Advertisement

Science China Life Sciences

, Volume 62, Issue 6, pp 870–872 | Cite as

Transplantation of adult spinal cord tissue: Transection spinal cord repair and potential clinical translation

  • Hang LinEmail author
Research Highlight
  • 7 Downloads

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bonner, J.F., and Steward, O. (2015). Repair of spinal cord injury with neuronal relays: From fetal grafts to neural stem cells. Brain Res 1619, 115–123.CrossRefGoogle Scholar
  2. Evaniew, N., Noonan, V.K., Fallah, N., Kwon, B.K., Rivers, C.S., Ahn, H., Bailey, C.S., Christie, S.D., Fourney, D.R., Hurlbert, R.J., et al. (2015). Methylprednisolone for the treatment of patients with acute spinal cord injuries: A propensity score-matched cohort study from a canadian multi-center spinal cord injury registry. J Neurotrauma 32, 1674–1683.CrossRefGoogle Scholar
  3. Gulino, R., Litrico, L., and Leanza, G. (2010). Long-term survival and development of fetal ventral spinal grafts into the motoneuron-depleted rat spinal cord: Role of donor age. Brain Res 1323, 41–47.CrossRefGoogle Scholar
  4. Han, S., Wang, B., Jin, W., Xiao, Z., Chen, B., Xiao, H., Ding, W., Cao, J., Ma, F., Li, X., et al. (2014). The collagen scaffold with collagen binding BDNF enhances functional recovery by facilitating peripheral nerve infiltrating and ingrowth in canine complete spinal cord transection. Spinal Cord 52, 867–873.CrossRefGoogle Scholar
  5. Han, S., Xiao, Z., Li, X., Zhao, H., Wang, B., Qiu, Z., Li, Z., Mei, X., Xu, B., Fan, C., et al. (2018). Human placenta-derived mesenchymal stem cells loaded on linear ordered collagen scaffold improves functional recovery after completely transected spinal cord injury in canine. Sci China Life Sci 61, 2–13.CrossRefGoogle Scholar
  6. Horvat, J.C. (1991). Transplants of fetal neural tissue and autologous peripheral nerves in an attempt to repair spinal cord injuries in the adult rat. An overall view. Paraplegia 29, 299–308.Google Scholar
  7. Iwashita, Y., Kawaguchi, S., and Murata, M. (1994). Restoration of function by replacement of spinal cord segments in the rat. Nature 367, 167–170.CrossRefGoogle Scholar
  8. Jakeman, L.B., and Reier, P.J. (1991). Axonal projections between fetal spinal cord transplants and the adult rat spinal cord: a neuroanatomical tracing study of local interactions. J Comp Neurol 307, 311–334.CrossRefGoogle Scholar
  9. Klionsky, D.J., Abdelmohsen, K., Abe, A., Abedin, M.J., Abeliovich, H., Acevedo Arozena, A., Adachi, H., Adams, C.M., Adams, P.D., Adeli, K., et al. (2016). Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy 12, 1–222.CrossRefGoogle Scholar
  10. Li, X., and Dai, J. (2018). Bridging the gap with functional collagen scaffolds: Tuning endogenous neural stem cells for severe spinal cord injury repair. Biomater Sci 6, 265–271.CrossRefGoogle Scholar
  11. Li, X., Zhao, Y., Cheng, S., Han, S., Shu, M., Chen, B., Chen, X., Tang, F., Wang, N., Tu, Y., et al. (2017). Cetuximab modified collagen scaffold directs neurogenesis of injury-activated endogenous neural stem cells for acute spinal cord injury repair. Biomaterials 137, 73–86.CrossRefGoogle Scholar
  12. Lutton, C., Young, Y.W., Williams, R., Meedeniya, A.C.B., Mackay-Sim, A., and Goss, B. (2012). Combined VEGF and PDGF treatment reduces secondary degeneration after spinal cord injury. J Neurotrauma 29, 957–970.CrossRefGoogle Scholar
  13. Pajarinen, J., Lin, T., Gibon, E., Kohno, Y., Maruyama, M., Nathan, K., Lu, L., Yao, Z., and Goodman, S.B. (2019). Mesenchymal stem cell-macrophage crosstalk and bone healing. Biomaterials 196, 80–89.CrossRefGoogle Scholar
  14. Reier, P.J., Bregman, B.S., and Wujek, J.R. (1986). Intraspinal transplantation of embyronic spinal cord tissue in neonatal and adult rats. J Comp Neurol 247, 275–296.CrossRefGoogle Scholar
  15. Shen, H., Chen, X., Li, X., Jia, K., Xiao, Z., and Dai, J. (2019). Transplantation of adult spinal cord grafts into spinal cord transected rats improves their locomotor function. Sci China Life Sci 62, in press.Google Scholar
  16. Shi, Q., Gao, W., Han, X., Zhu, X., Sun, J., Xie, F., Hou, X., Yang, H., Dai, J., and Chen, L. (2014). Collagen scaffolds modified with collagen-binding bFGF promotes the neural regeneration in a rat hemisected spinal cord injury model. Sci China Life Sci 57, 232–240.CrossRefGoogle Scholar
  17. Wang, H., Wang, Y., Li, D., Liu, Z., Zhao, Z., Han, D., Yuan, Y., Bi, J., and Mei, X. (2015). VEGF inhibits the inflammation in spinal cord injury through activation of autophagy. Biochem Biophys Res Commun 464, 453–458.CrossRefGoogle Scholar
  18. Wang, N., Xiao, Z., Zhao, Y., Wang, B., Li, X., Li, J., and Dai, J. (2018). Collagen scaffold combined with human umbilical cord-derived mesenchymal stem cells promote functional recovery after scar resection in rats with chronic spinal cord injury. J Tissue Eng Regen Med 12, e1154–e1163.CrossRefGoogle Scholar
  19. Xiao, Z., Tang, F., Tang, J., Yang, H., Zhao, Y., Chen, B., Han, S., Wang, N., Li, X., Cheng, S., et al. (2016). One-year clinical study of NeuroRegen scaffold implantation following scar resection in complete chronic spinal cord injury patients. Sci China Life Sci 59, 647–655.CrossRefGoogle Scholar
  20. Xu, B., Zhao, Y., Xiao, Z., Wang, B., Liang, H., Li, X., Fang, Y., Han, S., Li, X., Fan, C., et al. (2017). A dual functional scaffold tethered with EGFR antibody promotes neural stem cell retention and neuronal differentiation for spinal cord injury repair. Adv Healthcare Mater 6, 1601279.CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Center for Cellular and Molecular Engineering, Department of Orthopaedic SurgeryUniversity of Pittsburgh School of MedicinePittsburghUSA
  2. 2.McGowan Institute for Regenerative MedicineUniversity of Pittsburgh School of MedicinePittsburghUSA

Personalised recommendations