Advertisement

Oxidative stress, nutritional antioxidants and beyond

  • Qiuping Guo
  • Fengna LiEmail author
  • Yehui Duan
  • Chaoyue Wen
  • Wenlong Wang
  • Lingyu Zhang
  • Ruilin Huang
  • Yulong YinEmail author
Review

Abstract

Free radical-induced oxidative stress contributes to the development of metabolic syndromes (Mets), including overweight, hyperglycemia, insulin resistance and pro-inflammatory state. Most free radicals are generated from the mitochondrial electron transport chain; under physiological conditions, their levels are maintained by efficient antioxidant systems. A variety of transcription factors have been identified and characterized that control gene expression in response to oxidative stress status. Natural antioxidant compounds have been largely studied for their strong antioxidant capacities. This review discusses the recent progress in oxidative stress and mitochondrial dysfunction in Mets and highlights the anti-Mets, anti-oxidative, and anti-inflammatory effect of polyphenols as potential nutritional therapy.

reactive oxygen species oxidative stress mitochondrial dysfunction signal transduction nutritional antioxidant polyphenols 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the National Key Research and Development Program (2016YFD0501204, 2018YFD0500405), the Youth Innovation Promotion Association CAS (2016326), the Science and Technology Projects of Hunan Province (2016SK3022, 2017RS3058), Key Project of Research and Development Plan of Hunan Province (2016NK2170), Science and Technology Projects of Changsha City (kq1801059), Youth Innovation Team Project of ISA, CAS (2017QNCXTD_ZCS), the Key Research Program of the Chinese Academy of Sciences (KFZD-SW-219), and the Earmarked Fund for China Agriculture Research System (CARS-35).

References

  1. Abdel-Moneim, A., El-Twab, S.M.A., Yousef, A.I., Reheim, E.S.A., and Ashour, M.B. (2018). Modulation of hyperglycemia and dyslipidemia in experimental type 2 diabetes by gallic acid and p-coumaric acid: the role of adipocytokines and PPARγ. Biomed Pharmacother 105, 1091–1097.PubMedCrossRefPubMedCentralGoogle Scholar
  2. Ardid-Ruiz, A., Ibars, M., Mena, P., Del Rio, D., Muguerza, B., Bladé, C., Arola, L., Aragonès, G., and Suárez, M. (2018). Potential involvement of peripheral leptin/STAT3 signaling in the effects of resveratrol and its metabolites on reducing body fat accumulation. Nutrients 10, 1757.PubMedCentralCrossRefGoogle Scholar
  3. Awada, M., Soulage, C.O., Meynier, A., Debard, C., Plaisancié, P., Benoit, B., Picard, G., Loizon, E., Chauvin, M.A., Estienne, M., et al. (2012). Dietary oxidized n-3 PUFA induce oxidative stress and inflammation: role of intestinal absorption of 4-HHE and reactivity in intestinal cells. J Lipid Res 53, 2069–2080.PubMedPubMedCentralCrossRefGoogle Scholar
  4. Bak, E.J., Kim, J., Jang, S., Woo, G.H., Yoon, H.G., Yoo, Y.J., and Cha, J. H. (2013). Gallic acid improves glucose tolerance and triglyceride concentration in diet-induced obesity mice. Scand J Clin Lab Invest 73, 607–614.PubMedCrossRefPubMedCentralGoogle Scholar
  5. Bai, M., Liu, H., Xu, K., Zhang, X., Deng, B., Tan, C., Deng, J., and Yin, Y. (2019). Compensation effects of coated cysteamine on meat quality, amino acid composition, fatty acid composition, mineral content in dorsal muscle and serum biochemical indices in finishing pigs offered reduced trace minerals diet. Sci China Life Sci, doi:  https://doi.org/10.1007/s11427-018-9399-4.
  6. Bose, M., Lambert, J.D., Ju, J., Reuhl, K.R., Shapses, S.A., and Yang, C.S. (2008). The major green tea polyphenol, (−)-epigallocatechin-3-gallate, inhibits obesity, metabolic syndrome, and fatty liver disease in high-fat-fed mice. J Nutr 138, 1677–1683.PubMedPubMedCentralCrossRefGoogle Scholar
  7. Chattopadhyay, M., Khemka, V.K., Chatterjee, G., Ganguly, A., Mukhopadhyay, S., and Chakrabarti, S. (2015). Enhanced ROS production and oxidative damage in subcutaneous white adipose tissue mitochondria in obese and type 2 diabetes subjects. Mol Cell Biochem 399, 95–103.PubMedCrossRefPubMedCentralGoogle Scholar
  8. Chaudhuri, J., Bains, Y., Guha, S., Kahn, A., Hall, D., Bose, N., Gugliucci, A., and Kapahi, P. (2018). The role of advanced glycation end products in aging and metabolic diseases: bridging association and causality. Cell Metab 28, 337–352.PubMedPubMedCentralCrossRefGoogle Scholar
  9. Corrêa, M.G., Absy, S., Tenenbaum, H., Ribeiro, F.V., Cirano, F.R., Casati, M.Z., and Pimentel, S.P. (2019). Resveratrol attenuates oxidative stress during experimental periodontitis in rats exposed to cigarette smoke inhalation. J Periodont Res 54, 225–232.PubMedCrossRefPubMedCentralGoogle Scholar
  10. Cortassa, S., Sollott, S.J., and Aon, M.A. (2017). Mitochondrial respiration and ROS emission during β-oxidation in the heart: an experimental-computational study. PLoS Comput Biol 13, e1005588.PubMedPubMedCentralCrossRefGoogle Scholar
  11. Crescenzo, R., Bianco, F., Mazzoli, A., Giacco, A., Liverini, G., and Iossa, S. (2016). A possible link between hepatic mitochondrial dysfunction and diet-induced insulin resistance. Eur J Nutr 55, 1–6.PubMedCrossRefPubMedCentralGoogle Scholar
  12. Gustafson, B., and Smith, U. (2015). Regulation of white adipogenesis and its relation to ectopic fat accumulation and cardiovascular risk. Atherosclerosis 241, 27–35.PubMedCrossRefPubMedCentralGoogle Scholar
  13. Czarny, P., Wigner, P., Galecki, P., and Sliwinski, T. (2018). The interplay between inflammation, oxidative stress, DNA damage, DNA repair and mitochondrial dysfunction in depression. Prog Neuropsychopharmacol Biol Psych 80, 309–321.CrossRefGoogle Scholar
  14. Das, L., and Vinayak, M. (2015). Long term effect of curcumin in restoration of tumour suppressor p53 and phase-II antioxidant enzymes via activation of Nrf2 signalling and modulation of inflammation in prevention of cancer. PLoS ONE 10, e0124000.PubMedPubMedCentralCrossRefGoogle Scholar
  15. Feng, R.B., Wang, Y., He, C., Yang, Y., and Wan, J.B. (2018). Gallic acid, a natural polyphenol, protects against tert-butyl hydroperoxide-induced hepatotoxicity by activating ERK-Nrf2-Keap1-mediated antioxidative response. Food Chem Toxicol 119, 479–488.PubMedCrossRefPubMedCentralGoogle Scholar
  16. Folbergrová, J., Ješina, P., Kubová, H., and Otáhal, J. (2018). Effect of resveratrol on oxidative stress and mitochondrial dysfunction in immature brain during epileptogenesis. Mol Neurobiol 55, 7512–7522.PubMedCrossRefPubMedCentralGoogle Scholar
  17. Gandhi, G.R., Jothi, G., Antony, P.J., Balakrishna, K., Paulraj, M.G., Ignacimuthu, S., Stalin, A., and Al-Dhabi, N.A. (2014). Gallic acid attenuates high-fat diet fed-streptozotocin-induced insulin resistance via partial agonism of PPARγ in experimental type 2 diabetic rats and enhances glucose uptake through translocation and activation of GLUT4 in PI3K/p-Akt signaling pathway. Eur J Pharmacol 745, 201–216.PubMedCrossRefPubMedCentralGoogle Scholar
  18. González de Vega, R., García, M., Fernández-Sánchez, M.L., González-Iglesias, H., and Sanz-Medel, A. (2018). Protective effect of selenium supplementation following oxidative stress mediated by glucose on retinal pigment epithelium. Metallomics 10, 83–92.PubMedCrossRefPubMedCentralGoogle Scholar
  19. Goszcz, K., Deakin, S.J., Duthie, G.G., Stewart, D., and Megson, I.L. (2017). Bioavailable concentrations of delphinidin and its metabolite, gallic acid, induce antioxidant protection associated with increased intracellular glutathione in cultured endothelial cells. Oxid Med Cell Longev 2017(4), 1–17.CrossRefGoogle Scholar
  20. Gu, M., Liu, C., Wan, X., Yang, T., Chen, Y., Zhou, J., Chen, Q., and Wang, Z. (2018). Epigallocatechin gallate attenuates bladder dysfunction via suppression of oxidative stress in a rat model of partial bladder outlet obstruction. Oxid Med Cell Longev 2018, 1–10.Google Scholar
  21. Hadrich, F., Mahmoudi, A., Bouallagui, Z., Feki, I., Isoda, H., Feve, B., and Sayadi, S. (2016). Evaluation of hypocholesterolemic effect of oleuropein in cholesterol-fed rats. Chem Biol Interact 252, 54–60.PubMedCrossRefPubMedCentralGoogle Scholar
  22. Hauck, A.K., and Bernlohr, D.A. (2016). Oxidative stress and lipotoxicity. J Lipid Res 57, 1976–1986.PubMedPubMedCentralCrossRefGoogle Scholar
  23. He, W., Wang, C., Chen, Y., He, Y., and Cai, Z. (2017). Berberine attenuates cognitive impairment and ameliorates tau hyperphosphorylation by limiting the self-perpetuating pathogenic cycle between NF-kB signaling, oxidative stress and neuroinflammation. Pharmacol Rep 69, 1341–1348.PubMedCrossRefPubMedCentralGoogle Scholar
  24. Holvoet, P., Vanhaverbeke, M., Geeraert, B., De Keyzer, D., Hulsmans, M., and Janssens, S. (2017). Low cytochrome oxidase 1 links mitochondrial dysfunction to atherosclerosis in mice and pigs. PLoS ONE 12, e0170307.PubMedPubMedCentralCrossRefGoogle Scholar
  25. Hu, M., Wu, F., Luo, J., Gong, J., Fang, K., Yang, X., Li, J., Chen, G., and Lu, F. (2018). The role of berberine in the prevention of HIF-1α activation to alleviate adipose tissue fibrosis in high-fat-diet-induced obese mice. Evid Based Compl Alternat Med 2018(7603), 1–12.Google Scholar
  26. Jin, Y., Liu, S., Ma, Q., Xiao, D., and Chen, L. (2017). Berberine enhances the AMPK activation and autophagy and mitigates high glucose-induced apoptosis of mouse podocytes. Eur J Pharmacol 794, 106–114.PubMedCrossRefPubMedCentralGoogle Scholar
  27. Khaleel, E.F., Abdel-Aleem, G.A., and Mostafa, D.G. (2018). Resveratrol improves high-fat diet induced fatty liver and insulin resistance by concomitantly inhibiting proteolytic cleavage of sterol regulatory element-binding proteins, free fatty acid oxidation, and intestinal triglyceride absorption. Can J Physiol Pharmacol 96, 145–157.PubMedCrossRefPubMedCentralGoogle Scholar
  28. Kim, B.H., Lee, E.S., Choi, R., Nawaboot, J., Lee, M.Y., Lee, E.Y., Kim, H. S., and Chung, C.H. (2016). Protective effects of curcumin on renal oxidative stress and lipid metabolism in a rat model of type 2 diabetic nephropathy. Yonsei Med J 57, 664.PubMedPubMedCentralCrossRefGoogle Scholar
  29. Kim, S., Jin, Y., Choi, Y., and Park, T. (2011). Resveratrol exerts anti-obesity effects via mechanisms involving down-regulation of adipogenic and inflammatory processes in mice. Biochem Pharmacol 81, 1343–1351.PubMedCrossRefPubMedCentralGoogle Scholar
  30. Kovac, S., Angelova, P.R., Holmström, K.M., Zhang, Y., Dinkova-Kostova, A.T., and Abramov, A.Y. (2015). Nrf2 regulates ROS production by mitochondria and NADPH oxidase. Biochim Biophys Acta Gen Subj 1850, 794–801.CrossRefGoogle Scholar
  31. Leamy, A.K., Egnatchik, R.A., and Young, J.D. (2013). Molecular mechanisms and the role of saturated fatty acids in the progression of non-alcoholic fatty liver disease. Prog Lipid Res 52, 165–174.PubMedCrossRefPubMedCentralGoogle Scholar
  32. Li, F., Gao, C., Yan, P., Zhang, M., Wang, Y., Hu, Y., Wu, X., Wang, X., and Sheng, J. (2018). EGCG reduces obesity and white adipose tissue gain partly through AMPK activation in mice. Front Pharmacol 9.Google Scholar
  33. Li, J., Tan, B., Tang, Y., Liao, P., Yao, K., Ji, P., and Yin, Y. (2018). Extraction and identification of the chyme proteins in the digestive tract of growing pigs. Sci China Life Sci 61, 1396–1406.PubMedCrossRefPubMedCentralGoogle Scholar
  34. Liao, W., Yin, X., Li, Q., Zhang, H., Liu, Z., Zheng, X., Zheng, L., and Feng, X. (2018). Resveratrol-induced white adipose tissue browning in obese mice by remodeling fecal microbiota. Molecules 23, 3356.PubMedCentralCrossRefGoogle Scholar
  35. Lv, D., Xiong, X., Yang, H., Wang, M., He, Y., Liu, Y., and Yin, Y. (2018). Effect of dietary soy oil, glucose, and glutamine on growth performance, amino acid profile, blood profile, immunity, and antioxidant capacity in weaned piglets. Sci China Life Sci 61, 1233–1242.PubMedCrossRefPubMedCentralGoogle Scholar
  36. Mahmoud, A.M., Abdel-Rahman, M.M., Bastawy, N.A., and Eissa, H.M. (2017). Modulatory effect of berberine on adipose tissue PPARγ, adipocytokines and oxidative stress in high fat diet/streptozotocin-induced diabetic rats. J Appl Pharm Sci 7, 001–010.Google Scholar
  37. Malliou, F., Andreadou, I., Gonzalez, F.J., Lazou, A., Xepapadaki, E., Vallianou, I., Lambrinidis, G., Mikros, E., Marselos, M., Skaltsounis, A. L., et al. (2018). The olive constituent oleuropein, as a PPARα agonist, markedly reduces serum triglycerides. J Nutr Biochem 59, 17–28.PubMedPubMedCentralCrossRefGoogle Scholar
  38. Maritim, A.C., Sanders, R.A., and Watkins, J.B. (2003). Diabetes, oxidative stress, and antioxidants: a review. J Biochem Mol Toxicol 17, 24–38.PubMedCrossRefPubMedCentralGoogle Scholar
  39. Maulucci, G., Daniel, B., Cohen, O., Avrahami, Y., and Sasson, S. (2016). Hormetic and regulatory effects of lipid peroxidation mediators in pancreatic beta cells. Mol Aspects Med 49, 49–77.PubMedCrossRefPubMedCentralGoogle Scholar
  40. Mi, Y., Qi, G., Fan, R., Qiao, Q., Sun, Y., Gao, Y., and Liu, X. (2017). EGCG ameliorates high-fat- and high-fructose-induced cognitive defects by regulating the IRS/AKT and ERK/CREB/BDNF signaling pathways in the CNS. FASEB J 31, 4998–5011.PubMedCrossRefPubMedCentralGoogle Scholar
  41. Murphy, M.P. (2009). How mitochondria produce reactive oxygen species. Biochem J 417, 1–13.CrossRefPubMedGoogle Scholar
  42. Paltoglou, G., Schoina, M., Valsamakis, G., Salakos, N., Avloniti, A., Chatzinikolaou, A., Margeli, A., Skevaki, C., Papagianni, M., Kanaka-Gantenbein, C., et al. (2017). Interrelations among the adipocytokines leptin and adiponectin, oxidative stress and aseptic inflammation markers in pre- and early-pubertal normal-weight and obese boys. Endocrine 55, 925–933.PubMedCrossRefPubMedCentralGoogle Scholar
  43. Panahi, G., Pasalar, P., Zare, M., Rizzuto, R., and Meshkani, R. (2018). High glucose induces inflammatory responses in HepG2 cells via the oxidative stress-mediated activation of NF-κB, and MAPK pathways in HepG2 cells. Arch Physiol Biochem 124, 468–474.PubMedCrossRefPubMedCentralGoogle Scholar
  44. Park, J., Min, J.S., Kim, B., Chae, U.B., Yun, J.W., Choi, M.S., Kong, I.K., Chang, K.T., and Lee, D.S. (2015). Mitochondrial ROS govern the LPS-induced pro-inflammatory response in microglia cells by regulating MAPK and NF-kB pathways. Neurosci Lett 584, 191–196.PubMedCrossRefPubMedCentralGoogle Scholar
  45. Patel, S., and Santani, D. (2009). Role of NF-kB in the pathogenesis of diabetes and its associated complications. Pharmacol Rep 61, 595–603.PubMedCrossRefPubMedCentralGoogle Scholar
  46. Peverill, W., Powell, L.W., and Skoien, R. (2014). Evolving concepts in the pathogenesis of NASH: beyond steatosis and inflammation. Int J Mol Sci 15, 8591–8638.PubMedPubMedCentralCrossRefGoogle Scholar
  47. Sadeghi, A., Seyyed Ebrahimi, S.S., Golestani, A., and Meshkani, R. (2017). Resveratrol ameliorates palmitate-induced inflammation in skeletal muscle cells by attenuating oxidative stress and JNK/NF-κB pathway in a SIRT1-independent mechanism. J Cell Biochem 118, 2654–2663.PubMedCrossRefPubMedCentralGoogle Scholar
  48. Sahin, K., Orhan, C., Akdemir, F., Tuzcu, M., Sahin, N., Yılmaz, I., and Juturu, V. (2017). β-cryptoxanthin ameliorates metabolic risk factors by regulating NF-κB and Nrf2 pathways in insulin resistance induced by high-fat diet in rodents. Food Chem Toxicol 107, 270–279.PubMedCrossRefPubMedCentralGoogle Scholar
  49. Sampath, C., Rashid, M.R., Sang, S., and Ahmedna, M. (2017). Green tea epigallocatechin 3-gallate alleviates hyperglycemia and reduces advanced glycation end products via nrf2 pathway in mice with high fat diet-induced obesity. Biomed Pharmacother 87, 73–81.PubMedCrossRefPubMedCentralGoogle Scholar
  50. Septembre-Malaterre, A., Le Sage, F., Hatia, S., Catan, A., Janci, L., and Gonthier, M.P. (2016). Curcuma longa polyphenols improve insulinmediated lipid accumulation and attenuate proinflammatory response of 3T3-L1 adipose cells during oxidative stress through regulation of key adipokines and antioxidant enzymes. Biofactors 42, 418–430.PubMedCrossRefPubMedCentralGoogle Scholar
  51. Setayesh, T., Nersesyan, A., Mišík, M., Noorizadeh, R., Haslinger, E., Javaheri, T., Lang, E., Grusch, M., Huber, W., Haslberger, A., et al. (2018). Gallic acid, a common dietary phenolic protects against high fat diet induced DNA damage. Eur J Nutr 4.Google Scholar
  52. Shi, C., Chen, X., Liu, Z., Meng, R., Zhao, X., Liu, Z., and Guo, N. (2017). Oleuropein protects L-02 cells against H2O2-induced oxidative stress by increasing SOD1, GPx1 and CAT expression. Biomed Pharmacother 85, 740–748.PubMedCrossRefPubMedCentralGoogle Scholar
  53. Slocum, S.L., Skoko, J.J., Wakabayashi, N., Aja, S., Yamamoto, M., Kensler, T.W., and Chartoumpekis, D.V. (2016). Keap1/Nrf2 pathway activation leads to a repressed hepatic gluconeogenic and lipogenic program in mice on a high-fat diet. Arch Biochem Biophys 591, 57–65.PubMedCrossRefPubMedCentralGoogle Scholar
  54. Smith, U. (2015). Abdominal obesity: a marker of ectopic fat accumulation. J Clin Invest 125, 1790–1792.PubMedPubMedCentralCrossRefGoogle Scholar
  55. Sun, R., Yang, N., Kong, B., Cao, B., Feng, D., Yu, X., Ge, C., Huang, J., Shen, J., Wang, P., et al. (2017). Orally administered berberine modulates hepatic lipid metabolism by altering microbial bile acid metabolism and the intestinal FXR signaling pathway. Mol Pharmacol 91, 110–122.PubMedPubMedCentralCrossRefGoogle Scholar
  56. Sun, W., Wang, X., Hou, C., Yang, L., Li, H., Guo, J., Huo, C., Wang, M., Miao, Y., Liu, J., et al. (2017). Oleuropein improves mitochondrial function to attenuate oxidative stress by activating the Nrf2 pathway in the hypothalamic paraventricular nucleus of spontaneously hypertensive rats. Neuropharmacology 113, 556–566.PubMedCrossRefPubMedCentralGoogle Scholar
  57. Tanaka, M., Kishimoto, Y., Sasaki, M., Sato, A., Kamiya, T., Kondo, K., and Iida, K. (2018). Terminalia bellirica (Gaertn.) Roxb. extract and gallic acid attenuate LPS-induced inflammation and oxidative stress via MAPK/NF-κB and Akt/AMPK/Nrf2 pathways. Oxid Med Cell Longev 2018(2), 1–15.Google Scholar
  58. Tien, T., Zhang, J., Muto, T., Kim, D., Sarthy, V.P., and Roy, S. (2017). High glucose induces mitochondrial dysfunction in retinal Müller cells: implications for diabetic retinopathy. Invest Ophthalmol Vis Sci 58, 2915.PubMedPubMedCentralCrossRefGoogle Scholar
  59. Valenzuela, R., Illesca, P., Echeverría, F., Espinosa, A., Rincón-Cervera, M. Á., Ortiz, M., Hernandez-Rodas, M.C., Valenzuela, A., and Videla, L.A. (2017). Molecular adaptations underlying the beneficial effects of hydroxytyrosol in the pathogenic alterations induced by a high-fat diet in mouse liver: PPAR-α and Nrf2 activation, and NF-κB down-regulation. Food Funct 8, 1526–1537.PubMedCrossRefPubMedCentralGoogle Scholar
  60. Wadhwa, R., Gupta, R., and Maurya, P.K. (2019). Oxidative stress and accelerated aging in neurodegenerative and neuropsychiatric disorder. Curr Pharm Des 24, 4711–4725.CrossRefGoogle Scholar
  61. Wang, L., Ye, X., Hua, Y., and Song, Y. (2018). Berberine alleviates adipose tissue fibrosis by inducing AMP-activated kinase signaling in high-fat diet-induced obese mice. Biomed Pharmacother 105, 121–129.PubMedCrossRefPubMedCentralGoogle Scholar
  62. Wang, S., Liang, X., Yang, Q., Fu, X., Zhu, M., Rodgers, B.D., Jiang, Q., Dodson, M.V., and Du, M. (2017). Resveratrol enhances brown adipocyte formation and function by activating AMP-activated protein kinase (AMPK) α1 in mice fed high-fat diet. Mol Nutr Food Res 61, 1600746.CrossRefGoogle Scholar
  63. Wang, T., Xiang, Z., Wang, Y., Li, X., Fang, C., Song, S., Li, C., Yu, H., Wang, H., Yan, L., et al. (2017). (−)-Epigallocatechin gallate targets notch to attenuate the inflammatory response in the immediate early stage in human macrophages. Front Immunol 8.Google Scholar
  64. Wang, S.L., Li, Y., Wen, Y., Chen, Y.F., Na, L.X., Li, S.T., and Sun, C.H. (2009). Curcumin, a potential inhibitor of up-regulation of TNF-alpha and IL-6 induced by palmitate in 3T3-L1 adipocytes through NF-kB and JNK pathway. Biomed Environ Sci 22, 32–39.PubMedCrossRefPubMedCentralGoogle Scholar
  65. Willems, P.H.G.M., Rossignol, R., Dieteren, C.E.J., Murphy, M.P., and Koopman, W.J.H. (2015). Redox homeostasis and mitochondrial dynamics. Cell Metab 22, 207–218.PubMedCrossRefPubMedCentralGoogle Scholar
  66. Xia, X., Yan, J., Shen, Y., Tang, K., Yin, J., Zhang, Y., Yang, D., Liang, H., Ye, J., and Weng, J. (2011). Berberine improves glucose metabolism in diabetic rats by inhibition of hepatic gluconeogenesis. PLoS ONE 6, e16556.PubMedPubMedCentralCrossRefGoogle Scholar
  67. Yao, Y.F., Liu, X., Li, W.J., Shi, Z.W., Yan, Y.X., Wang, L.F., Chen, M., and Xie, M.Y. (2017). (−)-Epigallocatechin-3-gallate alleviates doxorubicin-induced cardiotoxicity in sarcoma 180 tumor-bearing mice. Life Sci 180, 151–159.PubMedCrossRefPubMedCentralGoogle Scholar
  68. Yu, H.T., Fu, X.Y., Liang, B., Wang, S., Liu, J.K., Wang, S.R., and Feng, Z. H. (2018). Oxidative damage of mitochondrial respiratory chain in different organs of a rat model of diet-induced obesity. Eur J Nutr 57, 1957–1967.PubMedCrossRefPubMedCentralGoogle Scholar
  69. Zingg, J.M., Hasan, S.T., Nakagawa, K., Canepa, E., Ricciarelli, R., Villacorta, L., Azzi, A., and Meydani, M. (2017). Modulation of cAMP levels by high-fat diet and curcumin and regulatory effects on CD36/FAT scavenger receptor/fatty acids transporter gene expression. Biofactors 43, 42–53.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Qiuping Guo
    • 1
    • 2
    • 3
    • 4
    • 5
  • Fengna Li
    • 1
    • 2
    • 3
    • 4
    • 6
    Email author
  • Yehui Duan
    • 1
  • Chaoyue Wen
    • 7
  • Wenlong Wang
    • 7
  • Lingyu Zhang
    • 1
    • 2
    • 3
    • 4
    • 5
  • Ruilin Huang
    • 1
    • 2
    • 3
    • 4
  • Yulong Yin
    • 1
    • 2
    • 3
    • 4
    • 7
    Email author
  1. 1.Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical AgricultureChinese Academy of SciencesChangshaChina
  2. 2.Key Laboratory of Agro-ecological Processes in Subtropical RegionChangshaChina
  3. 3.Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry ProductionChangshaChina
  4. 4.Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-CentralMinistry of AgricultureChangshaChina
  5. 5.University of Chinese Academy of SciencesBeijingChina
  6. 6.Hunan Co-Innovation Center of Animal Production SafetyHunan Collaborative Innovation Center for Utilization of Botanical Functional IngredientsChangshaChina
  7. 7.Laboratory of Animal Nutrition and Human Health, School of BiologyHunan Normal UniversityChangshaChina

Personalised recommendations