Advertisement

Metabolic disorder in the progression of heart failure

  • Xiuxiu Zhang
  • Huiying Liu
  • Juan Gao
  • Min Zhu
  • Yupeng Wang
  • Changtao JiangEmail author
  • Ming XuEmail author
Research Paper
  • 5 Downloads

Abstract

Heart failure (HF) is a major clinical concern owing to its high prevalence and high mortality. Metabolomics, an effective approach to predict diagnostic biomarkers and to explore the altered metabolic pathways in pathogenesis, has been extensively applied in evaluating the course of diseases. In this study, we used this approach to analyse the abundance of metabolites, with liquid chromatograph-mass spectrometer, in plasma samples from rats with transverse aortic constriction (TAC) and patients at different stages of HF. We compared the metabolic parameters within and between TAC rats and patients. An apparent metabolic shift was observed in rats, from compensated hypertrophy stage to decompensated hypertrophy stage, and in patients with HF, from stage A to stage B and subsequently stage C. Diagnostic biomarkers were predicted by comparing the variable importance in the projection scores and fold change analysis within and between rats and patients. Enrichment pathway analysis and network analysis provided an overview of the largely disturbed metabolic pathways, and those interfered at different stages and across species were confirmed. The significantly changed metabolites and pathways revealed the underlying mechanisms of HF pathogenesis, hinted at novel potential biomarkers, and provided potential therapeutic intervention targets for HF.

Keywords

heart failure metabolomics TAC HF stages A–C biomarker pathway analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (81625001, 81700010) and National Key Research & Development Program of China (2018YFC1312700, 2018YFC1312701).

Supplementary material

11427_2019_9548_MOESM1_ESM.docx (1.8 mb)
Supporting Information

References

  1. Albert, C.L., and Tang, W.H.W. (2018). Metabolic biomarkers in heart failure. Heart Fail Clin 14, 109–118.CrossRefGoogle Scholar
  2. Ardehali, H., Sabbah, H.N., Burke, M.A., Sarma, S., Liu, P.P., Cleland, J.G. F., Maggioni, A., Fonarow, G.C., Abel, E.D., Campia, U., et al. (2012). Targeting myocardial substrate metabolism in heart failure: potential for new therapies. Eur J Heart Fail 14, 120–129.CrossRefGoogle Scholar
  3. Benjamin, E.J., Virani, S.S., Callaway, C.W., Chamberlain, A.M., Chang, A.R., Cheng, S., Chiuve, S.E., Cushman, M., Delling, F.N., Deo, R., et al. (2018). Heart Disease and Stroke Statistics—2018 Update: A report from the American Heart Association. Circulation 137, e67.CrossRefGoogle Scholar
  4. Berger, R., Moertl, D., Peter, S., Ahmadi, R., Huelsmann, M., Yamuti, S., Wagner, B., and Pacher, R. (2010). N-terminal pro-B-type natriuretic peptide-guided, intensive patient management in addition to multidisciplinary care in chronic heart failure. J Am Coll Cardiol 55, 645–653.CrossRefGoogle Scholar
  5. Bienholz, A., Reis, J., Sanli, P., de Groot, H., Petrat, F., Guberina, H., Wilde, B., Witzke, O., Saner, F.H., Kribben, A., et al. (2017). Citrate shows protective effects on cardiovascular and renal function in ischemia-induced acute kidney injury. BMC Nephrol 18, 130.CrossRefGoogle Scholar
  6. Cheng, M.L., Wang, C.H., Shiao, M.S., Liu, M.H., Huang, Y.Y., Huang, C. Y., Mao, C.T., Lin, J.F., Ho, H.Y., and Yang, N.I. (2015). Metabolic disturbances identified in plasma are associated with outcomes in patients with heart failure. J Am Coll Cardiol 65, 1509–1520.CrossRefGoogle Scholar
  7. Cui, X., Ye, L., Li, J., Jin, L., Wang, W., Li, S., Bao, M., Wu, S., Li, L., Geng, B., et al. (2018). Metagenomic and metabolomic analyses unveil dysbiosis of gut microbiota in chronic heart failure patients. Sci Rep 8, 635.CrossRefGoogle Scholar
  8. Doehner, W., Frenneaux, M., and Anker, S.D. (2014). Metabolic impairment in heart failure. J Am Coll Cardiol 64, 1388–1400.CrossRefGoogle Scholar
  9. Dunn, W.B., Broadhurst, D.I., Deepak, S.M., Buch, M.H., McDowell, G., Spasic, I., Ellis, D.I., Brooks, N., Kell, D.B., and Neyses, L. (2007). Serum metabolomics reveals many novel metabolic markers of heart failure, including pseudouridine and 2-oxoglutarate. Metabolomics 3, 413–426.CrossRefGoogle Scholar
  10. Feng, Y., Zhang, Y., and Xiao, H. (2018). AMPK and cardiac remodelling. Sci China Life Sci 61, 14–23.CrossRefGoogle Scholar
  11. Gao, J., Zhu, M., Liu, R.F., Zhang, J.S., and Xu, M. (2018). Cardiac hypertrophy is positively regulated by microRNA-24 in rats. Chin Med J 131, 1333–1341.CrossRefGoogle Scholar
  12. Garland, P.B., Randle, P.J., and Newsholme, E.A. (1963). Citrate as an intermediary in the inhibition of phosphofructokinase in rat heart muscle by fatty acids, ketone bodies, pyruvate, diabetes and starvation. Nature 200, 169–170.CrossRefGoogle Scholar
  13. Hassel, B., Ilebekk, A., and Tønnessen, T. (1998). Cardiac accumulation of citrate during brief myocardial ischaemia and reperfusion in the pig in vivo. Acta Physiol Scand 164, 53–59.CrossRefGoogle Scholar
  14. Hunt, S.A., Abraham, W.T., Chin, M.H., Feldman, A.M., Francis, G.S., Ganiats, T.G., Jessup, M., Konstam, M.A., Mancini, D.M., Michl, K., et al. (2009). 2009 focused update incorporated into the acc/aha 2005 guidelines for the diagnosis and management of heart failure in adults. Circulation 119.Google Scholar
  15. Kamo, T., Akazawa, H., Suzuki, J.I., and Komuro, I. (2017). Novel concept ofa heart-gut axis in the pathophysiology ofheart failure. Kor Circ J 47, 663–669.CrossRefGoogle Scholar
  16. Kidher, E., Harling, L., Ashrafian, H., Naase, H., Francis, D.P., Evans, P., and Athanasiou, T. (2014). Aortic stiffness as a marker of cardiac function and myocardial strain in patients undergoing aortic valve replacement. J Cardiothorac Surg 9, 102.CrossRefGoogle Scholar
  17. Kitzman, D.W., Upadhya, B., and Vasu, S. (2015). What the dead can teach the living. Circulation 131, 522–524.CrossRefGoogle Scholar
  18. Lanfear, D.E., Gibbs, J.J., Li, J., She, R., Petucci, C., Culver, J.A., Tang, W.H.W., Pinto, Y.M., Williams, L.K., Sabbah, H.N., et al. (2017). Targeted metabolomic profiling of plasma and survival in heart failure patients. JACC Heart Fail 5, 823–832.CrossRefGoogle Scholar
  19. Lu, Y., Zhu, X., Li, J., Fang, R., Wang, Z., Zhang, J., Li, K., Li, X., Bai, H., Yang, Q., et al. (2017). Glycine prevents pressure overload induced cardiac hypertrophy mediated by glycine receptor. Biochem Pharmacol 123, 40–51.CrossRefGoogle Scholar
  20. Maisel, A.S., Clopton, P., Krishnaswamy, P., Nowak, R.M., McCord, J., Hollander, J.E., Duc, P., Omland, T., Storrow, A.B., Abraham, W.T., et al. (2004). Impact of age, race, and sex on the ability of B-type natriuretic peptide to aid in the emergency diagnosis of heart failure: results from the Breathing Not Properly (BNP) multinational study. Am Heart J 147, 1078–1084.CrossRefGoogle Scholar
  21. Mueller-Hennessen, M., Sigl, J., Fuhrmann, J.C., Witt, H., Reszka, R., Schmitz, O., Kastler, J., Fischer, J.J., Müller, O.J., Giannitsis, E., et al. (2017). Metabolic profiles in heart failure due to non-ischemic cardiomyopathy at rest and under exercise. ESC Heart Fail 4, 178–189.CrossRefGoogle Scholar
  22. Pietersen, H.G., Langenberg, C.J.M., Geskes, G., Soeters, P.B., and Wagenmakers, A.J.M. (1998). Glutamate metabolism of the heart during coronary artery bypass grafting. Clin Nutrit 17, 73–75.CrossRefGoogle Scholar
  23. Pisarenko, O., Studneva, I., Khlopkov, V., Solomatina, E., and Ruuge, E. (1988). An assessment of anaerobic metabolism during ischemia and reperfusion in isolated guinea pig heart. Biochim Biophys Acta Bioenerg 934, 55–63.CrossRefGoogle Scholar
  24. Schneider, A., Markowski, A., Momma, M., Seipt, C., Luettig, B., Hadem, J., Wilhelmi, M., Manns, M.P., and Wedemeyer, J. (2011). Tolerability and efficacy of a low-volume enteral supplement containing key nutrients in the critically ill. Clrin Nutrit 30, 599–603.Google Scholar
  25. Senthong, V., Li, X.S., Hudec, T., Coughlin, J., Wu, Y., Levison, B., Wang, Z., Hazen, S.L., and Tang, W.H.W. (2016). Plasma trimethylamine N-oxide, a gut microbe-generated phosphatidylcholine metabolite, is associated with atherosclerotic burden. J Am Coll Cardiol 67, 2620–2628.CrossRefGoogle Scholar
  26. Shao, M., Huang, C., Li, Z., Yang, H., and Feng, Q. (2014). Effects of glutamine and valsartan on the brain natriuretic peptide and n-terminal pro-b-type natriuretic peptide of patients with chronic heart failure. Pak J Med Sci 31.Google Scholar
  27. Tang, W.H.W., Wang, Z., Shrestha, K., Borowski, A.G., Wu, Y., Troughton, R.W., Klein, A.L., and Hazen, S.L. (2015). Intestinal microbiota-dependent phosphatidylcholine metabolites, diastolic dysfunction, and adverse clinical outcomes in chronic systolic heart failure. J Cardiac Fail 21, 91–96.CrossRefGoogle Scholar
  28. Tang, W.W., and Hazen, S.L. (2016). Dietary metabolism, gut microbiota and acute heart failure. Heart 102, 813–814.CrossRefGoogle Scholar
  29. Wang, C.H., Cheng, M.L., and Liu, M.H. (2018). Simplified plasma essential amino acid-based profiling provides metabolic information and prognostic value additive to traditional risk factors in heart failure. Amino Acids 50, 1739–1748.CrossRefGoogle Scholar
  30. Warnecke, G., Schulze, B., Steinkamp, T., Haverich, A., and Klima, U. (2006). Glycine application and right heart function in a porcine heart transplantation model. Transplant Int 19, 218–224.CrossRefGoogle Scholar
  31. Watson, H. (2015). Biological membranes. Essays Biochem 59, 43–69.CrossRefGoogle Scholar
  32. Xu, M., Zhou, P., Xu, S.M., Liu, Y., Feng, X., Bai, S.H., Bai, Y., Hao, X.M., Han, Q., Zhang, Y., et al. (2007). Intermolecular failure of 1-type Ca2+ channel and ryanodine receptor signaling in hypertrophy. PLoS Biol 5, e21.CrossRefGoogle Scholar
  33. Zhang, A.Q., Mitchell, S.C., and Smith, R.L. (1999). Dietary precursors of trimethylamine in man: a pilot study. Food Chem Toxicol 37, 515–520.CrossRefGoogle Scholar
  34. Zhou, K., and Hong, T. (2017). Cardiac BIN1 (cBIN1) is a regulator of cardiac contractile function and an emerging biomarker of heart muscle health. Sci China Life Sci 60, 257–263.CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Cardiology and Institute of Vascular MedicinePeking University Third Hospital; NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education; Beijing Key Laboratory of Cardiovascular Receptors ResearchBeijingChina
  2. 2.Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular ScienceMinistry of Education and Beijing Key Laboratory of Cardiovascular Receptors ResearchBeijingChina
  3. 3.State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical SciencesPeking UniversityBeijingChina

Personalised recommendations