Advertisement

Science China Life Sciences

, Volume 62, Issue 3, pp 285–287 | Cite as

From herbal small RNAs to one medicine

  • Chao Ji
  • Skirmantas Kriaucionis
  • Benedikt M. Kessler
  • Chengyu JiangEmail author
Editorial
  • 70 Downloads

References

  1. Chin, A.R., Fong, M.Y., Somlo, G., Wu, J., Swiderski, P., Wu, X., and Wang, S.E. (2016). Cross-kingdom inhibition of breast cancer growth by plant miR159. Cell Res 26, 217–228.CrossRefGoogle Scholar
  2. Dickinson, B., Zhang, Y., Petrick, J.S., Heck, G., Ivashuta, S., and Marshall, W.S. (2013). Lack of detectable oral bioavailability of plant microRNAs after feeding in mice. Nat Biotechnol 31, 965–967.CrossRefGoogle Scholar
  3. Du, J., Liang, Z., Xu, J., Zhao, Y., Li, X., Zhang, Y., Zhao, D., Chen, R., Liu, Y., Joshi, T., et al. (2019). Plant-derived phosphocholine facilitates cellular uptake of anti-pulmonary fibrotic HJT-sRNA-m7. Sci China Life Sci 62, 309–320.CrossRefGoogle Scholar
  4. Huang, F., Du, J., Liang, Z., Xu, Z., Xu, J., Zhao, Y., Lin, Y., Mei, S., He, Q., Zhu, J., et al. (2019). Large-scale analysis of small RNAs derived from traditional Chinese herbs in human tissues. Sci China Life Sci 62, 321–332.CrossRefGoogle Scholar
  5. Khvorova, A., and Watts, J.K. (2017). The chemical evolution of oligonucleotide therapies of clinical utility. Nat Biotechnol 35, 238–248.CrossRefGoogle Scholar
  6. Li, X., Liang, Z., Du, J., Wang, Z., Mei, S., Li, Z., Zhao, Y., Zhao, D., Ma, Y., Ye, J., et al. (2019). Herbal decoctosome is a novel form of medicine. Sci China Life Sci 62, 333–348.CrossRefGoogle Scholar
  7. Majlessi, M., Nelson, N.C., and Becker, M.M. (1998). Advantages of 2′-Omethyl oligoribonucleotide probes for detecting RNA targets. Nucleic Acids Res 26, 2224–2229.CrossRefGoogle Scholar
  8. Xin, T., Zhang, Y., Pu, X., Gao, R., Xu, Z., and Song, J. (2018). Trends in herbgenomics. Sci China Life Sci 62, 288–308.CrossRefGoogle Scholar
  9. Yu, B., Yang, Z., Li, J., Minakhina, S., Yang, M., Padgett, R.W., Steward, R., and Chen, X. (2005). Methylation as a crucial step in plant microRNA biogenesis. Science 307, 932–935.CrossRefGoogle Scholar
  10. Zhang, L., Hou, D., Chen, X., Li, D., Zhu, L., Zhang, Y., Li, J., Bian, Z., Liang, X., Cai, X., et al. (2012). Exogenous plant MIR168a specifically targets mammalian LDLRAP1: evidence of cross-kingdom regulation by microRNA. Cell Res 22, 107–126.CrossRefGoogle Scholar
  11. Zhang, W., Li, X., Ma, L., Urrehman, U., Bao, X., Zhang, Y., Zhang, C.Y., Hou, D., and Zhou, Z. (2018). Identification of microRNA-like RNAs in Ophiocordyceps sinensis. Sci China Life Sci 62, 349–356.CrossRefGoogle Scholar
  12. Zhu, K., Liu, M., Fu, Z., Zhou, Z., Kong, Y., Liang, H., Lin, Z., Luo, J., Zheng, H., Wan, P., et al. (2017). Plant microRNAs in larval food regulate honeybee caste development. PLoS Genet 13, e1006946.CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Chao Ji
    • 1
  • Skirmantas Kriaucionis
    • 2
  • Benedikt M. Kessler
    • 3
  • Chengyu Jiang
    • 4
    Email author
  1. 1.Institute of Basic Medical SciencesChinese Academy of Medical Sciences, Department of Pharmacology, Peking Union Medical CollegeBeijingChina
  2. 2.Ludwig Institute for Cancer ResearchUniversity of OxfordOxfordUK
  3. 3.Target Discovery Institute, Nuffield Department of Medicine, CAMS-Oxford InstituteUniversity of OxfordOxfordUK
  4. 4.State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, CAMS-Oxford InstituteChinese Academy of Medical Sciences, Department of Biochemistry, Peking Union Medical CollegeBeijingChina

Personalised recommendations