Genome-editing technologies: the gap between application and policy

  • Gousi Li
  • Yao-Guang LiuEmail author
  • Yuanling ChenEmail author


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We thank Drs. Jiayang Li and Caixia Gao (Institue of Genetics and Development, CAS), and Dr. Wensheng Wei (Peking University) for valuable comments on the manuscript. This work was supported by the Ministry of Agriculture of China (2016ZX08010001) and the Key Research Program of Guangzhou Science Technology and Innovation Commission (201904020030).


  1. Anderson, K.R., Haeussler, M., Watanabe, C., Janakiraman, V., Lund, J., Modrusan, Z., Stinson, J., Bei, Q., Buechler, A., Yu, C., et al. (2018). CRISPR off-target analysis in genetically engineered rats and mice. Nat Methods 15, 512–514.CrossRefGoogle Scholar
  2. Araki, M., and Ishii, T. (2015). Towards social acceptance of plant breeding by genome editing. Trends Plant Sci 20, 145–149.CrossRefGoogle Scholar
  3. Cyranoski, D., and Ledford, H. (2018). Genome-edited baby claim provokes international outcry. Nature 563, 607–608.CrossRefGoogle Scholar
  4. Huang, S., Weigel, D., Beachy, R.N., and Li, J. (2016). A proposed regulatory framework for genome-edited crops. Nat Genet 48, 109–111.CrossRefGoogle Scholar
  5. Jin, S., Zong, Y., Gao, Q., Zhu, Z., Wang, Y., Qin, P., Liang, C., Wang, D., Qiu, J.L., Zhang, F., et al. (2019). Cytosine, but not adenine, base editors induce genome-wide off-target mutations in rice. Science 364, 292–295.PubMedPubMedCentralGoogle Scholar
  6. Lema, M.A. (2019). Regulatory aspects of gene editing in Argentina. Transgenic Res 28, 147–150.CrossRefGoogle Scholar
  7. Li, X., Xie, Y., Zhu, Q., and Liu, Y.G. (2017). Targeted genome editing in genes and cis-regulatory regions improves qualitative and quantitative traits in crops. Mol Plant 10, 1368–1370.CrossRefGoogle Scholar
  8. Liu, Q., Wang, C., Jiao, X., Zhang, H., Song, L., Li, Y., Gao, C., and Wang, K. (2019). Hi-TOM: a platform for high-throughput tracking of mutations induced by CRISPR/Cas systems. Sci China Life Sci 62, 1–7.CrossRefGoogle Scholar
  9. Liu, Y-G., Li, G., Zhang, Y. and Chen, L. (2019). Current advances on CRISPR/Cas genome editing technologies in plants. J South China Agr Univ 40, 38–49.Google Scholar
  10. Ma, X., Zhang, Q., Zhu, Q., Liu, W., Chen, Y., Qiu, R., Wang, B., Yang, Z., Li, H., Lin, Y., et al. (2015). A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants. Mol Plant 8, 1274–1284.CrossRefGoogle Scholar
  11. Ma, X., Zhu, Q., Chen, Y., and Liu, Y.G. (2016). CRISPR/Cas9 platforms for genome editing in plants: developments and applications. Mol Plant 9, 961–974.CrossRefGoogle Scholar
  12. Mallapaty, S. (2019). Australian gene-editing rules adopt ‘middle ground’. Nature, doi:
  13. National Academies of Sciences, Engineering, and Medicine. (2017). Human genome editing: science, ethics, and governance. (Washington, DC: National Academies Press).Google Scholar
  14. Nuffield Council on Bioethics. (2018). Genome editing and human reproduction: social and ethical issues.
  15. Qin, W., Dion, S.L., Kutny, P.M., Zhang, Y., Cheng, A.W., Jillette, N.L., Malhotra, A., Geurts, A.M., Chen, Y.G., and Wang, H. (2015). Efficient CRISPR/Cas9-mediated genome editing in mice by zygote electroporation of nuclease. Genetics 200, 423–430.CrossRefGoogle Scholar
  16. Ran, Y., Liang, Z., and Gao, C. (2017). Current and future editing reagent delivery systems for plant genome editing. Sci China Life Sci 60, 490–505.CrossRefGoogle Scholar
  17. Ren, B., Yan, F., Kuang, Y., Li, N., Zhang, D., Lin, H., and Zhou, H. (2017). A CRISPR/Cas9 toolkit for efficient targeted base editing to induce genetic variations in rice. Sci China Life Sci 60, 516–519.CrossRefGoogle Scholar
  18. Shen, L., Hua, Y., Fu, Y., Li, J., Liu, Q., Jiao, X., Xin, G., Wang, J., Wang, X., Yan, C., et al. (2017). Rapid generation of genetic diversity by multiplex CRISPR/Cas9 genome editing in rice. Sci China Life Sci 60, 506–515.CrossRefGoogle Scholar
  19. Sun, Y., Zhang, X., Wu, C., He, Y., Ma, Y., Hou, H., Guo, X., Du, W., Zhao, Y., and Xia, L. (2016). Engineering herbicide-resistant rice plants through CRISPR/Cas9-mediated homologous recombination of acetolactate synthase. Mol Plant 9, 628–631.CrossRefGoogle Scholar
  20. Tang, X., Liu, G., Zhou, J., Ren, Q., You, Q., Tian, L., Xin, X., Zhong, Z., Liu, B., Zheng, X., et al. (2018). A large-scale whole-genome sequencing analysis reveals highly specific genome editing by both Cas9 and Cpf1 (Cas12a) nucleases in rice. Genome Biol 19, 84.CrossRefGoogle Scholar
  21. Waltz, E. (2018). With a free pass, CRISPR-edited plants reach market in record time. Nat Biotechnol 36, 6–7.CrossRefGoogle Scholar
  22. Xie, X., Ma, X., Zhu, Q., Zeng, D., Li, G., and Liu, Y.G. (2017). CRISPRGE: a convenient software toolkit for CRISPR-based genome editing. Mol Plant 10, 1246–1249.CrossRefGoogle Scholar
  23. Zhang, X., Wang, L., Liu, M., and Li, D. (2017). CRISPR/Cas9 system: a powerful technology for in vivo and ex vivo gene therapy. Sci China Life Sci 60, 468–475.CrossRefGoogle Scholar
  24. Zuo, E., Sun, Y., Wei, W., Yuan, T., Ying, W., Sun, H., Yuan, L., Steinmetz, L.M., Li, Y., and Yang, H. (2019). Cytosine base editor generates substantial off-target single-nucleotide variants in mouse embryos. Science 364, 289–292.PubMedPubMedCentralGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory for Conservation and Utilization of Subtropical Agro-BioresourcesSouth China Agricultural UniversityGuangzhouChina
  2. 2.Key Laboratory of Plant Functional Genomics and Biotechnology of Guangdong Provincial Higher Education InstitutionsSouth China Agricultural UniversityGuangzhouChina
  3. 3.College of Life SciencesSouth China Agricultural UniversityGuangzhouChina

Personalised recommendations