 479–512.CrossRefGoogle Scholar
  13. Liu, H., Soyars, C.L., Li, J., Fei, Q., He, G., Peterson, B.A., Meyers, B.C., Nimchuk, Z.L., and Wang, X. (2018). CRISPR/Cas9-mediated resistance to cauliflower mosaic virus. Plant Direct 2, e00047.CrossRefGoogle Scholar
  14. Macovei, A., Sevilla, N.R., Cantos, C., Jonson, G.B., Slamet-Loedin, I., Èermák, T., Voytas, D.F., Choi, I.R., and Chadha-Mohanty, P. (2018). Novel alleles of rice eIF4G generated by CRISPR/Cas9-targeted mutagenesis confer resistance to Rice tungro spherical virus. Plant Biotechnol J 16, 1918–1927.CrossRefGoogle Scholar
  15. Makarova, K.S., Wolf, Y.I., and Koonin, E.V. (2018). Classification and nomenclature of CRISPR-Cas systems: where from here? CRISPR J 1, 325–336.CrossRefGoogle Scholar
  16. Mehta, D., Stürchler, A., Anjanappa, R.B., Zaidi, S.S.E.A., Hirsch-Hoffmann, M., Gruissem, W., and Vanderschuren, H. (2019). Linking CRISPR-Cas9 interference in cassava to the evolution of editing-resistant geminiviruses. Genome Biol 20, 80.CrossRefGoogle Scholar
  17. Pyott, D.E., Sheehan, E., and Molnar, A. (2016). Engineering of CRISPR/Cas9-mediated potyvirus resistance in transgene-free Arabidopsis plants. Mol Plant Pathol 17, 1276–1288.CrossRefGoogle Scholar
  18. Ran, Y., Liang, Z., and Gao, C. (2017). Current and future editing reagent delivery systems for plant genome editing. Sci China Life Sci 60, 490–505.CrossRefGoogle Scholar
  19. Shen, L., Hua, Y., Fu, Y., Li, J., Liu, Q., Jiao, X., Xin, G., Wang, J., Wang, X., Yan, C., et al. (2017). Rapid generation of genetic diversity by multiplex CRISPR/Cas9 genome editing in rice. Sci China Life Sci 60, 506–515.CrossRefGoogle Scholar
  20. Shepherd, D.N., Martin, D.P., and Thomson, J.A. (2009). Transgenic strategies for developing crops resistant to geminiviruses. Plant Sci 176, 1–11.CrossRefGoogle Scholar
  21. Tashkandi, M., Ali, Z., Aljedaani, F., Shami, A., and Mahfouz, M.M. (2018). Engineering resistance against Tomato yellow leaf curl virus via the CRISPR/Cas9 system in tomato. Plant Signal Behav 13, e1525996.CrossRefGoogle Scholar
  22. Zhan, X., Zhang, F., Zhong, Z., Chen, R., Wang, Y., Chang, L., Bock, R., Nie, B., and Zhang, J. (2019). Generation of virus-resistant potato plants by RNA genome targeting. Plant Biotechnol J 17, 1814–1822.CrossRefGoogle Scholar
  23. Zhang, T., Zhao, Y., Ye, J., Cao, X., Xu, C., Chen, B., An, H., Jiao, Y., Zhang, F., Yang, X., et al. (2019). Establishing CRISPR/Cas13a immune system conferring RNA virus resistance in both dicot and monocot plants. Plant Biotechnol J 17, 1185–1187.CrossRefGoogle Scholar
  24. Zhang, T., Zheng, Q., Yi, X., An, H., Zhao, Y., Ma, S., and Zhou, G. (2018). Establishing RNA virus resistance in plants by harnessing CRISPR immune system. Plant Biotechnol J 16, 1415–1423.CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, Innovation Academy for Seed DesignChinese Academy of SciencesBeijingChina
  2. 2.University of Chinese Academy of SciencesBeijingChina
  3. 3.College of Agronomy and State Key Laboratory of Wheat and Maize Crop ScienceHenan Agricultural UniversityZhengzhouChina

Personalised recommendations