Enrichment of AT-TA transversion at 5′-CAG-3′ motif is not a unique mutational signature of Aristolochic acid

  • Xin Wang
  • Xinming Qi
  • Jin RenEmail author


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by grants from the National Science and Technology Major Project (2018ZX09101002-002).


  1. Bolt, H.M., Peter, H., and Föst, U. (1988). Analysis of macromolecular ethylene oxide adducts. Int Arch Occup Environ Health 60, 141–144.CrossRefGoogle Scholar
  2. Connor, F., Rayner, T.F., Aitken, S.J., Feig, C., Lukk, M., Santoyo-Lopez, J., and Odom, D.T. (2018). Mutational landscape of a chemically-induced mouse model of liver cancer. J Hepatology 69, 840–850.CrossRefGoogle Scholar
  3. Fedeles, B.I., Singh, V., Delaney, J.C., Li, D., and Essigmann, J.M. (2015). The AlkB family of Fe(II)/α-ketoglutarate-dependent dioxygenases: repairing nucleic acid alkylation damage and beyond. J Biol Chem 290, 20734–20742.CrossRefGoogle Scholar
  4. Garaycoechea, J.I., Crossan, G.P., Langevin, F., Mulderrig, L., Louzada, S., Yang, F., Guilbaud, G., Park, N., Roerink, S., Nik-Zainal, S., et al. (2018). Alcohol and endogenous aldehydes damage chromosomes and mutate stem cells. Nature 553, 171–177.CrossRefGoogle Scholar
  5. Grollman, A.P., Shibutani, S., Moriya, M., Miller, F., Wu, L., Moll, U., Suzuki, N., Fernandes, A., Rosenquist, T., Medverec, Z., et al. (2007). Aristolochic acid and the etiology of endemic (Balkan) nephropathy. Proc Natl Acad Sci USA 104, 12129–12134.CrossRefGoogle Scholar
  6. Hawkins, W.E., Walker, W.W., Overstreet, R.M., Lytle, J.S., and Lytle, T.F. (1990). Carcinogenic effects of some polycyclic aromatic hydrocarbons on the Japanese medaka and guppy in waterborne exposures. Sci Total Environ 94, 155–167.CrossRefGoogle Scholar
  7. Huang, M.N., Yu, W., Teoh, W.W., Ardin, M., Jusakul, A., Ng, A.W.T., Boot, A., Abedi-Ardekani, B., Villar, S., Myint, S.S., et al. (2017). Genome-scale mutational signatures of aflatoxin in cells, mice, and human tumors. Genome Res 27, 1475–1486.CrossRefGoogle Scholar
  8. Kao, H.J., Cheng, C.F., Chen, Y.H., Hung, S.I., Huang, C.C., Millington, D., Kikuchi, T., Wu, J.Y., and Chen, Y.T. (2006). ENU mutagenesis identifies mice with cardiac fibrosis and hepatic steatosis caused by a mutation in the mitochondrial trifunctional protein β-subunit. Human Mol Genets 15, 3569–3577.CrossRefGoogle Scholar
  9. Liao, D.J., Blanck, A., Eneroth, P., Gustafsson, J.A., and Hällström, I.P. (2001). Diethylnitrosamine causes pituitary damage, disturbs hormone levels, and reduces sexual dimorphism of certain liver functions in the rat. Environ Health Perspect 109, 943–947.CrossRefGoogle Scholar
  10. Lv, G., Tan, Y., Lv, H., Fang, T., Wang, C., Li, T., Yu, Y., Hu, C., Wen, W., Wang, H., et al. (2017). MXR7 facilitates liver cancer metastasis via epithelial-mesenchymal transition. Sci China Life Sci 60, 1203–1213.CrossRefGoogle Scholar
  11. McCreery, M.Q., Halliwill, K.D., Chin, D., Delrosario, R., Hirst, G., Vuong, P., Jen, K.Y., Hewinson, J., Adams, D.J., and Balmain, A. (2015). Evolution of metastasis revealed by mutational landscapes of chemically induced skin cancers. Nat Med 21, 1514–1520.CrossRefGoogle Scholar
  12. Minko, I.G., Rizzo, C.J., and Lloyd, R.S. (2017). Mutagenic potential of nitrogen mustard-induced formamidopyrimidine DNA adduct: Contribution of the non-canonical α-anomer. J Biol Chem 292, 18790–18799.CrossRefGoogle Scholar
  13. Mutlu, E., Jeong, Y.C., Collins, L.B., Ham, A.J.L., Upton, P.B., Hatch, G., Winsett, D., Evansky, P., and Swenberg, J.A. (2012). A new LC-MS/MS method for the quantification of endogenous and vinyl chloride-induced 7-(2-Oxoethyl)guanine in sprague-dawley rats. Chem Res Toxicol 25, 391–399.CrossRefGoogle Scholar
  14. Nassar, D., Latil, M., Boeckx, B., Lambrechts, D., and Blanpain, C. (2015). Genomic landscape of carcinogen-induced and genetically induced mouse skin squamous cell carcinoma. Nat Med 21, 946–954.CrossRefGoogle Scholar
  15. Ng, A.W.T., Poon, S.L., Huang, M.N., Lim, J.Q., Boot, A., Yu, W., Suzuki, Y., Thangaraju, S., Ng, C.C.Y., Tan, P., et al. (2017). Aristolochic acids and their derivatives are widely implicated in liver cancers in Taiwan and throughout Asia. Sci Transl Med 9, eaan6446.CrossRefGoogle Scholar
  16. Sidorenko, V.S., Yeo, J.E., Bonala, R.R., Johnson, F., Schärer, O.D., and Grollman, A.P. (2012). Lack of recognition by global-genome nucleotide excision repair accounts for the high mutagenicity and persistence of aristolactam-DNA adducts. Nucleic Acids Res 40, 2494–2505.CrossRefGoogle Scholar
  17. Tong, S. (2005). Mechanism of HBV genome variability and replication of HBV mutants. J Clin Virol 34, S134–S138.CrossRefGoogle Scholar
  18. Wu, K.Y., Chiang, S.Y., Shih, W.C., Huang, C.C.J., Chen, M.F., and Swenberg, J.A. (2011). The application of mass spectrometry in molecular dosimetry: ethylene oxide as an example. Mass Spectrom Rev 63, 733–756.Google Scholar
  19. Yu, L.X., Ling, Y., and Wang, H.Y. (2018). Role of nonresolving inflammation in hepatocellular carcinoma development and progression. NPJ Precis Oncol 2, 6.CrossRefGoogle Scholar
  20. Zhu, J., Yu, H., Chen, S., Yang, P., Dong, Z., Ling, Y., Tang, H., Bai, S., Yang, W., Tang, L., et al. (2018). Prognostic significance of combining high mobility group Box-1 and OV-6 expression in hepatocellular carcinoma. Sci China Life Sci 61, 912–923.CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
  2. 2.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations