Advertisement

Science China Life Sciences

, Volume 62, Issue 6, pp 734–736 | Cite as

Profile of Dr. Yao-Guang Liu

Profile From CAS & CAE Members
  • 8 Downloads

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chen, L., and Liu, Y.G. (2014). Male sterility and fertility restoration in crops. Annu Rev Plant Biol 65, 579–606.CrossRefGoogle Scholar
  2. Luo, D., Xu, H., Liu, Z., Guo, J., Li, H., Chen, L., Fang, C., Zhang, Q., Bai, M., Yao, N., et al. (2013). A detrimental mitochondrial-nuclear interaction causes cytoplasmic male sterility in rice. Nat Genet 45, 573–577.CrossRefGoogle Scholar
  3. Long, Y., Zhao, L., Niu, B., Su, J., Wu, H., Chen, Y., Zhang, Q., Guo, J., Zhuang, C., Mei, M., et al. (2008). Hybrid male sterility in rice controlled by interaction between divergent alleles of two adjacent genes. Proc Natl Acad Sci USA 105, 18871–18876.CrossRefGoogle Scholar
  4. Lin, L., Liu, Y.G., Xu, X., and Li, B. (2003). Efficient linking and transfer of multiple genes by a multigene assembly and transformation vector system. Proc Natl Acad Sci USA 100, 5962–5967.CrossRefGoogle Scholar
  5. Liu, Y.G., and Whittier, R.F. (1995). Thermal asymmetric interlaced PCR: automatable amplification and sequencing of insert end fragments from P1 and YAC clones for chromosome walking. Genomics 25, 674–681.CrossRefGoogle Scholar
  6. Liu, Y.G., Mitsukawa, N., Oosumi, T., and Whittier, R.F. (1995). Efficient isolation and mapping of Arabidopsis thaliana T-DNA insert junctions by thermal asymmetric interlaced PCR. Plant J 8, 457–463.CrossRefGoogle Scholar
  7. Liu, Y.G., Shirano, Y., Fukaki, H., Yanai, Y., Tasaka, M., Tabata, S., and Shibata, D. (1999). Complementation of plant mutants with large genomic DNA fragments by a transformation-competent artificial chromosome vector accelerates positional cloning. Proc Natl Acad Sci USA 96, 6535–6540.CrossRefGoogle Scholar
  8. Liu, Z.L., Xu, H., Guo, J.X., and Liu, Y.G. (2007). Structural and expressional variations of the mitochondrial genome conferring the Wild Abortive type of cytoplasmic male sterility in rice. J Integr Plant Biol 49, 908–914.CrossRefGoogle Scholar
  9. Ma, X., Zhang, Q., Zhu, Q., Liu, W., Chen, Y., Qiu, R., Wang, B., Yang, Z., Li, H., Lin, Y., et al. (2015). A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants. Mol Plant 8, 1274–1284.CrossRefGoogle Scholar
  10. Shen, R., Wang, L., Liu, X., Wu, J., Jin, W., Zhao, X., Xie, X., Zhu, Q., Tang, H., Li, Q., et al. (2017). Genomic structural variation-mediated allelic suppression causes hybrid male sterility in rice. Nat Commun 8, 1310.CrossRefGoogle Scholar
  11. Tang, H., Luo, D., Zhou, D., Zhang, Q., Tian, D., Zheng, X., Chen, L., and Liu, Y.G. (2014). The rice restorer Rf4 for wild-abortive cytoplasmic male sterility encodes a mitochondrial-localized PPR protein that functions in reduction of WA352 transcripts. Mol Plant 7, 1497–1500.CrossRefGoogle Scholar
  12. Tang, H., Xie, Y., Liu, Y.G., and Chen, L. (2017). Advances in understanding the molecular mechanisms of cytoplasmic male sterility and restoration in rice. Plant Reprod 30, 179–184.CrossRefGoogle Scholar
  13. Wang, Z., Zou, Y., Li, X., Zhang, Q., Chen, L., Wu, H., Su, D., Chen, Y., Guo, J., Luo, D., et al. (2006). Cytoplasmic male sterility of rice with Boro II cytoplasm is caused by a cytotoxic peptide and is restored by two related PPR motif genes via distinct modes of mRNA silencing. Plant Cell 18, 676–687.CrossRefGoogle Scholar
  14. Xie, X., Ma, X., Zhu, Q., Zeng, D., Li, G., and Liu, Y.G. (2017). CRISPR-GE: A convenient software toolkit for CRISPR-based genome editing. Mol Plant 10, 1246–1249.CrossRefGoogle Scholar
  15. Xie, Y., Xu, P., Huang, J., Ma, S., Xie, X., Tao, D., Chen, L., and Liu, Y.G. (2017). Interspecific hybrid sterility in rice is mediated by OgTPR1 at the S1 locus encoding a peptidase-like protein. Mol Plant 10, 1137–1140.CrossRefGoogle Scholar
  16. Xie, Y., Tang, J., Xie, X., Li, X., Huang, J., Fei, Y., Han J., Chen, S., Tang, H., Zhao, X., et al. (2019). An asymmetric allelic interaction drives allele transmission bias in interspecific 1 rice hybrids. Nat Commun, doi:  https://doi.org/10.1038/s41467-019-10488-3.
  17. Zhou, H., Liu, Q., Li, J., Jiang, D., Zhou, L., Wu, P., Lu, S., Li, F., Zhu, L., Liu, Z., et al. (2012). Photoperiod- and thermo-sensitive genic male sterility in rice are caused by a point mutation in a novel noncoding RNA that produces a small RNA. Cell Res 22, 649–660.CrossRefGoogle Scholar
  18. Zhu, Q., Yu, S., Zeng, D., Liu, H., Wang, H., Yang, Z., Xie, X., Shen, R., Tan, J., Li, H., et al. (2017). Development of “Purple Endosperm Rice” by engineering anthocyanin biosynthesis in the endosperm with a high-efficiency transgene stacking system. Mol Plant 10, 918–929.CrossRefGoogle Scholar
  19. Zhu, Q., Zeng, D., Yu, S., Cui, C., Li, J., Li, H., Chen, J., Zhang, R., Zhao, X., Chen, L., et al. (2018). From Golden Rice to aSTARice: bioengineering astaxanthin biosynthesis in rice endosperm. Mol Plant 11, 1440–1448.CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Personalised recommendations