Advertisement

Science China Life Sciences

, Volume 62, Issue 9, pp 1144–1152 | Cite as

ESCRTing in cereals: still a long way to go

  • Verena IblEmail author
Review

Abstract

The multivesicular body (MVB) sorting pathway provides a mechanism for the delivery of cargo destined for degradation to the vacuole or lysosome. The endosomal sorting complex required for transport (ESCRT) is essential for the MVB sorting pathway by driving the cargo sorting to its destination. Many efforts in plant research have identified the ESCRT machinery and functionally characterised the first plant ESCRT proteins. However, most studies have been performed in the model plant Arabidopsis thaliana that is genetically and physiologically different to crops. Cereal crops are important for animal feed and human nutrition and have further been utilized as promising candidates for recombinant protein production. In this review, I summarize the role of plant ESCRT components in cereals that are involved in efficient adaptation to environmental stress and grain development. A special focus is on barley (Hordeum vulgare L.) ESCRT proteins, where recent studies show their quantitative mapping during grain development, e.g. associating HvSNF7.1 with protein trafficking to protein bodies (PBs) in starchy endosperm. Thus, it is indispensable to identify the molecular key-players within the endomembrane system including ESCRT proteins to optimize and possibly enhance tolerance to environmental stress, grain yield and recombinant protein production in cereal grains.

Keywords

ESCRT cereal barley grain endosperm SNF7 abiotic stress biotic stress 

Notes

Acknowledgements

This work was financially supported by the Austrian Science Fund FWF (P29454-B22, P29303-B22). I thank Dr. Alois Schweighofer for critical reading of the manuscript.

Compliance and ethics The author declares that she has no conflict of interest.

Supplementary material

11427_2019_9572_MOESM1_ESM.pdf (392 kb)
Supplementary material, approximately 392 KB.

References

  1. An, Q., van Bel, A.J., and Hückelhoven, R. (2007). Do plant cells secrete exosomes derived from multivesicular bodies? Plant Signal Behav 2, 4–7.CrossRefGoogle Scholar
  2. Arcalis, E., Ibl, V., Peters, J., Melnik, S., and Stoger, E. (2014). The dynamic behavior of storage organelles in developing cereal seeds and its impact on the production of recombinant proteins. Front Plant Sci 5, 439.CrossRefGoogle Scholar
  3. Arcalis, E., Stadlmann, J., Marcel, S., Drakakaki, G., Winter, V., Rodriguez, J., Fischer, R., Altmann, F., and Stoger, E. (2010). The changing fate of a secretory glycoprotein in developing maize endosperm. Plant Physiol 153, 693–702.CrossRefGoogle Scholar
  4. Babst, M., Katzmann, D.J., Estepa-Sabal, E.J., Meerloo, T., and Emr, S.D. (2002a). Escrt-III: an endosome-associated heterooligomeric protein complex required for mvb sorting. Dev Cell 3, 271–282.CrossRefGoogle Scholar
  5. Babst, M., Katzmann, D.J., Snyder, W.B., Wendland, B., and Emr, S.D. (2002b). Endosome-associated complex, ESCRT-II, recruits transport machinery for protein sorting at the multivesicular body. Dev Cell 3, 283–289.CrossRefGoogle Scholar
  6. Barajas, D., Jiang, Y., and Nagy, P.D. (2009). A unique role for the host ESCRT proteins in replication of Tomato bushy stunt virus. PLoS Pathog 5, e1000705.CrossRefGoogle Scholar
  7. Baral, A., Irani, N.G., Fujimoto, M., Nakano, A., Mayor, S., and Mathew, M.K. (2015). Salt-induced remodeling of spatially restricted clathrin-independent endocytic pathways in Arabidopsis root. Plant Cell 27, 1297–1315.CrossRefGoogle Scholar
  8. Barnabas, B., Jager, K., and Feher, A. (2008). The effect of drought and heat stress on reproductive processes in cereals. Plant Cell Environ 31, 11–38.Google Scholar
  9. Battisti, D.S., and Naylor, R.L. (2009). Historical warnings of future food insecurity with unprecedented seasonal heat. Science 323, 240–244.CrossRefGoogle Scholar
  10. Boothe, J., Nykiforuk, C., Shen, Y., Zaplachinski, S., Szarka, S., Kuhlman, P., Murray, E., Morck, D., and Moloney, M.M. (2010). Seed-based expression systems for plant molecular farming. Plant Biotech J 8, 588–606.CrossRefGoogle Scholar
  11. Boura, E., Ivanov, V., Carlson, L.A., Mizuuchi, K., and Hurley, J.H. (2012). Endosomal sorting complex required for transport (ESCRT) complexes induce phase-separated microdomains in supported lipid bilayers. J Biol Chem 287, 28144–28151.CrossRefGoogle Scholar
  12. Buchkovich, N.J., Henne, W.M., Tang, S., and Emr, S.D. (2013). Essential N-terminal insertion motif anchors the ESCRT-III filament during MVB vesicle formation. Dev Cell 27, 201–214.CrossRefGoogle Scholar
  13. Caballe, A., and Martin-Serrano, J. (2011). ESCRT machinery and cytokinesis: the road to daughter cell separation. Traffic 12, 1318–1326.CrossRefGoogle Scholar
  14. Carlton, J.G., and Martin-Serrano, J. (2009). The ESCRT machinery: new functions in viral and cellular biology. Biochm Soc Trans 37, 195–199.CrossRefGoogle Scholar
  15. Contento, A.L., and Bassham, D.C. (2012). Structure and function of endosomes in plant cells. J Cell Sci 125, 3511–3518.CrossRefGoogle Scholar
  16. Cui, Y., He, Y., Cao, W., Gao, J., and Jiang, L. (2018). The multivesicular body and autophagosome pathways in plants. Front Plant Sci 9, 1837.CrossRefGoogle Scholar
  17. Cui, Y., Shen, J., Gao, C., Zhuang, X., Wang, J., and Jiang, L. (2016). Biogenesis of plant prevacuolar multivesicular bodies. Mol Plant 9, 774–786.CrossRefGoogle Scholar
  18. Garcia de la Garma, J., Fernandez-Garcia, N., Bardisi, E., Pallol, B., Asensio-Rubio, J.S., Bru, R., and Olmos, E. (2015). New insights into plant salt acclimation: the roles of vesicle trafficking and reactive oxygen species signalling in mitochondria and the endomembrane system. New Phytol 205, 216–239.CrossRefGoogle Scholar
  19. Edgerton, M.D. (2009). Increasing crop productivity to meet global needs for feed, food, and fuel. Plant Physiol 149, 7–13.CrossRefGoogle Scholar
  20. Galili, G. (2004). ER-derived compartments are formed by highly regulated processes and have special functions in plants. Plant Physiol 136, 3411–3413.CrossRefGoogle Scholar
  21. Gao, C., Zhuang, X., Shen, J., and Jiang, L. (2017). Plant ESCRT complexes: moving beyond endosomal sorting. Trends Plant Sci 22, 986–998.CrossRefGoogle Scholar
  22. Gong, Z., Koiwa, H., Cushman, M.A., Ray, A., Bufford, D., Kore-eda, S., Matsumoto, T.K., Zhu, J., Cushman, J.C., Bressan, R.A., et al. (2001). Genes that are uniquely stress regulated in salt overly sensitive (sos) mutants. Plant Physiol 126, 363–375.CrossRefGoogle Scholar
  23. Haas, T.J., Sliwinski, M.K., Martínez, D.E., Preuss, M., Ebine, K., Ueda, T., Nielsen, E., Odorizzi, G., and Otegui, M.S. (2007). The Arabidopsis AAA ATPase SKD1 is involved in multivesicular endosome function and interacts with its positive regulator LYST-INTERACTING PROTEIN5. Plant Cell 19, 1295–1312.CrossRefGoogle Scholar
  24. Hanson, P.I., and Cashikar, A. (2012). Multivesicular body morphogenesis. Annu Rev Cell Dev Biol 28, 337–362.CrossRefGoogle Scholar
  25. Hara-Nishimura, Shimada, Hatano, Takeuchi, and Nishimura, (1998). Transport of storage proteins to protein storage vacuoles is mediated by large precursor-accumulating vesicles. Plant Cell 10, 825–836.CrossRefGoogle Scholar
  26. Henne, W.M., Buchkovich, N.J., and Emr, S.D. (2011). The ESCRT pathway. Dev Cell 21, 77–91.CrossRefGoogle Scholar
  27. Henne, W.M., Stenmark, H., and Emr, S.D. (2013). Molecular mechanisms of the membrane sculpting ESCRT pathway. Cold Spring Harb Perspect Biol 5, a016766.CrossRefGoogle Scholar
  28. Hierro, A., Sun, J., Rusnak, A.S., Kim, J., Prag, G., Emr, S.D., and Hurley, J.H. (2004). Structure of the ESCRT-II endosomal trafficking complex. Nature 431, 221–225.CrossRefGoogle Scholar
  29. Hilscher, J., Kapusi, E., Stoger, E., and Ibl, V. (2016). Cell layer-specific distribution of transiently expressed barley ESCRT-III component HvVPS60 in developing barley endosperm. Protoplasma 253, 137–153.CrossRefGoogle Scholar
  30. Ho, L.W., Yang, T.T., Shieh, S.S., Edwards, G.E., and Yen, H.E. (2010). Reduced expression of a vesicle trafficking-related ATPase SKD1 decreases salt tolerance in Arabidopsis. Funct Plant Biol 37, 962–973.CrossRefGoogle Scholar
  31. Hurley, J.H., and Emr, S.D. (2006). The ESCRT complexes: structure and mechanism of a membrane-trafficking network. Annu Rev Biophys Biomol Struct 35, 277–298.CrossRefGoogle Scholar
  32. Hurley, J.H., and Hanson, P.I. (2010). Membrane budding and scission by the ESCRT machinery: it’s all in the neck. Nat Rev Mol Cell Biol 11, 556–566.CrossRefGoogle Scholar
  33. Ibl, V., Csaszar, E., Schlager, N., Neubert, S., Spitzer, C., and Hauser, M.T. (2012). Interactome of the Plant-specific ESCRT-III Component AtVPS2.2 in Arabidopsis thaliana. J Proteome Res 11, 397–411.CrossRefGoogle Scholar
  34. Ibl, V., and Stoger, E. (2012). The formation, function and fate of protein storage compartments in seeds. Protoplasma 249, 379–392.CrossRefGoogle Scholar
  35. International Rice Genome Sequencing Project. (2005). The map-based sequence of the rice genome. Nature 436, 793–800.CrossRefGoogle Scholar
  36. International Wheat Genome Sequencing Consortium (IWGSC), Appels, R., Eversole, K., Stein, N., Feuillet C., Keller, B., Rogers, J., Pozniak, C.J., Choulet F., Distelfeld A., et al. (2018). Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science 361, eaar7191.CrossRefGoogle Scholar
  37. Jimenez, A.J., Maiuri, P., Lafaurie-Janvore, J., Divoux, S., Piel, M., and Perez, F. (2014). ESCRT machinery is required for plasma membrane repair. Science 343, 1247136.CrossRefGoogle Scholar
  38. Jou, Y., Chiang, C.P., Jauh, G.Y., and Yen, H.E. (2006). Functional characterization of ice plant SKD1, an AAA-type ATPase associated with the endoplasmic reticulum-Golgi network, and its role in adaptation to salt stress. Plant Physiol 141, 135–146.CrossRefGoogle Scholar
  39. Jou, Y., Chou, P.H., He, M., Hung, Y., and Yen, H.E. (2004). Tissue-specific expression and functional complementation of a yeastpotassium-uptake mutant by a salt-induced ice plant gene mcSKD1. Plant Mol Biol 54, 881–893.CrossRefGoogle Scholar
  40. Katsiarimpa, A., Kalinowska, K., Anzenberger, F., Weis, C., Ostertag, M., Tsutsumi, C., Schwechheimer, C., Brunner, F., Hückelhoven, R., and Isono, E. (2013). The deubiquitinating enzyme AMSH1 and the ESCRT-III subunit VPS2.1 are required for autophagic degradation in Arabidopsis. Plant Cell 25, 2236–2252.CrossRefGoogle Scholar
  41. Katzmann, D.J., Babst, M., and Emr, S.D. (2001). Ubiquitin-dependent sorting into the multivesicular body pathway requires the function of a conserved endosomal protein sorting complex, ESCRT-I. Cell 106, 145–155.CrossRefGoogle Scholar
  42. Kawahara, Y., de la Bastide, M., Hamilton, J.P., Kanamori, H., McCombie, W.R., Ouyang, S., Schwartz, D.C., Tanaka, T., Wu, J.Z., Zhou, S.G., et al. (2013). Improvement of the Oryza sativa Nipponbare reference genome using next generation sequence and optical map data. Rice (N Y) 6, 4.CrossRefGoogle Scholar
  43. Leshem, Y., Seri, L., and Levine, A. (2007). Induction of phosphatidylinositol 3-kinase-mediated endocytosis by salt stress leads to intracellular production of reactive oxygen species and salt tolerance. Plant J 51, 185–197.CrossRefGoogle Scholar
  44. Leung, K.F., Dacks, J.B., and Field, M.C. (2008). Evolution of the multivesicular body ESCRT machinery; Retention across the eukaryotic lineage. Traffic 9, 1698–1716.CrossRefGoogle Scholar
  45. Levanony, H., Rubin, R., Altschuler, Y., and Galili, G. (1992). Evidence for a novel route of wheat storage proteins to vacuoles. J Cell Biol 119, 1117–1128.CrossRefGoogle Scholar
  46. Levine, A. (2002). Regulation of stress responses by intracellular vesicle trafficking? Plant Physiol Bioch 40, 531–535.CrossRefGoogle Scholar
  47. Li, H., Li, Y., Zhao, Q., Li, T., Wei, J., Li, B., Shen, W., Yang, C., Zeng, Y., Rodriguez, P.L., et al. (2019). The plant ESCRT component FREE1 shuttles to the nucleus to attenuate abscisic acid signalling. Nat Plants 5, 512–524.CrossRefGoogle Scholar
  48. Li, X., Wang, X., Yang, Y., Li, R., He, Q., Fang, X., Luu, D.T., Maurel, C., and Lin, J. (2011). Single-molecule analysis of PIP2;1 dynamics and partitioning reveals multiple modes of Arabidopsis plasma membrane aquaporin regulation. Plant Cell 23, 3780–3797.CrossRefGoogle Scholar
  49. Magnusdottir, A., Vidarsson, H., Björnsson, J.M., and Örvar, B.L. (2013). Barley grains for the production of endotoxin-free growth factors. Trends Biotech 31, 572–580.CrossRefGoogle Scholar
  50. Mangelsen, E., Kilian, J., Harter, K., Jansson, C., Wanke, D., and Sundberg, E. (2011). Transcriptome analysis of high-temperature stress in developing barley caryopses: early stress responses and effects on storage compound biosynthesis. Mol Plant 4, 97–115.CrossRefGoogle Scholar
  51. Mangelsen, E., Wanke, D., Kilian, J., Sundberg, E., Harter, K., and Jansson, C. (2010). Significance of light, sugar, and amino acid supply for diurnal gene regulation in developing barley caryopses. Plant Physiol 153, 14–33.CrossRefGoogle Scholar
  52. Nielsen, M.E., and Thordal-Christensen, H. (2012). Recycling of Arabidopsis plasma membrane PEN1 syntaxin. Plant Signal Behav 7, 1541–1543.CrossRefGoogle Scholar
  53. Olsen, L.T., Divon, H.H., Al, R., Fosnes, K., Lid, S.E., and Opsahl-Sorteberg, H.G. (2008). The defective seed5 (des5) mutant: effects on barley seed development and HvDek1, HvCr4, and HvSal1 gene regulation. J Exp Bot 59, 3753–3765.CrossRefGoogle Scholar
  54. Olsen, O.A. (2001). ENDOSPERM DEVELOPMENT: Cellularization and Cell Fate Specification. Annu Rev Plant Physiol Plant Mol Biol 52, 233–267.CrossRefGoogle Scholar
  55. Olsen, O.A. (2004). Nuclear endosperm development in cereals and Arabidopsis thaliana. Plant Cell 16, S214–S227.CrossRefGoogle Scholar
  56. Otegui, M.S. (2018). ESCRT-mediated sorting and intralumenal vesicle concatenation in plants. Biochm Soc Trans 46, 537–545.CrossRefGoogle Scholar
  57. Otegui, M.S., and Spitzer, C. (2008). Endosomal functions in plants. Traffic 9, 1589–1598.CrossRefGoogle Scholar
  58. Paez Valencia, J., Goodman, K., and Otegui, M.S. (2016). Endocytosis and endosomal trafficking in plants. Annu Rev Plant Biol 67, 309–335.CrossRefGoogle Scholar
  59. Paterson, A.H., Bowers, J.E., Bruggmann, R., Dubchak, I., Grimwood, J., Gundlach, H., Haberer, G., Hellsten, U., Mitros, T., Poliakov, A., et al. (2009). The Sorghum bicolor genome and the diversification of grasses. Nature 457, 551–556.CrossRefGoogle Scholar
  60. Peel, S., Macheboeuf, P., Martinelli, N., and Weissenhorn, W. (2011). Divergent pathways lead to ESCRT-III-catalyzed membrane fission. Trends Biochem Sci 36, 199–210.CrossRefGoogle Scholar
  61. Peng, S., Huang, J., Sheehy, J.E., Laza, R.C., Visperas, R.M., Zhong, X., Centeno, G.S., Khush, G.S., and Cassman, K.G. (2004). Rice yields decline with higher night temperature from global warming. Proc Natl Acad Sci USA 101, 9971–9975.CrossRefGoogle Scholar
  62. Pitzschke, A., Schikora, A., and Hirt, H. (2009). MAPK cascade signalling networks in plant defence. Curr Opin Plant Biol 12, 421–426.CrossRefGoogle Scholar
  63. Rademacher, T., Arcalis, E., and Stoger, E. (2009). Production and localization of recombinant pharmaceuticals in transgenic seeds. Methods Mol Biol 483, 69–87.CrossRefGoogle Scholar
  64. Reyes, F.C., Chung, T., Holding, D., Jung, R., Vierstra, R., and Otegui, M. S. (2011). Delivery of prolamins to the protein storage vacuole in maize aleurone cells. Plant Cell 23, 769–784.CrossRefGoogle Scholar
  65. Reyes, F.C., Buono, R.A., Roschzttardtz, H., Di Rubbo, S., Yeun, L.H., Russinova, E., and Otegui, M.S. (2014). A novel endosomal sorting complex required for transport (ESCRT) component in Arabidopsis thaliana controls cell expansion and development. J Biol Chem 289, 4980–4988.CrossRefGoogle Scholar
  66. Richardson, L.G.L., Howard, A.S.M., Khuu, N., Gidda, S.K., McCartney, A., Morphy, B.J., and Mullen, R.T. (2011). Protein-protein interaction network and subcellular localization of the Arabidopsis thaliana ESCRT machinery. Front Plant Sci 2, 20.CrossRefGoogle Scholar
  67. Richardson, L.G., and Mullen, R.T. (2011). Meta-analysis of the expression profiles of the Arabidopsis ESCRT machinery. Plant Signal Behav 6, 1897–1903.CrossRefGoogle Scholar
  68. Roustan, V., Hilscher, J., Weidinger, M., Reipert, S., Shabrangy, A., Gebert, C., Dietrich, B., Dermendjiev, G., Roustan, P.J., Stoger, E., et al. (2019). Cytoskeleton members, MVBs and the ESCRT-III HvSNF7s are putative key players for protein sorting into protein bodies during barley endosperm development. BioRxiv.Google Scholar
  69. Roxrud, I., Stenmark, H., and Malerød, L. (2010). ESCRT & Co. Biol Cell 102, 293–318.CrossRefGoogle Scholar
  70. Rubin, R., Levanony, H., and Galili, G. (1992). Evidence for the presence of two different types of protein bodies in wheat endosperm. Plant Physiol 99, 718–724.CrossRefGoogle Scholar
  71. Rusten, T.E., and Stenmark, H. (2009). How do ESCRT proteins control autophagy? J Cell Sci 13, 2179–2183.CrossRefGoogle Scholar
  72. Scheuring, D., Viotti, C., Krüger, F., Künzl, F., Sturm, S., Bubeck, J., Hillmer, S., Frigerio, L., Robinson, D.G., Pimpl, P., et al. (2011). Multivesicular Bodies Mature from the Trans-Golgi Network/Early Endosome in Arabidopsis. Plant Cell 23, 3463–3481.CrossRefGoogle Scholar
  73. Schnable, P.S., Ware, D., Fulton, R.S., Stein, J.C., Wei, F., Pasternak, S., Liang, C., Zhang, J., Fulton, L., Graves, T.A., et al. (2009). The B73 maize genome: complexity, diversity, and dynamics. Science 326, 1112–1115.CrossRefGoogle Scholar
  74. Shahriari, M., Keshavaiah, C., Scheuring, D., Sabovljevic, A., Pimpl, P., Häusler, R.E., Hülskamp, M., and Schellmann, S. (2010). The AAA-type ATPase AtSKD1 contributes to vacuolar maintenance of Arabidopsis thaliana. Plant J 64, 71–85.Google Scholar
  75. Shahriari, M., Richter, K., Keshavaiah, C., Sabovljevic, A., Huelskamp, M., and Schellmann, S. (2011). The Arabidopsis ESCRT protein-protein interaction network. Plant Mol Biol 76, 85–96.CrossRefGoogle Scholar
  76. Shen, B., Li, C., Min, Z., Meeley, R.B., Tarczynski, M.C., and Olsen, O.A. (2003). sal1 determines the number of aleurone cell layers in maize endosperm and encodes a class E vacuolar sorting protein. Proc Natl Acad Sci USA 100, 6552–6557.CrossRefGoogle Scholar
  77. Shewry, P.R., Napier, J.A., and Tatham, A.S. (1995). Seed storage proteins: structures and biosynthesis. Plant Cell 7, 945–956.Google Scholar
  78. Spallek, T., Beck, M., Ben Khaled, S., Salomon, S., Bourdais, G., Schellmann, S., and Robatzek, S. (2013). ESCRT-I mediates FLS2 endosomal sorting and plant immunity. PLoS Genet 9, e1004035.CrossRefGoogle Scholar
  79. Spitzer, C., Li, F., Buono, R., Roschzttardtz, H., Chung, T., Zhang, M., Osteryoung, K.W., Vierstra, R.D., and Otegui, M.S. (2015). The endosomal protein CHARGED MULTIVESICULAR BODY PROTEIN1 regulates the autophagic turnover of plastids in Arabidopsis. Plant Cell 27, 391–402.CrossRefGoogle Scholar
  80. Spitzer, C., Reyes, F.C., Buono, R., Sliwinski, M.K., Haas, T.J., and Otegui, M.S. (2009). The ESCRT-related CHMP1A and B proteins mediate multivesicular body sorting of auxin carriers in Arabidopsis and are required for plant development. Plant Cell 21, 749–766.CrossRefGoogle Scholar
  81. Spitzer, C., Schellmann, S., Sabovljevic, A., Shahriari, M., Keshavaiah, C., Bechtold, N., Herzog, M., Müller, S., Hanisch, F.G., and Hülskamp, M. (2006). The Arabidopsis elch mutant reveals functions of an ESCRT component in cytokinesis. Development 133, 4679–4689.CrossRefGoogle Scholar
  82. Stoger, E., Ma, J.K.C., Fischer, R., and Christou, P. (2005). Sowing the seeds of success: pharmaceutical proteins from plants. Curr Opin Biotech 16, 167–173.CrossRefGoogle Scholar
  83. Teh, O.K., and Hofius, D. (2014). Membrane trafficking and autophagy in pathogen-triggered cell death and immunity. J Exp Bot 65, 1297–1312.CrossRefGoogle Scholar
  84. Teis, D., Saksena, S., Judson, B.L., and Emr, S.D. (2010). ESCRT-II coordinates the assembly of ESCRT-III filaments for cargo sorting and multivesicular body vesicle formation. EMBO J 29, 871–883.CrossRefGoogle Scholar
  85. Teo, H., Perisic, O., González, B., and Williams, R.L. (2004). ESCRT-II, an endosome-associated complex required for protein sorting. Dev Cell 7, 559–569.CrossRefGoogle Scholar
  86. Tian, Q., Olsen, L., Sun, B., Lid, S.E., Brown, R.C., Lemmon, B.E., Fosnes, K., Gruis, D.F., Opsahl-Sorteberg, H.G., Otegui, M.S., et al. (2007). Subcellular localization and functional domain Studies of DEFECTIVE KERNEL1 in maize and Arabidopsis suggest a model for aleurone cell fate specification involving CRINKLY4 and SUPERNUMERARY ALEURONE LAYER1. Plant Cell 19, 3127–3145.CrossRefGoogle Scholar
  87. Varshney, R.K., Shi, C., Thudi, M., Mariac, C., Wallace, J., Qi, P., Zhang, H., Zhao, Y., Wang, X., Rathore, A., et al. (2017). Pearl millet genome sequence provides a resource to improve agronomic traits in arid environments. Nat Biotechnol 35, 969–976.CrossRefGoogle Scholar
  88. Viotti, C., Bubeck, J., Stierhof, Y.D., Krebs, M., Langhans, M., van den Berg, W., van Dongen, W., Richter, S., Geldner, N., Takano, J., et al. (2010). Endocytic and Secretory Traffic in Arabidopsis Merge in the Trans-Golgi Network/Early Endosome, an Independent and Highly Dynamic Organelle. Plant Cell 22, 1344–1357.CrossRefGoogle Scholar
  89. Wang, F., Shang, Y., Fan, B., Yu, J.Q., and Chen, Z. (2014). Arabidopsis LIP5, a positive regulator of multivesicular body biogenesis, is a critical target of pathogen-responsive MAPK cascade in plant basal defense. PLoS Pathog 10, e1004243.CrossRefGoogle Scholar
  90. Wang, F., Yang, Y., Wang, Z., Zhou, J., Fan, B., and Chen, Z. (2015). A critical role of LIP5, a positive regulator of multivesicular body biogenesis, in plant responses to heat and salt stresses. Plant Physiol 169, 497–511.CrossRefGoogle Scholar
  91. Webster, B.M., Colombi, P., Jäger, J., and Lusk, C.P. (2014). Surveillance of nuclear pore complex assembly by ESCRT-III/Vps4. Cell 159, 388–401.CrossRefGoogle Scholar
  92. Williams, R.L., and Urbé, S. (2007). The emerging shape of the ESCRT machinery. Nat Rev Mol Cell Biol 8, 355–368.CrossRefGoogle Scholar
  93. Winter, V., and Hauser, M.T. (2006). Exploring the ESCRTing machinery in eukaryotes. Trends Plant Sci 11, 115–123.CrossRefGoogle Scholar
  94. Xia, Z., Huo, Y., Wei, Y., Chen, Q., Xu, Z., and Zhang, W. (2016). The Arabidopsis LYST INTERACTING PROTEIN 5 acts in regulating abscisic acid signaling and drought response. Front Plant Sci 7, 758.Google Scholar
  95. Xia, Z., Wei, Y., Sun, K., Wu, J., Wang, Y., and Wu, K. (2013). The maize AAA-type protein SKD1 confers enhanced salt and drought stress tolerance in transgenic tobacco by interacting with Lyst-interacting protein 5. PLoS ONE 8, e69787.CrossRefGoogle Scholar
  96. Emilie Yen, H., Wu, S.M., Hung, Y.H., and Yen, S.K. (2000). Isolation of 3 salt-induced low-abundance cDNAs from light-grown callus of Mesembryanthemum crystallinum by suppression subtractive hybridization. Physiol Plant 110, 402–409.CrossRefGoogle Scholar
  97. Zhang, X.Q., Hou, P., Zhu, H.T., Li, G.D., Liu, X.G., and Xie, X.M. (2013). Knockout of the VPS22 component of the ESCRT-II complex in rice (Oryza sativa L.) causes chalky endosperm and early seedling lethality. Mol Biol Rep 40, 3475–3481.CrossRefGoogle Scholar
  98. Zhu, X., Yin, J., Liang, S., Liang, R., Zhou, X., Chen, Z., Zhao, W., Wang, J., Li, W., He, M., et al. (2016). The multivesicular bodies (MVBs)-localized AAA ATPase LRD6-6 inhibits immunity and cell death likely through regulating MVBs-mediated vesicular trafficking in rice. PLoS Genet 12, e1006311.CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Ecogenomics and Systems BiologyUniversity of ViennaViennaAustria

Personalised recommendations