Regulation of glucose and lipid metabolism in health and disease

  • Ligong ChenEmail author
  • Xiao-Wei ChenEmail author
  • Xun HuangEmail author
  • Bao-Liang SongEmail author
  • Yan WangEmail author
  • Yiguo WangEmail author


Glucose and fatty acids are the major sources of energy for human body. Cholesterol, the most abundant sterol in mammals, is a key component of cell membranes although it does not generate ATP. The metabolisms of glucose, fatty acids and cholesterol are often intertwined and regulated. For example, glucose can be converted to fatty acids and cholesterol through de novo lipid biosynthesis pathways. Excessive lipids are secreted in lipoproteins or stored in lipid droplets. The metabolites of glucose and lipids are dynamically transported intercellularly and intracellularly, and then converted to other molecules in specific compartments. The disorders of glucose and lipid metabolism result in severe diseases including cardiovascular disease, diabetes and fatty liver. This review summarizes the major metabolic aspects of glucose and lipid, and their regulations in the context of physiology and diseases.

cholesterol fatty acid glucose lysosome endoplasmic reticulum lipid droplet metabolic disease 



We appreciate the generous help of Jie Luo, Jian Xiao, Lu-Yi Jiang (Wuhan University), Long Ding (Institute of Genetics and Developmental Biology, CAS), Guoqiang Wang (Tsinghua University) and Yi Liu (Tsinghua University) during writing the review. This work was supported by grants from the National Natural Science Foundation of China (31521062, 31570807, 31571213, 31625014, 31621063, 31630019, 31830040, 91857000 and 91857108) and the Ministry of Science and Technology of China (2016YFA0500100, 2016YFC1304803, 2017YFA0503404 and 2018YFA0506900).


  1. Abifadel, M., Varret, M., Rabès, J.P., Allard, D., Ouguerram, K., Devillers, M., Cruaud, C., Benjannet, S., Wickham, L., Erlich, D., et al. (2003). Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nat Genet 34, 154–156.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Abul-Husn, N.S., Manickam, K., Jones, L.K., Wright, E.A., Hartzel, D.N., Gonzaga-Jauregui, C., O’Dushlaine, C., Leader, J.B., Lester Kirchner, H., Lindbuchler, D.A.M., et al. (2016). Genetic identification of familial hypercholesterolemia within a single U.S. health care system. Science 354, aaf7000.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Adhyaru, B.B., and Jacobson, T.A. (2018). Safety and efficacy of statin therapy. Nat Rev Cardiol 15, 757–769.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Agati, J.M., Yeagley, D., and Quinn, P.G. (1998). Assessment of the roles of mitogen-activated protein kinase, phosphatidylinositol 3-kinase, protein kinase B, and protein kinase C in insulin inhibition of cAMP-induced phosphoenolpyruvate carboxykinase gene transcription. J Biol Chem 273, 18751–18759.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Altarejos, J.Y., and Montminy, M. (2011). CREB and the CRTC co-activators: sensors for hormonal and metabolic signals. Nat Rev Mol Cell Biol 12, 141–151.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Anand, P., Cermelli, S., Li, Z., Kassan, A., Bosch, M., Sigua, R., Huang, L., Ouellette, A.J., Pol, A., Welte, M.A., et al. (2012). A novel role for lipid droplets in the organismal antibacterial response. eLife 1, e00003.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Anderson, C.M., and Stahl, A. (2013). SLC27 fatty acid transport proteins. Mol Aspect Med 34, 516–528.CrossRefGoogle Scholar
  8. Andrews, R.C., and Walker, B.R. (1999). Glucocorticoids and insulin resistance: old hormones, new targets. Clin Sci 96, 513–523.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Annesi, G., Aguglia, U., Tarantino, P., Annesi, F., De Marco, E.V., Civitelli, D., Torroni, A., and Quattrone, A. (2007). SIL1 and SARA2 mutations in Marinesco-Sjögren and chylomicron retention diseases. Clin Genet 71, 288–289.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Arca, M., Zuliani, G., Wilund, K., Campagna, F., Fellin, R., Bertolini, S., Calandra, S., Ricci, G., Glorioso, N., Maioli, M., et al. (2002). Autosomal recessive hypercholesterolaemia in Sardinia, Italy, and mutations in ARH: a clinical and molecular genetic analysis. Lancet 359, 841–847.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Arias, J., Alberts, A.S., Brindle, P., Claret, F.X., Smeal, T., Karin, M., Feramisco, J., and Montminy, M. (1994). Activation of cAMP and mitogen responsive genes relies on a common nuclear factor. Nature 370, 226–229.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Assmann, G., von Eckardstein, A., and Brewer, H.B.J. (2001). Familial analphalipoproteinemia: Tangier disease. In The Metabolic and Molecular Bases of Inherited Disease, 8th ed. (New York: McGraw-Hill), pp. 2937–2960.Google Scholar
  13. Aulchenko, Y.S., Ripatti, S., Lindqvist, I., Boomsma, D., Heid, I.M., Pramstaller, P.P., Penninx, B.W.J.H., Janssens, A.C.J.W., Wilson, J.F., Spector, T., et al. (2009). Loci influencing lipid levels and coronary heart disease risk in 16 European population cohorts. Nat Genet 41, 47–55.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Austin, M.A., Hutter, C.M., Zimmern, R.L., and Humphries, S.E. (2004). Genetic causes of monogenic heterozygous familial hypercholesterolemia: a HuGE prevalence review. Am J Epidemiol 160, 407–420.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Ayala, J.E., Bracy, D.P., Malabanan, C., James, F.D., Ansari, T., Fueger, P. T., McGuinness, O.P., and Wasserman, D.H. (2011)Hyperinsulinemic-euglycemic clamps in conscious, unrestrained mice. J Vis Exp.Google Scholar
  16. Ayala, J.E., Streeper, R.S., Desgrosellier, J.S., Durham, S.K., Suwanichkul, A., Svitek, C.A., Goldman, J.K., Barr, F.G., Powell, D.R., and O’Brien, R.M. (1999). Conservation of an insulin response unit between mouse and human glucose-6-phosphatase catalytic subunit gene promoters: transcription factor FKHR binds the insulin response sequence. Diabetes 48, 1885–1889.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Bahl, J.J., Matsuda, M., DeFronzo, R.A., and Bressler, R. (1997). In vitro and in vivo suppression of gluconeogenesis by inhibition of pyruvate carboxylase. Biochem Pharmacol 53, 67–74.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Bailey, A.P., Koster, G., Guillermier, C., Hirst, E.M.A., MacRae, J.I., Lechene, C.P., Postle, A.D., and Gould, A.P. (2015). Antioxidant role for lipid droplets in a stem cell niche of Drosophila. Cell 163, 340–353.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Band, G.C., and Jones, C.T. (1980). Functional activation by glucagon of glucose 6-phosphatase and gluconeogenesis in the perfused liver of the fetal guinea pig. FEBS Lett 119, 190–194.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Bansal, V., Libiger, O., Torkamani, A., and Schork, N.J. (2010). Statistical analysis strategies for association studies involving rare variants. Nat Rev Genet 11, 773–785.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Barlowe, C. (2003). Signals for COPII-dependent export from the ER: what’s the ticket out? Trends Cell Biol 13, 295–300.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Barlowe, C., and Helenius, A. (2016). Cargo capture and bulk flow in the early secretory pathway. Annu Rev Cell Dev Biol 32, 197–222.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Barlowe, C.K., and Miller, E.A. (2013). Secretory protein biogenesis and traffic in the early secretory pathway. Genetics 193, 383–410.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Bartelt, A., and Heeren, J. (2014). Adipose tissue browning and metabolic health. Nat Rev Endocrinol 10, 24–36.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Barthel, A., and Schmoll, D. (2003). Novel concepts in insulin regulation of hepatic gluconeogenesis. Am J Physiol Endocrinol Metab 285, E685–E692.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Bartuzi, P., Billadeau, D.D., Favier, R., Rong, S., Dekker, D., Fedoseienko, A., Fieten, H., Wijers, M., Levels, J.H., Huijkman, N., et al. (2016). CCC- and WASH-mediated endosomal sorting of LDLR is required for normal clearance of circulating LDL. Nat Commun 7, 10961.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Bartz, R., Li, W.H., Venables, B., Zehmer, J.K., Roth, M.R., Welti, R., Anderson, R.G.W., Liu, P., and Chapman, K.D. (2007). Lipidomics reveals that adiposomes store ether lipids and mediate phospholipid traffic. J Lipid Res 48, 837–847.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Ben M’barek, K., Ajjaji, D., Chorlay, A., Vanni, S., Forêt, L., and Thiam, A.R. (2017). ER membrane phospholipids and surface tension control cellular lipid droplet formation. Dev Cell 41, 591–604.e7.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Benador, I.Y., Veliova, M., Liesa, M., and Shirihai, O.S. (2019). Mitochondria bound to lipid droplets: where mitochondrial dynamics regulate lipid storage and utilization. Cell Metab 29, 827–835.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Benador, I.Y., Veliova, M., Mahdaviani, K., Petcherski, A., Wikstrom, J.D., Assali, E.A., Acín-Pérez, R., Shum, M., Oliveira, M.F., Cinti, S., et al. (2018). Mitochondria bound to lipid droplets have unique bioenergetics, composition, and dynamics that support lipid droplet expansion. Cell Metab 27, 869–885.e6.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Berge, K.E., Tian, H., Graf, G.A., Yu, L., Grishin, N.V., Schultz, J., Kwiterovich, P., Shan, B., Barnes, R., and Hobbs, H.H. (2000). Accumulation of dietary cholesterol in sitosterolemia caused by mutations in adjacent ABC transporters. Science 290, 1771–1775.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Best, J.L., Amezcua, C.A., Mayr, B., Flechner, L., Murawsky, C.M., Emerson, B., Zor, T., Gardner, K.H., and Montminy, M. (2004). Identification of small-molecule antagonists that inhibit an activator: coactivator interaction. Proc Natl Acad Sci USA 101, 17622–17627.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Betz, M.J., and Enerbäck, S. (2018). Targeting thermogenesis in brown fat and muscle to treat obesity and metabolic disease. Nat Rev Endocrinol 14, 77–87.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Bhattacharyya, A.K., and Connor, W.E. (1974). β-sitosterolemia and xanthomatosis. J Clin Invest 53, 1033–1043.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Bi, X., Corpina, R.A., and Goldberg, J. (2002). Structure of the Sec23/24-Sar1 pre-budding complex of the COPII vesicle coat. Nature 419, 271–277.CrossRefPubMedPubMedCentralGoogle Scholar
  36. Bianchi, P., Fermo, E., Vercellati, C., Boschetti, C., Barcellini, W., Iurlo, A., Marcello, A.P., Righetti, P.G., and Zanella, A. (2009). Congenital dyserythropoietic anemia type II (CDAII) is caused by mutations in the SEC23B gene. Hum Mutat 30, 1292–1298.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Bickford, L.C., Mossessova, E., and Goldberg, J. (2004). A structural view of the COPII vesicle coat. Curr Opin Struct Biol 14, 147–153.CrossRefPubMedPubMedCentralGoogle Scholar
  38. Bodzioch, M., Orsó, E., Klucken, J., Langmann, T., Böttcher, A., Diederich, W., Drobnik, W., Barlage, S., Büchler, C., Porsch-Ozcürümez, M., et al. (1999). The gene encoding ATP-binding cassette transporter 1 is mutated in Tangier disease. Nat Genet 22, 347–351.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Boren, J., Graham, L., Wettesten, M., Scott, J., White, A., and Olofsson, S. O. (1992). The assembly and secretion of ApoB 100-containing lipoproteins in Hep G2 cells. ApoB 100 is cotranslationally integrated into lipoproteins. J Biol Chem 267, 9858–9867.PubMedPubMedCentralGoogle Scholar
  40. Bosner, M.S., Lange, L.G., Stenson, W.F., and Ostlund, R.E. (1999). Percent cholesterol absorption in normal women and men quantified with dual stable isotopic tracers and negative ion mass spectrometry. J Lipid Res 40, 302–308.PubMedPubMedCentralGoogle Scholar
  41. Boström, P., Wu, J., Jedrychowski, M.P., Korde, A., Ye, L., Lo, J.C., Rasbach, K.A., Boström, E.A., Choi, J.H., Long, J.Z., et al. (2012). A PGC1-α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature 481, 463–468.CrossRefPubMedPubMedCentralGoogle Scholar
  42. Boyadjiev, S.A., Fromme, J.C., Ben, J., Chong, S.S., Nauta, C., Hur, D.J., Zhang, G., Hamamoto, S., Schekman, R., Ravazzola, M., et al. (2006). Cranio-lenticulo-sutural dysplasia is caused by a SEC23A mutation leading to abnormal endoplasmic-reticulum-to-Golgi trafficking. Nat Genet 38, 1192–1197.CrossRefPubMedPubMedCentralGoogle Scholar
  43. Boyadjiev, S.A., Kim, S.D., Hata, A., Haldeman-Englert, C., Zackai, E.H., Naydenov, C., Hamamoto, S., Schekman, R.W., and Kim, J. (2010). Cranio-lenticulo-sutural dysplasia associated with defects in collagen secretion. Clin Genet 80, 169–176.CrossRefPubMedPubMedCentralGoogle Scholar
  44. Brodsky, J.L., and Fisher, E.A. (2008). The many intersecting pathways underlying apolipoprotein B secretion and degradation. Trends Endocrinol Metab 19, 254–259.CrossRefPubMedPubMedCentralGoogle Scholar
  45. Brooks-Wilson, A., Marcil, M., Clee, S.M., Zhang, L.H., Roomp, K., van Dam, M., Yu, L., Brewer, C., Collins, J.A., Molhuizen, H.O.F., et al. (1999). Mutations in ABC1 in Tangier disease and familial high-density lipoprotein deficiency. Nat Genet 22, 336–345.CrossRefPubMedPubMedCentralGoogle Scholar
  46. Brown, A.J., Sun, L., Feramisco, J.D., Brown, M.S., and Goldstein, J.L. (2002). Cholesterol addition to ER membranes alters conformation of SCAP, the SREBP escort protein that regulates cholesterol metabolism. Mol Cell 10, 237–245.CrossRefPubMedPubMedCentralGoogle Scholar
  47. Brown, M.S., and Goldstein, J.L. (1980). Multivalent feedback regulation of HMG CoA reductase, a control mechanism coordinating isoprenoid synthesis and cell growth. J Lipid Res 21, 505–517.PubMedPubMedCentralGoogle Scholar
  48. Brown, M.S., and Goldstein, J.L. (1986). A receptor-mediated pathway for cholesterol homeostasis. Science 232, 34–47.CrossRefPubMedPubMedCentralGoogle Scholar
  49. Brown, M.S., and Goldstein, J.L. (1997). The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell 89, 331–340.CrossRefGoogle Scholar
  50. Brown, M.S., and Goldstein, J.L. (2009). Cholesterol feedback: from Schoenheimer’s bottle to Scap’s MELADL. J Lipid Res 50, S15–S27.CrossRefPubMedPubMedCentralGoogle Scholar
  51. Brown, M.S., Radhakrishnan, A., and Goldstein, J.L. (2018). Retrospective on cholesterol homeostasis: the central role of scap. Annu Rev Biochem 87, 783–807.CrossRefPubMedPubMedCentralGoogle Scholar
  52. Brown, M.S., Ye, J., Rawson, R.B., and Goldstein, J.L. (2000). Regulated intramembrane proteolysis. Cell 100, 391–398.CrossRefPubMedPubMedCentralGoogle Scholar
  53. Brunham, L.R., Kruit, J.K., Iqbal, J., Fievet, C., Timmins, J.M., Pape, T.D., Coburn, B.A., Bissada, N., Staels, B., Groen, A.K., et al. (2006). Intestinal ABCA1 directly contributes to HDL biogenesis in vivo. J Clin Invest 116, 1052–1062.CrossRefPubMedPubMedCentralGoogle Scholar
  54. Butkinaree, C., Guo, L., Ramkhelawon, B., Wanschel, A., Brodsky, J.L., Moore, K.J., and Fisher, E.A. (2014). A regulator of secretory vesicle size, Kelch-like protein 12, facilitates the secretion of apolipoprotein B100 and very-low-density lipoproteins—brief report. Arterioscler Thromb Vasc Biol 34, 251–254.CrossRefPubMedPubMedCentralGoogle Scholar
  55. Cano, N. (2002). Bench-to-bedside review: glucose production from the kidney. Crit Care 6, 317–321.CrossRefPubMedPubMedCentralGoogle Scholar
  56. Carneiro, L., Asrih, M., Repond, C., Sempoux, C., Stehle, J.C., Leloup, C., Jornayvaz, F.R., and Pellerin, L. (2017). AMPK activation caused by reduced liver lactate metabolism protects against hepatic steatosis in MCT1 haploinsufficient mice. Mol Metab 6, 1625–1633.CrossRefPubMedPubMedCentralGoogle Scholar
  57. Cartwright, B.R., Binns, D.D., Hilton, C.L., Han, S., Gao, Q., and Goodman, J.M. (2015). Seipin performs dissectible functions in promoting lipid droplet biogenesis and regulating droplet morphology. Mol Biol Cell 26, 726–739.CrossRefPubMedPubMedCentralGoogle Scholar
  58. Castellano, B.M., Thelen, A.M., Moldavski, O., Feltes, M.K., van der Welle, R.E.N., Mydock-McGrane, L., Jiang, X., van Eijkeren, R.J., Davis, O.B., Louie, S.M., et al. (2017). Lysosomal cholesterol activates mTORC1 via an SLC38A9-Niemann-Pick C1 signaling complex. Science 355, 1306–1311.CrossRefPubMedPubMedCentralGoogle Scholar
  59. Cermelli, S., Guo, Y., Gross, S.P., and Welte, M.A. (2006). The lipid-droplet proteome reveals that droplets are a protein-storage depot. Curr Biol 16, 1783–1795.CrossRefPubMedPubMedCentralGoogle Scholar
  60. César-Razquin, A., Snijder, B., Frappier-Brinton, T., Isserlin, R., Gyimesi, G., Bai, X., Reithmeier, R.A., Hepworth, D., Hediger, M.A., Edwards, A.M., et al. (2015). A call for systematic research on solute carriers. Cell 162, 478–487.CrossRefPubMedPubMedCentralGoogle Scholar
  61. Chakrabarti, P., English, T., Shi, J., Smas, C.M., and Kandror, K.V. (2010). Mammalian target of rapamycin complex 1 suppresses lipolysis, stimulates lipogenesis, and promotes fat storage. Diabetes 59, 775–781.CrossRefPubMedPubMedCentralGoogle Scholar
  62. Chang, T.Y., Li, B.L., Chang, C.C.Y., and Urano, Y. (2009). Acylcoenzyme A:cholesterol acyltransferases. Am J Physiol Endocrinol Metab 297, E1–E9.CrossRefPubMedPubMedCentralGoogle Scholar
  63. Chen, L., Shu, Y., Liang, X., Chen, E.C., Yee, S.W., Zur, A.A., Li, S., Xu, L., Keshari, K.R., Lin, M.J., et al. (2014). OCT1 is a high-capacity thiamine transporter that regulates hepatic steatosis and is a target of metformin. Proc Natl Acad Sci USA 111, 9983–9988.CrossRefPubMedPubMedCentralGoogle Scholar
  64. Chen, X.W., Wang, H., Bajaj, K., Zhang, P., Meng, Z.X., Ma, D., Bai, Y., Liu, H.H., Adams, E., Baines, A., et al. (2013). SEC24A deficiency lowers plasma cholesterol through reduced PCSK9 secretion. eLife 2, e00444.CrossRefPubMedPubMedCentralGoogle Scholar
  65. Cho, J., Seo, J., Lim, C.H., Yang, L., Shiratsuchi, T., Lee, M.H., Chowdhury, R.R., Kasahara, H., Kim, J.S., Oh, S.P., et al. (2015). Mitochondrial ATP transporter Ant2 depletion impairs erythropoiesis and B lymphopoiesis. Cell Death Differ 22, 1437–1450.CrossRefPubMedPubMedCentralGoogle Scholar
  66. Cho, J., Zhang, Y., Park, S.Y., Joseph, A.M., Han, C., Park, H.J., Kalavalapalli, S., Chun, S.K., Morgan, D., Kim, J.S., et al. (2017). Mitochondrial ATP transporter depletion protects mice against liver steatosis and insulin resistance. Nat Commun 8, 14477.CrossRefPubMedPubMedCentralGoogle Scholar
  67. Chorlay, A., Monticelli, L., Verissimo Ferreira, J., Ben M’barek, K., Ajjaji, D., Wang, S., Johnson, E., Beck, R., Omrane, M., Beller, M., et al. (2019). Membrane asymmetry imposes directionality on lipid droplet emergence from the ER. Dev Cell 50, 25–42.e7.CrossRefPubMedPubMedCentralGoogle Scholar
  68. Chouchani, E.T., Kazak, L., and Spiegelman, B.M. (2019). New advances in adaptive thermogenesis: UCP1 and beyond. Cell Metab 29, 27–37.CrossRefPubMedPubMedCentralGoogle Scholar
  69. Choudhary, V., Ojha, N., Golden, A., and Prinz, W.A. (2015). A conserved family of proteins facilitates nascent lipid droplet budding from the ER. J Cell Biol 211, 261–271.CrossRefPubMedPubMedCentralGoogle Scholar
  70. Chrivia, J.C., Kwok, R.P.S., Lamb, N., Hagiwara, M., Montminy, M.R., and Goodman, R.H. (1993). Phosphorylated CREB binds specifically to the nuclear protein CBP. Nature 365, 855–859.CrossRefPubMedPubMedCentralGoogle Scholar
  71. Chu, B.B., Liao, Y.C., Qi, W., Xie, C., Du, X., Wang, J., Yang, H., Miao, H. H., Li, B.L., and Song, B.L. (2015). Cholesterol transport through lysosome-peroxisome membrane contacts. Cell 161, 291–306.CrossRefPubMedPubMedCentralGoogle Scholar
  72. Cohen, J., Pertsemlidis, A., Kotowski, I.K., Graham, R., Garcia, C.K., and Hobbs, H.H. (2005). Low LDL cholesterol in individuals of African descent resulting from frequent nonsense mutations in PCSK9. Nat Genet 37, 161–165.CrossRefPubMedPubMedCentralGoogle Scholar
  73. Cohen, J.C., Boerwinkle, E., Mosley Jr., T.H., and Hobbs, H.H. (2006). Sequence variations in PCSK9, low LDL, and protection against coronary heart disease. N Engl J Med 354, 1264–1272.CrossRefPubMedPubMedCentralGoogle Scholar
  74. Cohen, J.C., and Hobbs, H.H. (2013). Simple genetics for a complex disease. Science 340, 689–690.CrossRefPubMedPubMedCentralGoogle Scholar
  75. Consoli, A., Nurjhan, N., Capani, F., and Gerich, J. (1989). Predominant role of gluconeogenesis in increased hepatic glucose production in NIDDM. Diabetes 38, 550–557.CrossRefPubMedPubMedCentralGoogle Scholar
  76. Costet, P., Krempf, M., and Cariou, B. (2008). PCSK9 and LDL cholesterol: unravelling the target to design the bullet. Trends Biochem Sci 33, 426–434.CrossRefPubMedPubMedCentralGoogle Scholar
  77. Cypess, A.M., Lehman, S., Williams, G., Tal, I., Rodman, D., Goldfine, A. B., Kuo, F.C., Palmer, E.L., Tseng, Y.H., Doria, A., et al. (2009). Identification and importance of brown adipose tissue in adult humans. N Engl J Med 360, 1509–1517.CrossRefPubMedPubMedCentralGoogle Scholar
  78. Das, A., Brown, M.S., Anderson, D.D., Goldstein, J.L., and Radhakrishnan, A. (2014). Three pools of plasma membrane cholesterol and their relation to cholesterol homeostasis. eLife 3, e02882.CrossRefGoogle Scholar
  79. Datta, S., Liu, Y., Hariri, H., Bowerman, J., and Henne, W.M. (2019). Cerebellar ataxia disease-associated Snx14 promotes lipid droplet growth at ER-droplet contacts. J Cell Biol 218, 1335–1351.CrossRefPubMedPubMedCentralGoogle Scholar
  80. Davidson, C.D., Ali, N.F., Micsenyi, M.C., Stephney, G., Renault, S., Dobrenis, K., Ory, D.S., Vanier, M.T., and Walkley, S.U. (2009). Chronic cyclodextrin treatment of murine Niemann-Pick C disease ameliorates neuronal cholesterol and glycosphingolipid storage and disease progression. PLoS ONE 4, e6951.CrossRefPubMedPubMedCentralGoogle Scholar
  81. Davidson, N.O., and Shelness, G.S. (2000). A polipoprotein B: mRNA editing, lipoprotein assembly, and presecretory degradation. Annu Rev Nutr 20, 169–193.CrossRefPubMedPubMedCentralGoogle Scholar
  82. Dentin, R., Liu, Y., Koo, S.H., Hedrick, S., Vargas, T., Heredia, J., Yates, J., and Montminy, M. (2007). Insulin modulates gluconeogenesis by inhibition of the coactivator TORC2. Nature 449, 366–369.CrossRefPubMedPubMedCentralGoogle Scholar
  83. Dewey, F.E., Murray, M.F., Overton, J.D., Habegger, L., Leader, J.B., Fetterolf, S.N., O’Dushlaine, C., Van Hout, C.V., Staples, J., Gonzaga-Jauregui, C., et al. (2016). Distribution and clinical impact of functional variants in 50,726 whole-exome sequences from the DiscovEHR study. Science 354, aaf6814.CrossRefPubMedPubMedCentralGoogle Scholar
  84. Di Paolo, G., and Kim, T.W. (2011). Linking lipids to Alzheimer’s disease: cholesterol and beyond. Nat Rev Neurosci 12, 284–296.CrossRefPubMedPubMedCentralGoogle Scholar
  85. Saxena, R., Voight, B.F., Lyssenko, V., Burtt, N.P., de Bakker, P.I.W., Chen, H., Roix, J.J., Kathiresan, S., Hirschhorn, J.N., Daly, M.J., et al. (2007). Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science 316, 1331–1336.CrossRefPubMedPubMedCentralGoogle Scholar
  86. Ding, L., Yang, X., Tian, H., Liang, J., Zhang, F., Wang, G., Wang, Y., Ding, M., Shui, G., and Huang, X. (2018). Seipin regulates lipid homeostasis by ensuring calcium-dependent mitochondrial metabolism. EMBO J 37.Google Scholar
  87. DiTullio, N.W., Berkoff, C.E., Blank, B., Kostos, V., Stack, E.J., and Saunders, H.L. (1974). 3-mercaptopicolinic acid, an inhibitor of gluconeogenesis. Biochem J 138, 387–394.CrossRefPubMedPubMedCentralGoogle Scholar
  88. Doege, H., Baillie, R.A., Ortegon, A.M., Tsang, B., Wu, Q., Punreddy, S., Hirsch, D., Watson, N., Gimeno, R.E., and Stahl, A. (2006). Targeted deletion of FATP5 reveals multiple functions in liver metabolism: alterations in hepatic lipid homeostasis. Gastroenterology 130, 1245–1258.CrossRefPubMedPubMedCentralGoogle Scholar
  89. Doege, H., Grimm, D., Falcon, A., Tsang, B., Storm, T.A., Xu, H., Ortegon, A.M., Kazantzis, M., Kay, M.A., and Stahl, A. (2008). Silencing of hepatic fatty acid transporter protein 5 in vivo reverses diet-induced non-alcoholic fatty liver disease and improves hyperglycemia. J Biol Chem 283, 22186–22192.CrossRefPubMedPubMedCentralGoogle Scholar
  90. Dupuis, J., Langenberg, C., Prokopenko, I., Saxena, R., Soranzo, N., Jackson, A.U., Wheeler, E., Glazer, N.L., Bouatia-Naji, N., Gloyn, A. L., et al. (2010). New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk. Nat Genet 42, 105–116.CrossRefPubMedPubMedCentralGoogle Scholar
  91. Durrington, P. (2003). Dyslipidaemia. Lancet 362, 717–731.CrossRefPubMedPubMedCentralGoogle Scholar
  92. Egan, J.J., Greenberg, A.S., Chang, M.K., Wek, S.A., Moos Jr., M.C., and Londos, C. (1992). Mechanism of hormone-stimulated lipolysis in adipocytes: translocation of hormone-sensitive lipase to the lipid storage droplet. Proc Natl Acad Sci USA 89, 8537–8541.CrossRefPubMedPubMedCentralGoogle Scholar
  93. Ekberg, K., Landau, B.R., Wajngot, A., Chandramouli, V., Efendic, S., Brunengraber, H., and Wahren, J. (1999). Contributions by kidney and liver to glucose production in the postabsorptive state and after 60 h of fasting. Diabetes 48, 292–298.CrossRefPubMedPubMedCentralGoogle Scholar
  94. Eliahu, S., Barr, H.M., Camden, J., Weisman, G.A., and Fischer, B. (2010). A novel insulin secretagogue based on a dinucleoside polyphosphate scaffold. J Med Chem 53, 2472–2481.CrossRefPubMedPubMedCentralGoogle Scholar
  95. Emmer, B.T., Hesketh, G.G., Kotnik, E., Tang, V.T., Lascuna, P.J., Xiang, J., Gingras, A.C., Chen, X.W., and Ginsburg, D. (2018). The cargo receptor SURF4 promotes the efficient cellular secretion of PCSK9. eLife 7, e38839.CrossRefPubMedPubMedCentralGoogle Scholar
  96. Erion, D.M., Ignatova, I.D., Yonemitsu, S., Nagai, Y., Chatterjee, P., Weismann, D., Hsiao, J.J., Zhang, D., Iwasaki, T., Stark, R., et al. (2009). Prevention of hepatic steatosis and hepatic insulin resistance by knockdown of cAMP response element-binding protein. Cell Metab 10, 499–506.CrossRefPubMedPubMedCentralGoogle Scholar
  97. Espenshade, P.J., and Hughes, A.L. (2007). Regulation of sterol synthesis in eukaryotes. Annu Rev Genet 41, 401–427.CrossRefPubMedPubMedCentralGoogle Scholar
  98. Exton, J.H., and Park, C.R. (1968). Control of gluconeogenesis in liver. II. Effects of glucagon, catecholamines, and adenosine 3′,5′-monophosphate on gluconeogenesis in the perfused rat liver. J Biol Chem 243, 4189–4196.PubMedPubMedCentralGoogle Scholar
  99. Fedoseienko, A., Wijers, M., Wolters, J.C., Dekker, D., Smit, M., Huijkman, N., Kloosterhuis, N., Klug, H., Schepers, A., Willems van Dijk, K., et al. (2018). The COMMD family regulates plasma LDL levels and attenuates atherosclerosis through stabilizing the CCC complex in endosomal LDLR trafficking. Circ Res 122, 1648–1660.CrossRefPubMedPubMedCentralGoogle Scholar
  100. Fei, W., Du, X., and Yang, H. (2011a). Seipin, adipogenesis and lipid droplets. Trends Endocrinol Metab 22, 204–210.CrossRefPubMedPubMedCentralGoogle Scholar
  101. Fei, W., Shui, G., Gaeta, B., Du, X., Kuerschner, L., Li, P., Brown, A.J., Wenk, M.R., Parton, R.G., and Yang, H. (2008). Fld1p, a functional homologue of human seipin, regulates the size of lipid droplets in yeast. J Cell Biol 180, 473–482.CrossRefPubMedPubMedCentralGoogle Scholar
  102. Fei, W., Shui, G., Zhang, Y., Krahmer, N., Ferguson, C., Kapterian, T.S., Lin, R.C., Dawes, I.W., Brown, A.J., Li, P., et al. (2011b). A role for phosphatidic acid in the formation of “supersized” lipid droplets. PLoS Genet 7, e1002201.CrossRefPubMedPubMedCentralGoogle Scholar
  103. Fernandez, H.R., Gadre, S.M., Tan, M., Graham, G.T., Mosaoa, R., Ongkeko, M.S., Kim, K.A., Riggins, R.B., Parasido, E., Petrini, I., et al. (2018). The mitochondrial citrate carrier, SLC25A1, drives stemness and therapy resistance in non-small cell lung cancer. Cell Death Differ 25, 1239–1258.CrossRefPubMedPubMedCentralGoogle Scholar
  104. Fischer, J., Lefèvre, C., Morava, E., Mussini, J.M., Laforêt, P., Negre-Salvayre, A., Lathrop, M., and Salvayre, R. (2007). The gene encoding adipose triglyceride lipase (PNPLA2) is mutated in neutral lipid storage disease with myopathy. Nat Genet 39, 28–30.CrossRefPubMedPubMedCentralGoogle Scholar
  105. Fisher, S.J., and Kahn, C.R. (2003). Insulin signaling is required for insulin’s direct and indirect action on hepatic glucose production. J Clin Invest 111, 463–468.CrossRefPubMedPubMedCentralGoogle Scholar
  106. Fitzky, B.U., Witsch-Baumgartner, M., Erdel, M., Lee, J.N., Paik, Y.K., Glossmann, H., Utermann, G., and Moebius, F.F. (1998). Mutations in the 7-sterol reductase gene in patients with the Smith-Lemli-Opitz syndrome. Proc Natl Acad Sci USA 95, 8181–8186.CrossRefPubMedPubMedCentralGoogle Scholar
  107. Flannick, J., Thorleifsson, G., Beer, N.L., Jacobs, S.B.R., Grarup, N., Burtt, N.P., Mahajan, A., Fuchsberger, C., Atzmon, G., Benediktsson, R., et al. (2014). Loss-of-function mutations in SLC30A8 protect against type 2 diabetes. Nat Genet 46, 357–363.CrossRefPubMedPubMedCentralGoogle Scholar
  108. Flynn, T.J., Phipps-Green, A., Hollis-Moffatt, J.E., Merriman, M.E., Topless, R., Montgomery, G., Chapman, B., Stamp, L.K., Dalbeth, N., and Merriman, T.R. (2013). Association analysis of the SLC22A11 (organic anion transporter 4) and SLC22A12 (urate transporter 1) urate transporter locus with gout in New Zealand case-control sample sets reveals multiple ancestral-specific effects. Arthritis Res Ther 15, R220.CrossRefPubMedPubMedCentralGoogle Scholar
  109. Foody, J.A.M., and Vishwanath, R. (2016). Familial hypercholesterolemia/autosomal dominant hypercholesterolemia: molecular defects, the LDL-C continuum, and gradients of phenotypic severity. J Clin Lipidol 10, 970–986.CrossRefPubMedPubMedCentralGoogle Scholar
  110. Foretz, M., Hébrard, S., Leclerc, J., Zarrinpashneh, E., Soty, M., Mithieux, G., Sakamoto, K., Andreelli, F., and Viollet, B. (2010). Metformin inhibits hepatic gluconeogenesis in mice independently of the LKB1/AMPK pathway via a decrease in hepatic energy state. J Clin Invest 120, 2355–2369.CrossRefPubMedPubMedCentralGoogle Scholar
  111. Fotiadis, D., Kanai, Y., and Palacín, M. (2013). The SLC3 and SLC7 families of amino acid transporters. Mol Aspect Med 34, 139–158.CrossRefGoogle Scholar
  112. Frescas, D., Valenti, L., and Accili, D. (2005). Nuclear trapping of the forkhead transcription factor FoxO1 via Sirt-dependent deacetylation promotes expression of glucogenetic genes. J Biol Chem 280, 20589–20595.CrossRefPubMedPubMedCentralGoogle Scholar
  113. Fromme, J.C., Ravazzola, M., Hamamoto, S., Al-Balwi, M., Eyaid, W., Boyadjiev, S.A., Cosson, P., Schekman, R., and Orci, L. (2007). The genetic basis of a craniofacial disease provides insight into COPII coat assembly. Dev Cell 13, 623–634.CrossRefPubMedPubMedCentralGoogle Scholar
  114. Futema, M., Plagnol, V., Li, K.W., Whittall, R.A., Neil, H.A.W., Seed, M., Bertolini, S., Calandra, S., Descamps, O.S., Graham, C.A., et al. (2014). Whole exome sequencing of familial hypercholesterolaemia patients negative for LDLR/APOB/PCSK9 mutations. J Med Genet 51, 537–544.CrossRefPubMedPubMedCentralGoogle Scholar
  115. Gandotra, S., Le Dour, C., Bottomley, W., Cervera, P., Giral, P., Reznik, Y., Charpentier, G., Auclair, M., Delépine, M., Barroso, I., et al. (2011). Perilipin deficiency and autosomal dominant partial lipodystrophy. N Engl J Med 364, 740–748.CrossRefPubMedPubMedCentralGoogle Scholar
  116. Gao, M., Huang, X., Song, B.L., and Yang, H. (2019). The biogenesis of lipid droplets: lipids take center stage. Prog Lipid Res 75, 100989.CrossRefPubMedPubMedCentralGoogle Scholar
  117. Garcia, C.K., Wilund, K., Arca, M., Zuliani, G., Fellin, R., Maioli, M., Calandra, S., Bertolini, S., Cossu, F., Grishin, N., et al. (2001). Autosomal recessive hypercholesterolemia caused by mutations in a putative LDL receptor adaptor protein. Science 292, 1394–1398.CrossRefPubMedPubMedCentralGoogle Scholar
  118. Garcia-Calvo, M., Lisnock, J., Bull, H.G., Hawes, B.E., Burnett, D.A., Braun, M.P., Crona, J.H., Davis Jr., H.R., Dean, D.C., Detmers, P.A., et al. (2005). The target of ezetimibe is Niemann-Pick C1-Like 1 (NPC1L1). Proc Natl Acad Sci USA 102, 8132–8137.CrossRefPubMedPubMedCentralGoogle Scholar
  119. Gatta, A.T., and Levine, T.P. (2017). Piecing together the patchwork of contact sites. Trends Cell Biol 27, 214–229.CrossRefPubMedPubMedCentralGoogle Scholar
  120. Ge, L., Qi, W., Wang, L.J., Miao, H.H., Qu, Y.X., Li, B.L., and Song, B.L. (2011). Flotillins play an essential role in Niemann-Pick C1-like 1-mediated cholesterol uptake. Proc Natl Acad Sci USA 108, 551–556.CrossRefPubMedPubMedCentralGoogle Scholar
  121. Ge, L., Wang, J., Qi, W., Miao, H.H., Cao, J., Qu, Y.X., Li, B.L., and Song, B.L. (2008). The cholesterol absorption inhibitor ezetimibe acts by blocking the sterol-induced internalization of NPC1L1. Cell Metab 7, 508–519.CrossRefPubMedPubMedCentralGoogle Scholar
  122. Gelissen, I.C., Harris, M., Rye, K.A., Quinn, C., Brown, A.J., Kockx, M., Cartland, S., Packianathan, M., Kritharides, L., and Jessup, W. (2006). ABCA1 and ABCG1 synergize to mediate cholesterol export to apoA-I. Arterioscler Thromb Vasc Biol 26, 534–540.CrossRefPubMedPubMedCentralGoogle Scholar
  123. Ghosh, M., Niyogi, S., Bhattacharyya, M., Adak, M., Nayak, D.K., Chakrabarti, S., and Chakrabarti, P. (2016). Ubiquitin ligase COP1 controls hepatic fat metabolism by targeting ATGL for degradation. Diabetes 65, 3561–3572.CrossRefPubMedPubMedCentralGoogle Scholar
  124. Gill, S., Stevenson, J., Kristiana, I., and Brown, A.J. (2011). Cholesterol-dependent degradation of squalene monooxygenase, a control point in cholesterol synthesis beyond HMG-CoA reductase. Cell Metab 13, 260–273.CrossRefPubMedPubMedCentralGoogle Scholar
  125. Gillon, A.D., Latham, C.F., and Miller, E.A. (2012). Vesicle-mediated ER export of proteins and lipids. Biochim Biophys Acta Mol Cell Biol Lipids 1821, 1040–1049.CrossRefGoogle Scholar
  126. Girard, J. (2006). Insulin’s effect on the liver: “Direct or indirect?” continues to be the question. J Clin Invest 116, 302–304.CrossRefPubMedPubMedCentralGoogle Scholar
  127. Goldberg, A.C., Hopkins, P.N., Toth, P.P., Ballantyne, C.M., Rader, D.J., Robinson, J.G., Daniels, S.R., Gidding, S.S., de Ferranti, S.D., Ito, M. K., et al. (2011). Familial hypercholesterolemia: screening, diagnosis and management of pediatric and adult patients. J Clin Lipidol 5, 133–140.CrossRefPubMedPubMedCentralGoogle Scholar
  128. Goldstein, J.L., and Brown, M.S. (1974). Binding and degradation of low density lipoproteins by cultured human fibroblasts. Comparison of cells from a normal subject and from a patient with homozygous familial hypercholesterolemia. J Biol Chem 249, 5153–5162.PubMedPubMedCentralGoogle Scholar
  129. Goldstein, J.L., and Brown, M.S. (1990). Regulation of the mevalonate pathway. Nature 343, 425–430.CrossRefPubMedPubMedCentralGoogle Scholar
  130. Goldstein, J.L., and Brown, M.S. (2009). The LDL receptor. Arterioscler Thromb Vasc Biol 29, 431–438.CrossRefPubMedPubMedCentralGoogle Scholar
  131. Goldstein, J.L., and Brown, M.S. (2015). A century of cholesterol and coronaries: from plaques to genes to statins. Cell 161, 161–172.CrossRefPubMedPubMedCentralGoogle Scholar
  132. Goldstein, J.L., Brown, M.S., Anderson, R.G., Russell, D.W., and Schneider, W.J. (1985). Receptor-mediated endocytosis: concepts emerging from the LDL receptor system. Annu Rev Cell Biol 1, 1–39.CrossRefPubMedPubMedCentralGoogle Scholar
  133. Goldstein, J.L., DeBose-Boyd, R.A., and Brown, M.S. (2006). Protein sensors for membrane sterols. Cell 124, 35–46.CrossRefPubMedPubMedCentralGoogle Scholar
  134. Gong, J., Sun, Z., Wu, L., Xu, W., Schieber, N., Xu, D., Shui, G., Yang, H., Parton, R.G., and Li, P. (2011). Fsp27 promotes lipid droplet growth by lipid exchange and transfer at lipid droplet contact sites. J Cell Biol 195, 953–963.CrossRefPubMedPubMedCentralGoogle Scholar
  135. Gong, X., Qian, H., Zhou, X., Wu, J., Wan, T., Cao, P., Huang, W., Zhao, X., Wang, X., Wang, P., et al. (2016). Structural insights into the Niemann-Pick C1 (NPC1)-mediated cholesterol transfer and Ebola infection. Cell 165, 1467–1478.CrossRefPubMedPubMedCentralGoogle Scholar
  136. Gonzalez, E., and McGraw, T.E. (2009). The Akt kinases: isoform specificity in metabolism and cancer. Cell Cycle 8, 2502–2508.CrossRefPubMedPubMedCentralGoogle Scholar
  137. Gonzalez, G.A., and Montminy, M.R. (1989). Cyclic AMP stimulates somatostatin gene transcription by phosphorylation of CREB at serine 133. Cell 59, 675–680.CrossRefPubMedPubMedCentralGoogle Scholar
  138. Gordon, D.A., Wetterau, J.R., and Gregg, R.E. (1995). Microsomal triglyceride transfer protein: a protein complex required for the assembly of lipoprotein particles. Trends Cell Biol 5, 317–321.CrossRefPubMedPubMedCentralGoogle Scholar
  139. Gouni-Berthold, I., Descamps, O.S., Fraass, U., Hartfield, E., Allcott, K., Dent, R., and März, W. (2016). Systematic review of published Phase 3 data on anti-PCSK9 monoclonal antibodies in patients with hypercholesterolaemia. Br J Clin Pharmacol 82, 1412–1443.CrossRefPubMedPubMedCentralGoogle Scholar
  140. Graf, G.A., Yu, L., Li, W.P., Gerard, R., Tuma, P.L., Cohen, J.C., and Hobbs, H.H. (2003). ABCG5 and ABCG8 are obligate heterodimers for protein trafficking and biliary cholesterol excretion. J Biol Chem 278, 48275–48282.CrossRefPubMedPubMedCentralGoogle Scholar
  141. Granneman, J.G., Moore, H.P.H., Krishnamoorthy, R., and Rathod, M. (2009). Perilipin controls lipolysis by regulating the interactions of AB-hydrolase containing 5 (Abhd5) and adipose triglyceride lipase (Atgl). J Biol Chem 284, 34538–34544.CrossRefPubMedPubMedCentralGoogle Scholar
  142. Greenberg, A.S., Egan, J.J., Wek, S.A., Garty, N.B., Blanchettemackie, E. J., and Londos, C. (1991). Perilipin, a major hormonally regulated adipocyte-specific phosphoprotein associated with the periphery of lipid storage droplets. J Biol Chem 266, 11341–11346.PubMedPubMedCentralGoogle Scholar
  143. Gross, D.A., Zhan, C., and Silver, D.L. (2011). Direct binding of triglyceride to fat storage-inducing transmembrane proteins 1 and 2 is important for lipid droplet formation. Proc Natl Acad Sci USA 108, 19581–19586.CrossRefPubMedPubMedCentralGoogle Scholar
  144. Grundy, S.M., Stone, N.J., Bailey, A.L., Beam, C., Birtcher, K.K., Blumenthal, R.S., Braun, L.T., de Ferranti, S., Faiella-Tommasino, J., Forman, D.E., et al. (2019). 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA guideline on the management of blood cholesterol. J Am Coll Cardiol 73, e285–e350.CrossRefPubMedPubMedCentralGoogle Scholar
  145. Gu, Q., Yang, X., Lin, L., Li, S., Li, Q., Zhong, S., Peng, J., and Cui, Z. (2014). Genetic ablation of solute carrier family 7a3a leads to hepatic steatosis in zebrafish during fasting. Hepatology 60, 1929–1941.CrossRefPubMedPubMedCentralGoogle Scholar
  146. Guo, Y., Walther, T.C., Rao, M., Stuurman, N., Goshima, G., Terayama, K., Wong, J.S., Vale, R.D., Walter, P., and Farese, R.V. (2008). Functional genomic screen reveals genes involved in lipid-droplet formation and utilization. Nature 453, 657–661.CrossRefPubMedPubMedCentralGoogle Scholar
  147. Gürkan, C., Stagg, S.M., Lapointe, P., and Balch, W.E. (2006). The COPII cage: unifying principles of vesicle coat assembly. Nat Rev Mol Cell Biol 7, 727–738.CrossRefPubMedPubMedCentralGoogle Scholar
  148. Haemmerle, G., Lass, A., Zimmermann, R., Gorkiewicz, G., Meyer, C., Rozman, J., Heldmaier, G., Maier, R., Theussl, C., Eder, S., et al. (2006). Defective lipolysis and altered energy metabolism in mice lacking adipose triglyceride lipase. Science 312, 734–737.CrossRefPubMedPubMedCentralGoogle Scholar
  149. Haemmerle, G., Moustafa, T., Woelkart, G., Büttner, S., Schmidt, A., van de Weijer, T., Hesselink, M., Jaeger, D., Kienesberger, P.C., Zierler, K., et al. (2011). ATGL-mediated fat catabolism regulates cardiac mitochondrial function via PPAR-α and PGC-1. Nat Med 17, 1076–1085.CrossRefPubMedPubMedCentralGoogle Scholar
  150. Halestrap, A.P. (2013). The SLC16 gene family—Structure, role and regulation in health and disease. Mol Aspect Med 34, 337–349.CrossRefGoogle Scholar
  151. Halestrap, A.P., and Wilson, M.C. (2012). The monocarboxylate transporter family-Role and regulation. IUBMB Life 64, 109–119.CrossRefPubMedPubMedCentralGoogle Scholar
  152. Hall, R.K., Yamasaki, T., Kucera, T., Waltner-Law, M., O’Brien, R., and Granner, D.K. (2000). Regulation of phosphoenolpyruvate carboxykinase and insulin-like growth factor-binding protein-1 gene expression by insulin. J Biol Chem 275, 30169–30175.CrossRefPubMedPubMedCentralGoogle Scholar
  153. Han, J., Li, E., Chen, L., Zhang, Y., Wei, F., Liu, J., Deng, H., and Wang, Y. (2015). The CREB coactivator CRTC2 controls hepatic lipid metabolism by regulating SREBP1. Nature 524, 243–246.CrossRefPubMedPubMedCentralGoogle Scholar
  154. Hardie, D.G., Ross, F.A., and Hawley, S.A. (2012). AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nat Rev Mol Cell Biol 13, 251–262.CrossRefPubMedPubMedCentralGoogle Scholar
  155. Hariri, H., Speer, N., Bowerman, J., Rogers, S., Fu, G., Reetz, E., Datta, S., Feathers, J.R., Ugrankar, R., Nicastro, D., et al. (2019). Mdm1 maintains endoplasmic reticulum homeostasis by spatially regulating lipid droplet biogenesis. J Cell Biol 218, 1319–1334.CrossRefPubMedPubMedCentralGoogle Scholar
  156. Harms, M., and Seale, P. (2013). Brown and beige fat: development, function and therapeutic potential. Nat Med 19, 1252–1263.CrossRefPubMedPubMedCentralGoogle Scholar
  157. Hatting, M., Tavares, C.D.J., Sharabi, K., Rines, A.K., and Puigserver, P. (2018). Insulin regulation of gluconeogenesis. Ann NY Acad Sci 1411, 21–35.CrossRefPubMedPubMedCentralGoogle Scholar
  158. He, G., Gupta, S., Yi, M., Michaely, P., Hobbs, H.H., and Cohen, J.C. (2002). ARH is a modular adaptor protein that interacts with the LDL receptor, clathrin, and AP-2. J Biol Chem 277, 44044–44049.CrossRefPubMedPubMedCentralGoogle Scholar
  159. Hediger, M.A., Clémençon, B., Burrier, R.E., and Bruford, E.A. (2013). The ABCs ofmembrane transporters in health and disease (SLC series): introduction. Mol Aspect Med 34, 95–107.CrossRefGoogle Scholar
  160. Heid, I.M., Boes, E., Muller, M., Kollerits, B., Lamina, C., Coassin, S., Gieger, C., Doring, A., Klopp, N., Frikke-Schmidt, R., et al. (2008). Genome-wide association analysis of high-density lipoprotein cholesterol in the population-based KORA study sheds new light on intergenic regions. Circ Cardiovasc Genet 1, 10–20.CrossRefPubMedPubMedCentralGoogle Scholar
  161. Hemmings, B.A., and Restuccia, D.F. (2012). PI3K-PKB/Akt pathway. Cold Spring Harb Perspect Biol 4, a011189.CrossRefPubMedPubMedCentralGoogle Scholar
  162. Henderson, R., O’Kane, M., McGilligan, V., and Watterson, S. (2016). The genetics and screening of familial hypercholesterolaemia. J Biomed Sci 23, 39.CrossRefPubMedPubMedCentralGoogle Scholar
  163. Henne, W.M., Reese, M.L., and Goodman, J.M. (2018). The assembly of lipid droplets and their roles in challenged cells. EMBO J 37.Google Scholar
  164. Hers, H.G., and Hue, L. (1983). Gluconeogenesis and related aspects of glycolysis. Annu Rev Biochem 52, 617–653.CrossRefPubMedPubMedCentralGoogle Scholar
  165. Herzig, S., Long, F., Jhala, U.S., Hedrick, S., Quinn, R., Bauer, A., Rudolph, D., Schutz, G., Yoon, C., Puigserver, P., et al. (2001). CREB regulates hepatic gluconeogenesis through the coactivator PGC-1. Nature 413, 179–183.CrossRefPubMedPubMedCentralGoogle Scholar
  166. Hobbs, H.H., Brown, M.S., and Goldstein, J.L. (1992). Molecular genetics of the LDL receptor gene in familial hypercholesterolemia. Hum Mutat 1, 445–466.CrossRefPubMedPubMedCentralGoogle Scholar
  167. Hoffmann, T.J., Theusch, E., Haldar, T., Ranatunga, D.K., Jorgenson, E., Medina, M.W., Kvale, M.N., Kwok, P.Y., Schaefer, C., Krauss, R.M., et al. (2018). A large electronic-health-record-based genome-wide study of serum lipids. Nat Genet 50, 401–413.CrossRefPubMedPubMedCentralGoogle Scholar
  168. Hogan, M.F., Ravnskjaer, K., Matsumura, S., Huising, M.O., Hull, R.L., Kahn, S.E., and Montminy, M. (2015). Hepatic insulin resistance following chronic activation of the CREB coactivator CRTC2. J Biol Chem 290, 25997–26006.CrossRefPubMedPubMedCentralGoogle Scholar
  169. Horton, J.D., Cohen, J.C., and Hobbs, H.H. (2007). Molecular biology of PCSK9: its role in LDL metabolism. Trends Biochem Sci 32, 71–77.CrossRefPubMedPubMedCentralGoogle Scholar
  170. Horton, J.D., Cohen, J.C., and Hobbs, H.H. (2009). PCSK9: a convertase that coordinates LDL catabolism. J Lipid Res 50, S172–S177.CrossRefPubMedPubMedCentralGoogle Scholar
  171. Horton, J.D., Goldstein, J.L., and Brown, M.S. (2002). SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. J Clin Invest 109, 1125–1131.CrossRefPubMedPubMedCentralGoogle Scholar
  172. Hossain, P., Kawar, B., and El Nahas, M. (2007). Obesity and diabetes in the developing world—a growing challenge. N Engl J Med 356, 213–215.CrossRefPubMedPubMedCentralGoogle Scholar
  173. Hua, X., Nohturfft, A., Goldstein, J.L., and Brown, M.S. (1996). Sterol resistance in CHO cells traced to point mutation in SREBP cleavage-activating protein. Cell 87, 415–426.CrossRefPubMedPubMedCentralGoogle Scholar
  174. Huang, S., and Czech, M.P. (2007). The GLUT4 glucose transporter. Cell Metab 5, 237–252.CrossRefPubMedPubMedCentralGoogle Scholar
  175. Huang, X., Litingtung, Y., and Chiang, C. (2007). Region-specific requirement for cholesterol modification of sonic hedgehog in patterning the telencephalon and spinal cord. Development 134, 2095–2105.CrossRefPubMedPubMedCentralGoogle Scholar
  176. Hubbard, B., Doege, H., Punreddy, S., Wu, H., Huang, X., Kaushik, V.K., Mozell, R.L., Byrnes, J.J., Stricker-Krongrad, A., Chou, C.J., et al. (2006). Mice deleted for fatty acid transport protein 5 have defective bile acid conjugation and are protected from obesity. Gastroenterology 130, 1259–1269.CrossRefPubMedPubMedCentralGoogle Scholar
  177. Hyde, C.L., Nagle, M.W., Tian, C., Chen, X., Paciga, S.A., Wendland, J.R., Tung, J.Y., Hinds, D.A., Perlis, R.H., and Winslow, A.R. (2016). Identification of 15 genetic loci associated with risk of major depression in individuals of European descent. Nat Genet 48, 1031–1036.CrossRefPubMedPubMedCentralGoogle Scholar
  178. Iacobazzi, V., and Infantino, V. (2014). Citrate—new functions for an old metabolite. Biol Chem 395, 387–399.CrossRefPubMedPubMedCentralGoogle Scholar
  179. Infantino, V., Iacobazzi, V., Menga, A., Avantaggiati, M.L., and Palmieri, F. (2014). A key role of the mitochondrial citrate carrier (SLC25A1) in TNFα- and IFNγ-triggered inflammation. Biochim Biophys Acta Gene Regulat Mech 1839, 1217–1225.CrossRefGoogle Scholar
  180. Ishigami, M., Ogasawara, F., Nagao, K., Hashimoto, H., Kimura, Y., Kioka, N., and Ueda, K. (2018). Temporary sequestration of cholesterol and phosphatidylcholine within extracellular domains of ABCA1 during nascent HDL generation. Sci Rep 8, 6170.CrossRefPubMedPubMedCentralGoogle Scholar
  181. Izar, M.C., Tegani, D.M., Kasmas, S.H., and Fonseca, F.A. (2011). Phytosterols and phytosterolemia: gene-diet interactions. Genes Nutr 6, 17–26.CrossRefPubMedPubMedCentralGoogle Scholar
  182. Jansson, D., Cheuk-Him Ng, A., Fu, A., Depatie, C., Azzabi, M.A., and Screaton, R.A. (2008). Glucose controls CREB activity in islet cells via regulated phosphorylation of TORC2. Proc Natl Acad Sci USA 105, 10161–10166.CrossRefPubMedPubMedCentralGoogle Scholar
  183. Jerome, W.G. (2010). Lysosomes, cholesterol and atherosclerosis. Clin Lipidol 5, 853–865.CrossRefPubMedPubMedCentralGoogle Scholar
  184. Jiang, S.Y., Li, H., Tang, J.J., Wang, J., Luo, J., Liu, B., Wang, J.K., Shi, X. J., Cui, H.W., Tang, J., et al. (2018). Discovery of a potent HMG-CoA reductase degrader that eliminates statin-induced reductase accumulation and lowers cholesterol. Nat Commun 9, 5138.CrossRefPubMedPubMedCentralGoogle Scholar
  185. Jiang, S.Y., Tang, J.J., Xiao, X., Qi, W., Wu, S., Jiang, C., Hong, J., Xu, J., Song, B.L., and Luo, J. (2019). Schnyder corneal dystrophy-associated UBIAD1 mutations cause corneal cholesterol accumulation by stabilizing HMG-CoA reductase. PLoS Genet 15, e1008289.CrossRefPubMedPubMedCentralGoogle Scholar
  186. Jo, Y., Hamilton, J.S., Hwang, S., Garland, K., Smith, G.A., Su, S., Fuentes, I., Neelam, S., Thompson, B.M., McDonald, J.G., et al. (2019). Schnyder corneal dystrophy-associated UBIAD1 inhibits ER-associated degradation of HMG CoA reductase in mice. eLife 8, e44396.CrossRefPubMedPubMedCentralGoogle Scholar
  187. Johnson, M.R., Stephenson, R.A., Ghaemmaghami, S., and Welte, M.A. (2018). Developmentally regulated H2Av buffering via dynamic sequestration to lipid droplets in Drosophila embryos. eLife 7, e36021.CrossRefPubMedPubMedCentralGoogle Scholar
  188. Jones, B., Jones, E.L., Bonney, S.A., Patel, H.N., Mensenkamp, A.R., Eichenbaum-Voline, S., Rudling, M., Myrdal, U., Annesi, G., Naik, S., et al. (2003). Mutations in a Sar1 GTPase of COPII vesicles are associated with lipid absorption disorders. Nat Genet 34, 29–31.CrossRefPubMedPubMedCentralGoogle Scholar
  189. Joshi, A.S., Nebenfuehr, B., Choudhary, V., Satpute-Krishnan, P., Levine, T.P., Golden, A., and Prinz, W.A. (2018). Lipid droplet and peroxisome biogenesis occur at the same ER subdomains. Nat Commun 9, 2940.CrossRefPubMedPubMedCentralGoogle Scholar
  190. Kadereit, B., Kumar, P., Wang, W.J., Miranda, D., Snapp, E.L., Severina, N., Torregroza, I., Evans, T., and Silver, D.L. (2008). Evolutionarily conserved gene family important for fat storage. Proc Natl Acad Sci USA 105, 94–99.CrossRefPubMedPubMedCentralGoogle Scholar
  191. Kannel, W.B., Dawber, T.R., Kagan, A., Revotskie, N., and Stokes, J. (1961). Factors of risk in the development of coronary heart disease—six-year follow-up experience. Ann Intern Med 55, 33.CrossRefPubMedPubMedCentralGoogle Scholar
  192. Kathiresan, S., Manning, A.K., Demissie, S., D’Agostino, R.B., Surti, A., Guiducci, C., Gianniny, L., Burtt, N.P., Melander, O., Orho-Melander, M., et al. (2007). A genome-wide association study for blood lipid phenotypes in the Framingham Heart Study. BMC Med Genet 8, S17.CrossRefPubMedPubMedCentralGoogle Scholar
  193. Kathiresan, S., Melander, O., Guiducci, C., Surti, A., Burtt, N.P., Rieder, M. J., Cooper, G.M., Roos, C., Voight, B.F., Havulinna, A.S., et al. (2008). Six new loci associated with blood low-density lipoprotein cholesterol, high-density lipoprotein cholesterol or triglycerides in humans. Nat Genet 40, 189–197.CrossRefPubMedPubMedCentralGoogle Scholar
  194. Kaushik, S., and Cuervo, A.M. (2015). Degradation of lipid droplet-associated proteins by chaperone-mediated autophagy facilitates lipolysis. Nat Cell Biol 17, 759–770.CrossRefPubMedPubMedCentralGoogle Scholar
  195. Kazda, C.M., Ding, Y., Kelly, R.P., Garhyan, P., Shi, C., Lim, C.N., Fu, H., Watson, D.E., Lewin, A.J., Landschulz, W.H., et al. (2016). Evaluation of efficacy and safety of the glucagon receptor antagonist LY2409021 in patients with type 2 diabetes: 12- and 24-week Phase 2 studies. Dia Care 39, 1241–1249.CrossRefGoogle Scholar
  196. Kazierad, D.J., Bergman, A., Tan, B., Erion, D.M., Somayaji, V., Lee, D.S., and Rolph, T. (2016). Effects of multiple ascending doses of the glucagon receptor antagonist PF-06291874 in patients with type 2 diabetes mellitus. Diabetes Obes Metab 18, 795–802.CrossRefPubMedPubMedCentralGoogle Scholar
  197. Kc, S., Cárcamo, J.M., and Golde, D.W. (2005). Vitamin C enters mitochondria via facilitative glucose transporter 1 (Glut1) and confers mitochondrial protection against oxidative injury. FASEB J 19, 1657–1667.CrossRefPubMedPubMedCentralGoogle Scholar
  198. Khachadurian, A.K. (1964). The inheritance of essential familial hypercholesterolemia. Am J Med 37, 402–407.CrossRefPubMedPubMedCentralGoogle Scholar
  199. Khachadurian, A.K., and Uthman, S.M. (1973). Experiences with the homozygous cases of familial hypercholesterolemia. Ann Nutr Metab 15, 132–140.CrossRefGoogle Scholar
  200. Khoriaty, R., Hesketh, G.G., Bernard, A., Weyand, A.C., Mellacheruvu, D., Zhu, G., Hoenerhoff, M.J., McGee, B., Everett, L., Adams, E.J., et al. (2018). Functions of the COPII gene paralogs SEC23A and SEC23B are interchangeable in vivo. Proc Natl Acad Sci USA 115, E7748–E7757.CrossRefPubMedPubMedCentralGoogle Scholar
  201. Kimmel, A.R., and Sztalryd, C. (2016). The Perilipins: major cytosolic lipid droplet-associated proteins and their roles in cellular lipid storage, mobilization, and systemic homeostasis. Annu Rev Nutr 36, 471–509.CrossRefPubMedPubMedCentralGoogle Scholar
  202. Klarin, D., Damrauer, S.M., Cho, K., Sun, Y.V., Teslovich, T.M., Honerlaw, J., Gagnon, D.R., DuVall, S.L., Li, J., Peloso, G.M., et al. (2018). Genetics of blood lipids among ∼300,000 multi-ethnic participants of the Million Veteran Program. Nat Genet 50, 1514–1523.CrossRefPubMedPubMedCentralGoogle Scholar
  203. Koepsell, H. (2013). The SLC22 family with transporters of organic cations, anions and zwitterions. Mol Aspect Med 34, 413–435.CrossRefGoogle Scholar
  204. Kolovou, G.D., Mikhailidis, D.P., Anagnostopoulou, K.K., Daskalopoulou, S.S., and Cokkinos, D.V. (2006). Tangier disease four decades of research: a reflection of the importance of HDL. Curr Med Chem 13, 771–782.CrossRefPubMedPubMedCentralGoogle Scholar
  205. Koo, S.H., Flechner, L., Qi, L., Zhang, X., Screaton, R.A., Jeffries, S., Hedrick, S., Xu, W., Boussouar, F., Brindle, P., et al. (2005). The CREB coactivator TORC2 is a key regulator of fasting glucose metabolism. Nature 437, 1109–1114.CrossRefPubMedPubMedCentralGoogle Scholar
  206. Kooner, J.S., Chambers, J.C., Aguilar-Salinas, C.A., Hinds, D.A., Hyde, C. L., Warnes, G.R., Gómez Pérez, F.J., Frazer, K.A., Elliott, P., Scott, J., et al. (2008). Genome-wide scan identifies variation in MLXIPL associated with plasma triglycerides. Nat Genet 40, 149–151.CrossRefPubMedPubMedCentralGoogle Scholar
  207. Kory, N., Farese Jr., R.V., and Walther, T.C. (2016). Targeting fat: mechanisms of protein localization to lipid droplets. Trends Cell Biol 26, 535–546.CrossRefPubMedPubMedCentralGoogle Scholar
  208. Kory, N., Thiam, A.R., Farese Jr., R.V., and Walther, T.C. (2015). Protein crowding is a determinant of lipid droplet protein composition. Dev Cell 34, 351–363.CrossRefPubMedPubMedCentralGoogle Scholar
  209. Kotani, K., Peroni, O.D., Minokoshi, Y., Boss, O., and Kahn, B.B. (2004). GLUT4 glucose transporter deficiency increases hepatic lipid production and peripheral lipid utilization. J Clin Invest 114, 1666–1675.CrossRefPubMedPubMedCentralGoogle Scholar
  210. Krahmer, N., Guo, Y., Wilfling, F., Hilger, M., Lingrell, S., Heger, K., Newman, H.W., Schmidt-Supprian, M., Vance, D.E., Mann, M., et al. (2011). Phosphatidylcholine synthesis for lipid droplet expansion is mediated by localized activation of CTP:phosphocholine cytidylyltransferase. Cell Metab 14, 504–515.CrossRefPubMedPubMedCentralGoogle Scholar
  211. Kumar, N., Kojetin, D.J., Solt, L.A., Kumar, K.G., Nuhant, P., Duckett, D. R., Cameron, M.D., Butler, A.A., Roush, W.R., Griffin, P.R., et al. (2011). Identification of SR3335 (ML-176): a synthetic RORα selective inverse agonist. ACS Chem Biol 6, 218–222.CrossRefPubMedPubMedCentralGoogle Scholar
  212. Kurland, I.J., and Pilkis, S.J. (1995). Covalent control of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase: insights into autoregulation of a bifunctional enzyme. Protein Sci 4, 1023–1037.CrossRefPubMedPubMedCentralGoogle Scholar
  213. Kwok, R.P.S., Lundblad, J.R., Chrivia, J.C., Richards, J.P., Bächinger, H.P., Brennan, R.G., Roberts, S.G.E., Green, M.R., and Goodman, R.H. (1994). Nuclear protein CBP is a coactivator for the transcription factor CREB. Nature 370, 223–226.CrossRefPubMedPubMedCentralGoogle Scholar
  214. Kwon, H.J., Abi-Mosleh, L., Wang, M.L., Deisenhofer, J., Goldstein, J.L., Brown, M.S., and Infante, R.E. (2009). Structure of N-terminal domain of NPC1 reveals distinct subdomains for binding and transfer of cholesterol. Cell 137, 1213–1224.CrossRefPubMedPubMedCentralGoogle Scholar
  215. Kwon, H.J., Palnitkar, M., and Deisenhofer, J. (2011). The structure of the NPC1L1 N-Terminal domain in a closed conformation. PLoS ONE 6, e18722.CrossRefPubMedPubMedCentralGoogle Scholar
  216. Lagace, T.A. (2014). PCSK9 and LDLR degradation. Curr Opin Lipidol 25, 387–393.CrossRefPubMedPubMedCentralGoogle Scholar
  217. Lang, M.R., Lapierre, L.A., Frotscher, M., Goldenring, J.R., and Knapik, E. W. (2006). Secretory COPII coat component Sec23a is essential for craniofacial chondrocyte maturation. Nat Genet 38, 1198–1203.CrossRefPubMedPubMedCentralGoogle Scholar
  218. Lange, L.A., Hu, Y., Zhang, H., Xue, C., Schmidt, E.M., Tang, Z.Z., Bizon, C., Lange, E.M., Smith, J.D., Turner, E.H., et al. (2014). Whole-exome sequencing identifies rare and low-frequency coding variants associated with LDL cholesterol. Am J Hum Genet 94, 233–245.CrossRefPubMedPubMedCentralGoogle Scholar
  219. Lange, Y., and Steck, T.L. (1997). Quantitation of the pool of cholesterol associated with acyl-CoA:cholesterol acyltransferase in human fibroblasts. J Biol Chem 272, 13103–13108.CrossRefPubMedPubMedCentralGoogle Scholar
  220. Lange, Y., Ye, J., Rigney, M., and Steck, T.L. (1999). Regulation of endoplasmic reticulum cholesterol by plasma membrane cholesterol. J Lipid Res 40, 2264–2270.PubMedPubMedCentralGoogle Scholar
  221. Lass, A., Zimmermann, R., Haemmerle, G., Riederer, M., Schoiswohl, G., Schweiger, M., Kienesberger, P., Strauss, J.G., Gorkiewicz, G., and Zechner, R. (2006). Adipose triglyceride lipase-mediated lipolysis of cellular fat stores is activated by CGI-58 and defective in Chanarin-Dorfman syndrome. Cell Metab 3, 309–319.CrossRefPubMedPubMedCentralGoogle Scholar
  222. Lee, J.Y., Kinch, L.N., Borek, D.M., Wang, J., Wang, J., Urbatsch, I.L., Xie, X.S., Grishin, N.V., Cohen, J.C., Otwinowski, Z., et al. (2016). Crystal structure of the human sterol transporter ABCG5/ABCG8. Nature 533, 561–564.CrossRefPubMedPubMedCentralGoogle Scholar
  223. Lee, M.C.S., Miller, E.A., Goldberg, J., Orci, L., and Schekman, R. (2004). Bi-directional protein transport between the ER and Golgi. Annu Rev Cell Dev Biol 20, 87–123.CrossRefPubMedPubMedCentralGoogle Scholar
  224. Lee, Y., Dominy, J.E., Choi, Y.J., Jurczak, M., Tolliday, N., Camporez, J.P., Chim, H., Lim, J.H., Ruan, H.B., Yang, X., et al. (2014). Cyclin D1-Cdk4 controls glucose metabolism independently of cell cycle progression. Nature 510, 547–551.CrossRefPubMedPubMedCentralGoogle Scholar
  225. Lee, Y., Hirose, H., Ohneda, M., Johnson, J.H., McGarry, J.D., and Unger, R.H. (1994). Beta-cell lipotoxicity in the pathogenesis of non-insulin-dependent diabetes mellitus of obese rats: impairment in adipocyte-beta-cell relationships.. Proc Natl Acad Sci USA 91, 10878–10882.CrossRefPubMedPubMedCentralGoogle Scholar
  226. Lengacher, S., Nehiri-Sitayeb, T., Steiner, N., Carneiro, L., Favrod, C., Preitner, F., Thorens, B., Stehle, J.C., Dix, L., Pralong, F., et al. (2013). Resistance to diet-induced obesity and associated metabolic perturbations in haploinsufficient monocarboxylate transporter 1 mice. PLoS ONE 8, e82505.CrossRefPubMedPubMedCentralGoogle Scholar
  227. Lewis, P.M., Dunn, M.P., McMahon, J.A., Logan, M., Martin, J.F., St-Jacques, B., and McMahon, A.P. (2001). Cholesterol modification of sonic hedgehog is required for long-range signaling activity and effective modulation of signaling by Ptc1. Cell 105, 599–612.CrossRefPubMedPubMedCentralGoogle Scholar
  228. Li, E., Shan, H., Chen, L., Long, A., Zhang, Y., Liu, Y., Jia, L., Wei, F., Han, J., Li, T., et al. (2019). OLFR734 mediates glucose metabolism as a receptor of asprosin. Cell Metab 30, 319–328.e8.CrossRefPubMedPubMedCentralGoogle Scholar
  229. Li, J., and Pfeffer, S.R. (2016). Lysosomal membrane glycoproteins bind cholesterol and contribute to lysosomal cholesterol export. eLife 5, e21635.CrossRefPubMedPubMedCentralGoogle Scholar
  230. Li, P., Fan, W.Q., Xu, J., Lu, M., Yamamoto, H., Auwerx, J., Sears, D.D., Talukdar, S., Oh, D.Y., Chen, A., et al. (2011). Adipocyte NCoR knockout decreases PPARγ phosphorylation and enhances PPARγ activity and insulin sensitivity. Cell 147, 815–826.CrossRefPubMedPubMedCentralGoogle Scholar
  231. Li, P.S., Fu, Z.Y., Zhang, Y.Y., Zhang, J.H., Xu, C.Q., Ma, Y.T., Li, B.L., and Song, B.L. (2014a). The clathrin adaptor Numb regulates intestinal cholesterol absorption through dynamic interaction with NPC1L1. Nat Med 20, 80–86.CrossRefPubMedPubMedCentralGoogle Scholar
  232. Li, T.Y., Song, L., Sun, Y., Li, J., Yi, C., Lam, S.M., Xu, D., Zhou, L., Li, X., Yang, Y., et al. (2018). Tip60-mediated lipin 1 acetylation and ER translocation determine triacylglycerol synthesis rate. Nat Commun 9, 1916.CrossRefPubMedPubMedCentralGoogle Scholar
  233. Li, X., Monks, B., Ge, Q., and Birnbaum, M.J. (2007). Akt/PKB regulates hepatic metabolism by directly inhibiting PGC-1α transcription coactivator. Nature 447, 1012–1016.CrossRefPubMedPubMedCentralGoogle Scholar
  234. Li, Z., Johnson, M.R., Ke, Z., Chen, L., and Welte, M.A. (2014b). Drosophila lipid droplets buffer the H2Av supply to protect early embryonic development. Curr Biol 24, 1485–1491.CrossRefPubMedPubMedCentralGoogle Scholar
  235. Li, Z., Thiel, K., Thul, P.J., Beller, M., Kühnlein, R.P., and Welte, M.A. (2012). Lipid droplets control the maternal histone supply of Drosophila embryos. Curr Biol 22, 2104–2113.CrossRefPubMedPubMedCentralGoogle Scholar
  236. Liao, Y., Wei, J., Wang, J., Shi, X., Luo, J., and Song, B.L. (2018). The non-canonical NF-κB pathway promotes NPC2 expression and regulates intracellular cholesterol trafficking. Sci China Life Sci 61, 1222–1232.CrossRefPubMedPubMedCentralGoogle Scholar
  237. Lin, H.V., and Accili, D. (2011). Hormonal regulation of hepatic glucose production in health and disease. Cell Metab 14, 9–19.CrossRefPubMedPubMedCentralGoogle Scholar
  238. Linton, M.R.F., Tao, H., Linton, E.F., and Yancey, P.G. (2017). SR-BI: a multifunctional receptor in cholesterol homeostasis and atherosclerosis. Trends Endocrinol Metab 28, 461–472.CrossRefPubMedPubMedCentralGoogle Scholar
  239. Lira, V.A., Brown, D.L., Lira, A.K., Kavazis, A.N., Soltow, Q.A., Zeanah, E.H., and Criswell, D.S. (2010). Nitric oxide and AMPK cooperatively regulate PGC-1α in skeletal muscle cells. J Physiol 588, 3551–3566.CrossRefPubMedPubMedCentralGoogle Scholar
  240. Liscum, L., and Munn, N.J. (1999). Intracellular cholesterol transport. Biochim Biophys Acta Mol Cell Biol Lipids 1438, 19–37.CrossRefGoogle Scholar
  241. Listenberger, L.L., Han, X., Lewis, S.E., Cases, S., Farese Jr., R.V., Ory, D. S., and Schaffer, J.E. (2003). Triglyceride accumulation protects against fatty acid-induced lipotoxicity. Proc Natl Acad Sci USA 100, 3077–3082.CrossRefPubMedPubMedCentralGoogle Scholar
  242. Liu, B., Turley, S.D., Burns, D.K., Miller, A.M., Repa, J.J., and Dietschy, J. M. (2009). Reversal of defective lysosomal transport in NPC disease ameliorates liver dysfunction and neurodegeneration in the Npc1 −/− mouse. Proc Natl Acad Sci USA 106, 2377–2382.CrossRefPubMedPubMedCentralGoogle Scholar
  243. Liu, D.J., Peloso, G.M., Yu, H., Butterworth, A.S., Wang, X., Mahajan, A., Saleheen, D., Emdin, C., Alam, D., Alves, A.C., et al. (2017a). Exomewide association study of plasma lipids in >300,000 individuals. Nat Genet 49, 1758–1766.CrossRefPubMedPubMedCentralGoogle Scholar
  244. Liu, L., Cai, J., Wang, H., Liang, X., Zhou, Q., Ding, C., Zhu, Y., Fu, T., Guo, Q., Xu, Z., et al. (2019). Coupling of COPII vesicle trafficking to nutrient availability by the IRE1α-XBP1s axis. Proc Natl Acad Sci USA 23, 201814480.CrossRefGoogle Scholar
  245. Liu, L., MacKenzie, K.R., Putluri, N., Maletić-Savatić, M., and Bellen, H.J. (2017b). The glia-neuron lactate shuttle and elevated ROS promote lipid synthesis in neurons and lipid droplet accumulation in glia via APOE/D. Cell Metab 26, 719–737.e6.CrossRefPubMedPubMedCentralGoogle Scholar
  246. Liu, L., Zhang, K., Sandoval, H., Yamamoto, S., Jaiswal, M., Sanz, E., Li, Z., Hui, J., Graham, B.H., Quintana, A., et al. (2015a). Glial lipid droplets and ROS induced by mitochondrial defects promote neurodegeneration. Cell 160, 177–190.CrossRefPubMedPubMedCentralGoogle Scholar
  247. Liu, T.Y., Shi, C.X., Gao, R., Sun, H.J., Xiong, X.Q., Ding, L., Chen, Q., Li, Y.H., Wang, J.J., Kang, Y.M., et al. (2015b). Irisin inhibits hepatic gluconeogenesis and increases glycogen synthesis via the PI3K/Akt pathway in type 2 diabetic mice and hepatocytes. Clin Sci 129, 839–850.CrossRefPubMedPubMedCentralGoogle Scholar
  248. Liu, Y., Dentin, R., Chen, D., Hedrick, S., Ravnskjaer, K., Schenk, S., Milne, J., Meyers, D.J., Cole, P., Yates, J., et al. (2008). A fasting inducible switch modulates gluconeogenesis via activator/coactivator exchange. Nature 456, 269–273.CrossRefPubMedPubMedCentralGoogle Scholar
  249. Lizcano, J.M., and Alessi, D.R. (2002). The insulin signalling pathway. Curr Biol 12, R236–R238.CrossRefPubMedPubMedCentralGoogle Scholar
  250. Lu, K., Lee, M.H., Hazard, S., Brooks-Wilson, A., Hidaka, H., Kojima, H., Ose, L., Stalenhoef, A.F.H., Mietinnen, T., Bjorkhem, I., et al. (2001). Two genes that map to the STSL locus cause sitosterolemia: genomic structure and spectrum of mutations involving sterolin-1 and sterolin-2, encoded by ABCG5 and ABCG8, respectively. Am J Hum Genets 69, 278–290.CrossRefGoogle Scholar
  251. Lu, M., Wan, M., Leavens, K.F., Chu, Q., Monks, B.R., Fernandez, S., Ahima, R.S., Ueki, K., Kahn, C.R., and Birnbaum, M.J. (2012). Insulin regulates liver metabolism in vivo in the absence of hepatic Akt and Foxo1. Nat Med 18, 388–395.CrossRefPubMedPubMedCentralGoogle Scholar
  252. Lu, X., Huang, J., Mo, Z., He, J., Wang, L., Yang, X., Tan, A., Chen, S., Chen, J., Gu, C.C., et al. (2016a). Genetic susceptibility to lipid levels and lipid change over time and risk of incident hyperlipidemia in Chinese populations. Circ Cardiovasc Genet 9, 37–44.CrossRefPubMedPubMedCentralGoogle Scholar
  253. Lu, X., Li, J., Li, H., Chen, Y., Wang, L., He, M., Wang, Y., Sun, L., Hu, Y., Huang, J., et al. (2016b). Coding-sequence variants are associated with blood lipid levels in 14,473 Chinese. Hum Mol Genet 25, 4107–4116.CrossRefPubMedPubMedCentralGoogle Scholar
  254. Lu, X., Peloso, G.M., Liu, D.J., Wu, Y., Zhang, H., Zhou, W., Li, J., Tang, C.S.M., Dorajoo, R., Li, H., et al. (2017). Exome chip meta-analysis identifies novel loci and East Asian-specific coding variants that contribute to lipid levels and coronary artery disease. Nat Genet 49, 1722–1730.CrossRefPubMedPubMedCentralGoogle Scholar
  255. Luo, H., Jiang, M., Lian, G., Liu, Q., Shi, M., Li, T.Y., Song, L., Ye, J., He, Y., Yao, L., et al. (2018). AIDA selectively mediates downregulation of fat synthesis enzymes by ERAD to retard intestinal fat absorption and prevent obesity. Cell Metab 27, 843–853.e6.CrossRefPubMedPubMedCentralGoogle Scholar
  256. Madiraju, A.K., Erion, D.M., Rahimi, Y., Zhang, X.M., Braddock, D.T., Albright, R.A., Prigaro, B.J., Wood, J.L., Bhanot, S., MacDonald, M.J., et al. (2014). Metformin suppresses gluconeogenesis by inhibiting mitochondrial glycerophosphate dehydrogenase. Nature 510, 542–546.CrossRefPubMedPubMedCentralGoogle Scholar
  257. Magré, J., Delépine, M., Khallouf, E., Gedde-Dahl, T., Van Maldergem, L., Sobel, E., Papp, J., Meier, M., Mégarbané, A., BSCL Working Group, A., et al. (2001). Identification of the gene altered in Berardinelli-Seip congenital lipodystrophy on chromosome 11q13. Nat Genet 28, 365–370.CrossRefPubMedPubMedCentralGoogle Scholar
  258. Malhotra, V., Erlmann, P., and Nogueira, C. (2015). Procollagen export from the endoplasmic reticulum. Biochm Soc Trans 43, 104–107.CrossRefGoogle Scholar
  259. Mancias, J.D., and Goldberg, J. (2007). The transport signal on Sec22 for packaging into COPII-coated vesicles is a conformational epitope. Mol Cell 26, 403–414.CrossRefPubMedPubMedCentralGoogle Scholar
  260. Mancias, J.D., and Goldberg, J. (2008). Structural basis of cargo membrane protein discrimination by the human COPII coat machinery. EMBO J 27, 2918–2928.CrossRefPubMedPubMedCentralGoogle Scholar
  261. Martinez-Botas, J., Anderson, J.B., Tessier, D., Lapillonne, A., Chang, B.H. J., Quast, M.J., Gorenstein, D., Chen, K.H., and Chan, L. (2000). Absence of perilipin results in leanness and reverses obesity in Lepr (db/db) mice. Nat Genet 26, 474–479.CrossRefPubMedPubMedCentralGoogle Scholar
  262. Matsumoto, M., Pocai, A., Rossetti, L., Depinho, R.A., and Accili, D. (2007). Impaired regulation of hepatic glucose production in mice lacking the forkhead transcription factor Foxo1 in liver. Cell Metab 6, 208–216.CrossRefPubMedPubMedCentralGoogle Scholar
  263. Maurano, M.T., Humbert, R., Rynes, E., Thurman, R.E., Haugen, E., Wang, H., Reynolds, A.P., Sandstrom, R., Qu, H., Brody, J., et al. (2012). Systematic localization of common disease-associated variation in regulatory DNA. Science 337, 1190–1195.CrossRefPubMedPubMedCentralGoogle Scholar
  264. Melnikov, A., Murugan, A., Zhang, X., Tesileanu, T., Wang, L., Rogov, P., Feizi, S., Gnirke, A., Callan, C.G., Kinney, J.B., et al. (2012). Systematic dissection and optimization of inducible enhancers in human cells using a massively parallel reporter assay. Nat Biotechnol 30, 271–277.CrossRefPubMedPubMedCentralGoogle Scholar
  265. Meyer, C., Dostou, J.M., Welle, S.L., and Gerich, J.E. (2002). Role of human liver, kidney, and skeletal muscle in postprandial glucose homeostasis. Am J Physiol Endocrinol Metab 282, E419–E427.CrossRefPubMedPubMedCentralGoogle Scholar
  266. Mihaylova, M.M., Vasquez, D.S., Ravnskjaer, K., Denechaud, P.D., Yu, R. T., Alvarez, J.G., Downes, M., Evans, R.M., Montminy, M., and Shaw, R.J. (2011). Class IIa histone deacetylases are hormone-activated regulators of FOXO and mammalian glucose homeostasis. Cell 145, 607–621.CrossRefPubMedPubMedCentralGoogle Scholar
  267. Milger, K., Herrmann, T., Becker, C., Gotthardt, D., Zickwolf, J., Ehehalt, R., Watkins, P.A., Stremmel, W., and Füllekrug, J. (2006). Cellular uptake of fatty acids driven by the ER-localized acyl-CoA synthetase FATP4. J Cell Sci 119, 4678–4688.CrossRefPubMedPubMedCentralGoogle Scholar
  268. Miller, E.A., Beilharz, T.H., Malkus, P.N., Lee, M.C.S., Hamamoto, S., Orci, L., and Schekman, R. (2003). Multiple cargo binding sites on the COPII subunit Sec24p ensure capture of diverse membrane proteins into transport vesicles. Cell 114, 497–509.CrossRefPubMedPubMedCentralGoogle Scholar
  269. Mithieux, G., Andreelli, F., and Magnan, C. (2009). Intestinal gluconeogenesis: key signal of central control of energy and glucose homeostasis. Curr Opin Clin Nutrit Metab Care 12, 419–423.CrossRefGoogle Scholar
  270. Mitsche, M.A., McDonald, J.G., Hobbs, H.H., and Cohen, J.C. (2015). Flux analysis of cholesterol biosynthesis in vivo reveals multiple tissue and cell-type specific pathways. eLife 4, e07999.CrossRefPubMedPubMedCentralGoogle Scholar
  271. Miyanari, Y., Atsuzawa, K., Usuda, N., Watashi, K., Hishiki, T., Zayas, M., Bartenschlager, R., Wakita, T., Hijikata, M., and Shimotohno, K. (2007). The lipid droplet is an important organelle for hepatitis C virus production. Nat Cell Biol 9, 1089–1097.CrossRefPubMedPubMedCentralGoogle Scholar
  272. Moon, S.H., Huang, C.H., Houlihan, S.L., Regunath, K., Freed-Pastor, W. A., Morris Iv, J.P., Tschaharganeh, D.F., Kastenhuber, E.R., Barsotti, A. M., Culp-Hill, R., et al. (2019). p53 represses the mevalonate pathway to mediate tumor suppression. Cell 176, 564–580.e19.CrossRefGoogle Scholar
  273. Moore, M.C., Coate, K.C., Winnick, J.J., An, Z., and Cherrington, A.D. (2012). Regulation of hepatic glucose uptake and storage in vivo. Adv Nutrit 3, 286–294.CrossRefGoogle Scholar
  274. Mossessova, E., Bickford, L.C., and Goldberg, J. (2003). SNARE selectivity of the COPII coat. Cell 114, 483–495.CrossRefPubMedPubMedCentralGoogle Scholar
  275. Mueckler, M., and Thorens, B. (2013). The SLC2 (GLUT) family of membrane transporters. Mol Aspect Med 34, 121–138.CrossRefGoogle Scholar
  276. Mugoni, V., Postel, R., Catanzaro, V., De Luca, E., Turco, E., Digilio, G., Silengo, L., Murphy, M.P., Medana, C., Stainier, D.Y.R., et al. (2013). Ubiad1 is an antioxidant enzyme that regulates eNOS activity by CoQ10 synthesis. Cell 152, 504–518.CrossRefPubMedPubMedCentralGoogle Scholar
  277. Muller, C. (1938). Xanthomata, hypercholesterolemia, angina pectoris. Acta Med Scand 89, 75–84.Google Scholar
  278. Musunuru, K., and Kathiresan, S. (2019). Genetics of common, complex coronary artery disease. Cell 177, 132–145.CrossRefPubMedPubMedCentralGoogle Scholar
  279. Myers, S.R., Diamond, M.P., Adkins-Marshall, B.A., Williams, P.E., Stinsen, R., and Cherrington, A.D. (1991). Effects of small changes in glucagon on glucose production during a euglycemic, hyperinsulinemic clamp. Metabolism 40, 66–71.CrossRefPubMedPubMedCentralGoogle Scholar
  280. Nagao, K., Takahashi, K., Azuma, Y., Takada, M., Kimura, Y., Matsuo, M., Kioka, N., and Ueda, K. (2012). ATP hydrolysis-dependent conformational changes in the extracellular domain of ABCA1 are associated with apoA-I binding. J Lipid Res 53, 126–136.CrossRefPubMedPubMedCentralGoogle Scholar
  281. Nagashima, T., Shigematsu, N., Maruki, R., Urano, Y., Tanaka, H., Shimaya, A., Shimokawa, T., and Shibasaki, M. (2010). Discovery of novel forkhead box O1 inhibitors for treating type 2 diabetes: improvement of fasting glycemia in diabetic db/db mice. Mol Pharmacol 78, 961–970.CrossRefPubMedPubMedCentralGoogle Scholar
  282. Nakagawa, K., Hirota, Y., Sawada, N., Yuge, N., Watanabe, M., Uchino, Y., Okuda, N., Shimomura, Y., Suhara, Y., and Okano, T. (2010). Identification of UBIAD1 as a novel human menaquinone-4 biosynthetic enzyme. Nature 468, 117–121.CrossRefPubMedPubMedCentralGoogle Scholar
  283. Nguyen, K.D., Qiu, Y., Cui, X., Goh, Y.P.S., Mwangi, J., David, T., Mukundan, L., Brombacher, F., Locksley, R.M., and Chawla, A. (2011). Alternatively activated macrophages produce catecholamines to sustain adaptive thermogenesis. Nature 480, 104–108.CrossRefPubMedPubMedCentralGoogle Scholar
  284. Nguyen, T.B., Louie, S.M., Daniele, J.R., Tran, Q., Dillin, A., Zoncu, R., Nomura, D.K., and Olzmann, J.A. (2017). DGAT1-dependent lipid droplet biogenesis protects mitochondrial function during starvation-induced autophagy. Dev Cell 42, 9–21.e5.CrossRefPubMedPubMedCentralGoogle Scholar
  285. Nisoli, E., Clementi, E., Paolucci, C., Cozzi, V., Tonello, C., Sciorati, C., Bracale, R., Valerio, A., Francolini, M., Moncada, S., et al. (2003). Mitochondrial biogenesis in mammals: the role of endogenous nitric oxide. Science 299, 896–899.CrossRefPubMedPubMedCentralGoogle Scholar
  286. Nohturfft, A., Yabe, D., Goldstein, J.L., Brown, M.S., and Espenshade, P.J. (2000). Regulated step in cholesterol feedback localized to budding of SCAP from ER membranes. Cell 102, 315–323.CrossRefPubMedPubMedCentralGoogle Scholar
  287. Nordestgaard, B.G., Chapman, M.J., Humphries, S.E., Ginsberg, H.N., Masana, L., Descamps, O.S., Wiklund, O., Hegele, R.A., Raal, F.J., Defesche, J.C., et al. (2013). Familial hypercholesterolaemia is underdiagnosed and undertreated in the general population: guidance for clinicians to prevent coronary heart disease: consensus statement of the European Atherosclerosis Society. Eur Heart J 34, 3478–3490.CrossRefPubMedPubMedCentralGoogle Scholar
  288. Nowaczyk, M.J.M., and Irons, M.B. (2012). Smith-Lemli-Opitz syndrome: phenotype, natural history, and epidemiology. Am J Med Genet 160C, 250–262.CrossRefPubMedPubMedCentralGoogle Scholar
  289. Ohashi, K., Ishibashi, S., Osuga, J., Tozawa, R., Harada, K., Yahagi, N., Shionoiri, F., Iizuka, Y., Tamura, Y., Nagai, R., et al. (2000). Novel mutations in the microsomal triglyceride transfer protein gene causing abetalipoproteinemia. J Lipid Res 41, 1199–1204.PubMedPubMedCentralGoogle Scholar
  290. Okar, D.A., and Lange, A.J. (1999). Fructose-2,6-bisphosphate and control of carbohydrate metabolism in eukaryotes. Biofactors 10, 1–14.CrossRefPubMedPubMedCentralGoogle Scholar
  291. Olzmann, J.A., and Carvalho, P. (2019). Dynamics and functions of lipid droplets. Nat Rev Mol Cell Biol 20, 137–155.CrossRefPubMedPubMedCentralGoogle Scholar
  292. Orr, A., Dubé, M.P., Marcadier, J., Jiang, H., Federico, A., George, S., Seamone, C., Andrews, D., Dubord, P., Holland, S., et al. (2007). Mutations in the UBIAD1 gene, encoding a potential prenyltransferase, are causal for Schnyder crystalline corneal dystrophy. PLoS ONE 2, e685.CrossRefPubMedPubMedCentralGoogle Scholar
  293. Osuga, J., Ishibashi, S., Oka, T., Yagyu, H., Tozawa, R., Fujimoto, A., Shionoiri, F., Yahagi, N., Kraemer, F.B., Tsutsumi, O., et al. (2000). Targeted disruption of hormone-sensitive lipase results in male sterility and adipocyte hypertrophy, but not in obesity. Proc Natl Acad Sci USA 97, 787–792.CrossRefPubMedPubMedCentralGoogle Scholar
  294. Ou, H., Liu, C., Feng, W., Xiao, X., Tang, S., and Mo, Z. (2018). Role of AMPK in atherosclerosis via autophagy regulation. Sci China Life Sci 61, 1212–1221.CrossRefPubMedPubMedCentralGoogle Scholar
  295. Ozaki, K., Ohnishi, Y., Iida, A., Sekine, A., Yamada, R., Tsunoda, T., Sato, H., Sato, H., Hori, M., Nakamura, Y., et al. (2002). Functional SNPs in the lymphotoxin-α gene that are associated with susceptibility to myocardial infarction. Nat Genet 32, 650–654.CrossRefPubMedPubMedCentralGoogle Scholar
  296. Ozeki, S., Cheng, J., Tauchi-Sato, K., Hatano, N., Taniguchi, H., and Fujimoto, T. (2005). Rab18 localizes to lipid droplets and induces their close apposition to the endoplasmic reticulum-derived membrane. J Cell Sci 118, 2601–2611.CrossRefPubMedPubMedCentralGoogle Scholar
  297. Palmieri, F. (2013). The mitochondrial transporter family SLC25: identification, properties and physiopathology. Mol Aspect Med 34, 465–484.CrossRefGoogle Scholar
  298. Peng, R., De Antoni, A., and Gallwitz, D. (2000). Evidence for overlapping and distinct functions in protein transport of coat protein Sec24p family members. J Biol Chem 275, 11521–11528.CrossRefPubMedPubMedCentralGoogle Scholar
  299. Perez-Poyato, M.S., and Pineda, M. (2011). New agents and approaches to treatment in Niemann-Pick type C disease. Curr Pharm Biotechnol 12, 897–901.CrossRefPubMedPubMedCentralGoogle Scholar
  300. Perland, E., and Fredriksson, R. (2017). Classification systems of secondary active transporters. Trends Pharmacol Sci 38, 305–315.CrossRefPubMedPubMedCentralGoogle Scholar
  301. Perry, R.J., Wang, Y., Cline, G.W., Rabin-Court, A., Song, J.D., Dufour, S., Zhang, X.M., Petersen, K.F., and Shulman, G.I. (2018). Leptin mediates a glucose-fatty acid cycle to maintain glucose homeostasis in starvation. Cell 172, 234–248.e17.CrossRefPubMedPubMedCentralGoogle Scholar
  302. Petersen, M.C., Vatner, D.F., and Shulman, G.I. (2017). Regulation of hepatic glucose metabolism in health and disease. Nat Rev Endocrinol 13, 572–587.CrossRefPubMedPubMedCentralGoogle Scholar
  303. Pfisterer, S.G., Peränen, J., and Ikonen, E. (2016). LDL-cholesterol transport to the endoplasmic reticulum. Curr Opin Lipidol 27, 282–287.CrossRefPubMedPubMedCentralGoogle Scholar
  304. Phillips, M.C. (2014). Molecular mechanisms of cellular cholesterol efflux. J Biol Chem 289, 24020–24029.CrossRefPubMedPubMedCentralGoogle Scholar
  305. Pilkis, S.J., and Claus, T.H. (1991). Hepatic gluconeogenesis/glycolysis: regulation and structure/function relationships of substrate cycle enzymes. Annu Rev Nutr 11, 465–515.CrossRefPubMedPubMedCentralGoogle Scholar
  306. Pilkis, S.J., El-Maghrabi, M.R., McGrane, M., Pilkis, J., and Claus, T.H. (1982). Regulation by glucagon of hepatic pyruvate kinase, 6-phosphofructo 1-kinase, and fructose-1,6-bisphosphatase. Fed Proc 41, 2623–2628.PubMedPubMedCentralGoogle Scholar
  307. Porter, F.D. (2008). Smith-Lemli-Opitz syndrome: pathogenesis, diagnosis and management. Eur J Hum Genet 16, 535–541.CrossRefPubMedPubMedCentralGoogle Scholar
  308. Porter, F.D., and Herman, G.E. (2011). Malformation syndromes caused by disorders of cholesterol synthesis. J Lipid Res 52, 6–34.CrossRefPubMedPubMedCentralGoogle Scholar
  309. Porter, J.A., Young, K.E., and Beachy, P.A. (1996). Cholesterol modification of hedgehog signaling proteins in animal development. Science 274, 255–259.CrossRefPubMedPubMedCentralGoogle Scholar
  310. Puigserver, P., Rhee, J., Donovan, J., Walkey, C.J., Yoon, J.C., Oriente, F., Kitamura, Y., Altomonte, J., Dong, H., Accili, D., et al. (2003). Insulin-regulated hepatic gluconeogenesis through FOXO1-PGC-1α interaction. Nature 423, 550–555.CrossRefPubMedPubMedCentralGoogle Scholar
  311. Puntoni, M., Sbrana, F., Bigazzi, F., and Sampietro, T. (2012). Tangier disease. Am J Cardiovasc Drugs 12, 303–311.CrossRefPubMedPubMedCentralGoogle Scholar
  312. Qian, H., Zhao, X., Cao, P., Lei, J., Yan, N., and Gong, X. (2017). Structure of the human lipid exporter ABCA1. Cell 169, 1228–1239.e10.CrossRefPubMedPubMedCentralGoogle Scholar
  313. Qiang, G., Xue, S., Yang, J.J., Du, G., Pang, X., Li, X., Goswami, D., Griffin, P.R., Ortlund, E.A., Chan, C.B., et al. (2014). Identification of a small molecular insulin receptor agonist with potent antidiabetes activity. Diabetes 63, 1394–1409.CrossRefPubMedPubMedCentralGoogle Scholar
  314. Radhakrishnan, A., Goldstein, J.L., McDonald, J.G., and Brown, M.S. (2008). Switch-like control of SREBP-2 transport triggered by small changes in ER cholesterol: a delicate balance. Cell Metab 8, 512–521.CrossRefPubMedPubMedCentralGoogle Scholar
  315. Radhakrishnan, A., Sun, L.P., Kwon, H.J., Brown, M.S., and Goldstein, J.L. (2004). Direct binding of cholesterol to the purified membrane region of SCAP. Mol Cell 15, 259–268.CrossRefPubMedPubMedCentralGoogle Scholar
  316. Radziuk, J., and Pye, S. (2001). Hepatic glucose uptake, gluconeogenesis and the regulation of glycogen synthesis. Diabetes Metab Res Rev 17, 250–272.CrossRefPubMedPubMedCentralGoogle Scholar
  317. Rambold, A.S., Cohen, S., and Lippincott-Schwartz, J. (2015). Fatty acid trafficking in starved cells: regulation by lipid droplet lipolysis, autophagy, and mitochondrial fusion dynamics. Dev Cell 32, 678–692.CrossRefPubMedPubMedCentralGoogle Scholar
  318. Rasouli, N., Molavi, B., Elbein, S.C., and Kern, P.A. (2007). Ectopic fat accumulation and metabolic syndrome. Diabetes Obes Metab 9, 1–10.CrossRefPubMedPubMedCentralGoogle Scholar
  319. Ravier, M.A., and Rutter, G.A. (2005). Glucose or insulin, but not zinc ions, inhibit glucagon secretion from mouse pancreaticα-cells. Diabetes 54, 1789–1797.CrossRefPubMedPubMedCentralGoogle Scholar
  320. Raychaudhuri, S. (2011). Mapping rare and common causal alleles for complex human diseases. Cell 147, 57–69.CrossRefPubMedPubMedCentralGoogle Scholar
  321. Rebsamen, M., Pochini, L., Stasyk, T., de Araújo, M.E.G., Galluccio, M., Kandasamy, R.K., Snijder, B., Fauster, A., Rudashevskaya, E.L., Bruckner, M., et al. (2015). SLC38A9 is a component of the lysosomal amino acid sensing machinery that controls mTORC1. Nature 519, 477–481.CrossRefPubMedPubMedCentralGoogle Scholar
  322. Reeskamp, L.F., Meessen, E.C.E., and Groen, A.K. (2018). Transintestinal cholesterol excretion in humans. Curr Opin Lipidol 29, 10–17.CrossRefPubMedPubMedCentralGoogle Scholar
  323. Rehberg, E.F., Samson-Bouma, M.E., Kienzle, B., Blinderman, L., Jamil, H., Wetterau, J.R., Aggerbeck, L.P., and Gordon, D.A. (1996). A novel abetalipoproteinemia genotype. J Biol Chem 271, 29945–29952.CrossRefPubMedPubMedCentralGoogle Scholar
  324. Rines, A.K., Sharabi, K., Tavares, C.D.J., and Puigserver, P. (2016). Targeting hepatic glucose metabolism in the treatment of type 2 diabetes. Nat Rev Drug Discov 15, 786–804.CrossRefPubMedPubMedCentralGoogle Scholar
  325. Rizza, R.A. (2010). Pathogenesis of fasting and postprandial hyperglycemia in type 2 diabetes: implications for therapy. Diabetes 59, 2697–2707.CrossRefPubMedPubMedCentralGoogle Scholar
  326. Roberg, K.J., Crotwell, M., Espenshade, P., Gimeno, R., and Kaiser, C.A. (1999). LST1 is a SEC24 homologue used for selective export of the plasma membrane ATPase from the endoplasmic reticulum. J Cell Biol 145, 659–672.CrossRefPubMedPubMedCentralGoogle Scholar
  327. Roingeard, P., and Melo, R.C.N. (2017). Lipid droplet hijacking by intracellular pathogens. Cell Microbiol 19, e12688.CrossRefGoogle Scholar
  328. Romanauska, A., and Köhler, A. (2018). The inner nuclear membrane is a metabolically active territory that generates nuclear lipid droplets. Cell 174, 700–715.e18.CrossRefPubMedPubMedCentralGoogle Scholar
  329. Romere, C., Duerrschmid, C., Bournat, J., Constable, P., Jain, M., Xia, F., Saha, P.K., Del Solar, M., Zhu, B., York, B., et al. (2016). Asprosin, a fasting-induced glucogenic protein hormone. Cell 165, 566–579.CrossRefPubMedPubMedCentralGoogle Scholar
  330. Russell, D.W., Yamamoto, T., Schneider, W.J., Slaughter, C.J., Brown, M. S., and Goldstein, J.L. (1983). cDNA cloning of the bovine low density lipoprotein receptor: feedback regulation of a receptor mRNA.. Proc Natl Acad Sci USA 80, 7501–7505.CrossRefPubMedPubMedCentralGoogle Scholar
  331. Rust, S., Rosier, M., Funke, H., Real, J., Amoura, Z., Piette, J.C., Deleuze, J.F., Brewer, H.B., Duverger, N., Denèfle, P., et al. (1999). Tangier disease is caused by mutations in the gene encoding ATP-binding cassette transporter 1. Nat Genet 22, 352–355.CrossRefPubMedPubMedCentralGoogle Scholar
  332. Rusu, V., Hoch, E., Mercader, J.M., Tenen, D.E., Gymrek, M., Hartigan, C. R., DeRan, M., von Grotthuss, M., Fontanillas, P., Spooner, A., et al. (2017). Type 2 diabetes variants disrupt function of slc16a11 through two distinct mechanisms. Cell 170, 199–212.e20.CrossRefPubMedPubMedCentralGoogle Scholar
  333. Sabatine, M.S. (2019). PCSK9 inhibitors: clinical evidence and implementation. Nat Rev Cardiol 16, 155–165.CrossRefPubMedPubMedCentralGoogle Scholar
  334. Saberi, M., Bjelica, D., Schenk, S., Imamura, T., Bandyopadhyay, G., Li, P., Jadhar, V., Vargeese, C., Wang, W., Bowman, K., et al. (2009). Novel liver-specific TORC2 siRNA corrects hyperglycemia in rodent models of type 2 diabetes. Am J Physiol Endocrinol Metab 297, E1137–E1146.CrossRefPubMedPubMedCentralGoogle Scholar
  335. Saini, V. (2010). Molecular mechanisms of insulin resistance in type 2 diabetes mellitus. World J Diabetes 1, 68–75.CrossRefPubMedPubMedCentralGoogle Scholar
  336. Sakai, J., Duncan, E.A., Rawson, R.B., Hua, X., Brown, M.S., and Goldstein, J.L. (1996). Sterol-regulated release of SREBP-2 from cell membranes requires two sequential cleavages, one within a transmembrane segment. Cell 85, 1037–1046.CrossRefPubMedPubMedCentralGoogle Scholar
  337. Salo, V.T., Li, S., Vihinen, H., Hölttä-Vuori, M., Szkalisity, A., Horvath, P., Belevich, I., Peränen, J., Thiele, C., Somerharju, P., et al. (2019). Seipin facilitates triglyceride flow to lipid droplet and counteracts droplet ripening via endoplasmic reticulum contact. Dev Cell 50, 478–493.e9.CrossRefPubMedPubMedCentralGoogle Scholar
  338. Sandhu, M.S., Waterworth, D.M., Debenham, S.L., Wheeler, E., Papadakis, K., Zhao, J.H., Song, K., Yuan, X., Johnson, T., Ashford, S., et al. (2008). LDL-cholesterol concentrations: a genome-wide association study. Lancet 371, 483–491.CrossRefPubMedPubMedCentralGoogle Scholar
  339. Santos, A.J.M., Nogueira, C., Ortega-Bellido, M., and Malhotra, V. (2016). TANGO1 and Mia2/cTAGE5 (TALI) cooperate to export bulky prechylomicrons/VLDLs from the endoplasmic reticulum. J Cell Biol 213, 343–354.CrossRefPubMedPubMedCentralGoogle Scholar
  340. Schekman, R. (2007). How sterols regulate protein sorting and traffic. Proc Natl Acad Sci USA 104, 6496–6497.CrossRefPubMedPubMedCentralGoogle Scholar
  341. Schonfeld, G. (2003). Familial hypobetalipoproteinemia. J Lipid Res 44, 878–883.CrossRefPubMedPubMedCentralGoogle Scholar
  342. Schonfeld, G., Lin, X., and Yue, P. (2005). Familial hypobetalipoproteinemia: genetics and metabolism. CMLS Cell Mol Life Sci 62, 1372–1378.CrossRefPubMedPubMedCentralGoogle Scholar
  343. Schumacher, M.M., Elsabrouty, R., Seemann, J., Jo, Y., and DeBose-Boyd, R.A. (2015). The prenyltransferase UBIAD1 is the target of geranylgeraniol in degradation of HMG CoA reductase. eLife 4, e05560.CrossRefGoogle Scholar
  344. Schumacher, M.M., Jun, D.J., Jo, Y., Seemann, J., and DeBose-Boyd, R.A. (2016). Geranylgeranyl-regulated transport of the prenyltransferase UBIAD1 between membranes of the ER and Golgi. J Lipid Res 57, 1286–1299.CrossRefPubMedPubMedCentralGoogle Scholar
  345. Schwarz, K., Iolascon, A., Verissimo, F., Trede, N.S., Horsley, W., Chen, W., Paw, B.H., Hopfner, K.P., Holzmann, K., Russo, R., et al. (2009). Mutations affecting the secretory COPII coat component SEC23B cause congenital dyserythropoietic anemia type II. Nat Genet 41, 936–940.CrossRefPubMedPubMedCentralGoogle Scholar
  346. Screaton, R.A., Conkright, M.D., Katoh, Y., Best, J.L., Canettieri, G., Jeffries, S., Guzman, E., Niessen, S., Yates Iii, J.R., Takemori, H., et al. (2004). The CREB coactivator TORC2 functions as a calcium- and cAMP-sensitive coincidence detector. Cell 119, 61–74.CrossRefPubMedPubMedCentralGoogle Scholar
  347. Seidah, N.G., Benjannet, S., Wickham, L., Marcinkiewicz, J., Jasmin, S.B., Stifani, S., Basak, A., Prat, A., and Chretien, M. (2003). The secretory proprotein convertase neural apoptosis-regulated convertase 1 (NARC-1): liver regeneration and neuronal differentiation. Proc Natl Acad Sci USA 100, 928–933.CrossRefPubMedPubMedCentralGoogle Scholar
  348. Sezgin, E., Levental, I., Mayor, S., and Eggeling, C. (2017). The mystery of membrane organization: composition, regulation and roles of lipid rafts. Nat Rev Mol Cell Biol 18, 361–374.CrossRefPubMedPubMedCentralGoogle Scholar
  349. Sharabi, K., Tavares, C.D.J., Rines, A.K., and Puigserver, P. (2015). Molecular pathophysiology of hepatic glucose production. Mol Aspect Med 46, 21–33.CrossRefGoogle Scholar
  350. Shaw, R.J., Lamia, K.A., Vasquez, D., Koo, S.H., Bardeesy, N., Depinho, R.A., Montminy, M., and Cantley, L.C. (2005). The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin. Science 310, 1642–1646.CrossRefPubMedPubMedCentralGoogle Scholar
  351. Shepherd, P.R., and Kahn, B.B. (1999). Glucose transporters and insulin action—implications for insulin resistance and diabetes mellitus. N Engl J Med 341, 248–257.CrossRefPubMedPubMedCentralGoogle Scholar
  352. Shimano, H., Horton, J.D., Hammer, R.E., Shimomura, I., Brown, M.S., and Goldstein, J.L. (1996). Overproduction of cholesterol and fatty acids causes massive liver enlargement in transgenic mice expressing truncated SREBP-1a.. J Clin Invest 98, 1575–1584.CrossRefPubMedPubMedCentralGoogle Scholar
  353. Shimoni, Y., Kurihara, T., Ravazzola, M., Amherdt, M., Orci, L., and Schekman, R. (2000). Lst1p and Sec24p cooperate in sorting of the plasma membrane ATPase into COPII vesicles in Saccharomyces cerevisiae. J Cell Biol 151, 973–984.CrossRefPubMedPubMedCentralGoogle Scholar
  354. Shubeita, G.T., Tran, S.L., Xu, J., Vershinin, M., Cermelli, S., Cotton, S.L., Welte, M.A., and Gross, S.P. (2008). Consequences of motor copy number on the intracellular transport of kinesin-1-driven lipid droplets. Cell 135, 1098–1107.CrossRefPubMedPubMedCentralGoogle Scholar
  355. Singh, R., Kaushik, S., Wang, Y., Xiang, Y., Novak, I., Komatsu, M., Tanaka, K., Cuervo, A.M., and Czaja, M.J. (2009). Autophagy regulates lipid metabolism. Nature 458, 1131–1135.CrossRefPubMedPubMedCentralGoogle Scholar
  356. Solt, L.A., Wang, Y., Banerjee, S., Hughes, T., Kojetin, D.J., Lundasen, T., Shin, Y., Liu, J., Cameron, M.D., Noel, R., et al. (2012). Regulation of circadian behaviour and metabolism by synthetic REV-ERB agonists. Nature 485, 62–68.CrossRefPubMedPubMedCentralGoogle Scholar
  357. Song, W., Luo, Q., Zhang, Y., Zhou, L., Liu, Y., Ma, Z., Guo, J., Huang, Y., Cheng, L., Meng, Z., et al. (2019). Organic cation transporter 3 (Oct3) is a distinct catecholamines clearance route in adipocytes mediating the beiging of white adipose tissue. PLoS Biol 17, e2006571.CrossRefPubMedPubMedCentralGoogle Scholar
  358. Soria, L.F., Ludwig, E.H., Clarke, H.R.G., Vega, G.L., Grundy, S.M., and McCarthy, B.J. (1989). Association between a specific apolipoprotein B mutation and familial defective apolipoprotein B-100. Proc Natl Acad Sci USA 86, 587–591.CrossRefPubMedPubMedCentralGoogle Scholar
  359. Soutar, A.K., and Naoumova, R.P. (2007). Mechanisms of disease: genetic causes of familial hypercholesterolemia. Nat Rev Cardiol 4, 214–225.CrossRefGoogle Scholar
  360. Soutar, A.K., Naoumova, R.P., and Traub, L.M. (2003). Genetics, clinical phenotype, and molecular cell biology of autosomal recessive hypercholesterolemia. Arterioscler Thromb Vasc Biol 23, 1963–1970.CrossRefPubMedPubMedCentralGoogle Scholar
  361. Striffler, J.S., Garfield, S.A., Cardell, E.L., and Cardell, R.R. (1984). Effects of glucagon on hepatic microsomal glucose-6-phosphatase in vivo. Diabete Metab 10, 91–97.PubMedPubMedCentralGoogle Scholar
  362. Strøm, T.B., Tveten, K., Holla, Ø.L., Cameron, J., Berge, K.E., and Leren, T.P. (2011). Characterization of residues in the cytoplasmic domain of the LDL receptor required for exit from the endoplasmic reticulum. Biochem Biophys Res Commun 415, 642–645.CrossRefPubMedPubMedCentralGoogle Scholar
  363. Su, L., Zhou, L., Chen, F.J., Wang, H., Qian, H., Sheng, Y., Zhu, Y., Yu, H., Gong, X., Cai, L., et al. (2019). Cideb controls sterol-regulated ER export of SREBP/SCAP by promoting cargo loading at ER exit sites. EMBO J 38.Google Scholar
  364. Sui, X., Arlt, H., Brock, K.P., Lai, Z.W., DiMaio, F., Marks, D.S., Liao, M., Farese Jr., R.V., and Walther, T.C. (2018). Cryo-electron microscopy structure of the lipid droplet-formation protein seipin. J Cell Biol 217, 4080–4091.CrossRefPubMedPubMedCentralGoogle Scholar
  365. Sun, L.P., Li, L., Goldstein, J.L., and Brown, M.S. (2005). Insig required for sterol-mediated inhibition of Scap/SREBP binding to COPII proteins in vitro. J Biol Chem 280, 26483–26490.CrossRefPubMedPubMedCentralGoogle Scholar
  366. Sun, L.P., Seemann, J., Goldstein, J.L., and Brown, M.S. (2007). Sterol-regulated transport of SREBPs from endoplasmic reticulum to Golgi: Insig renders sorting signal in Scap inaccessible to COPII proteins. Proc Natl Acad Sci USA 104, 6519–6526.CrossRefPubMedPubMedCentralGoogle Scholar
  367. Sun, Z., Gong, J., Wu, H., Xu, W., Wu, L., Xu, D., Gao, J., Wu, J.W., Yang, H., Yang, M., et al. (2013). Perilipin1 promotes unilocular lipid droplet formation through the activation of Fsp27 in adipocytes. Nat Commun 4, 1594.CrossRefPubMedPubMedCentralGoogle Scholar
  368. Surakka, I., Horikoshi, M., Mägi, R., Sarin, A.P., Mahajan, A., Lagou, V., Marullo, L., Ferreira, T., Miraglio, B., Timonen, S., et al. (2015). The impact of low-frequency and rare variants on lipid levels. Nat Genet 47, 589–597.CrossRefPubMedPubMedCentralGoogle Scholar
  369. Svoboda, M.D., Christie, J.M., Eroglu, Y., Freeman, K.A., and Steiner, R. D. (2012). Treatment of Smith-Lemli-Opitz syndrome and other sterol disorders. Am J Med Genet 160C, 285–294.CrossRefPubMedPubMedCentralGoogle Scholar
  370. Sztalryd, C., Xu, G., Dorward, H., Tansey, J.T., Contreras, J.A., Kimmel, A. R., and Londos, C. (2003). Perilipin A is essential for the translocation of hormone-sensitive lipase during lipolytic activation. J Cell Biol 161, 1093–1103.CrossRefPubMedPubMedCentralGoogle Scholar
  371. Szymanski, K.M., Binns, D., Bartz, R., Grishin, N.V., Li, W.P., Agarwal, A. K., Garg, A., Anderson, R.G.W., and Goodman, J.M. (2007). The lipodystrophy protein seipin is found at endoplasmic reticulum lipid droplet junctions and is important for droplet morphology. Proc Natl Acad Sci USA 104, 20890–20895.CrossRefPubMedPubMedCentralGoogle Scholar
  372. Tabas, I. (2002). Consequences of cellular cholesterol accumulation: basic concepts and physiological implications. J Clin Invest 110, 905–911.CrossRefPubMedPubMedCentralGoogle Scholar
  373. Tan, K., Tsiolakis, D., and Marks, V. (1985). Effect of glucagon antibodies on plasma glucose, insulin and somatostatin in the fasting and fed rat. Diabetologia 28, 435–440.CrossRefPubMedPubMedCentralGoogle Scholar
  374. Tanaka, H., Nagashima, T., Shimaya, A., Urano, Y., Shimokawa, T., and Shibasaki, M. (2010). Effects of the novel Foxo1 inhibitor AS1708727 on plasma glucose and triglyceride levels in diabetic db/db mice. Eur J Pharmacol 645, 185–191.CrossRefPubMedPubMedCentralGoogle Scholar
  375. Tao, J., Zhu, M., Wang, H., Afelik, S., Vasievich, M.P., Chen, X.W., Zhu, G., Jensen, J., Ginsburg, D., and Zhang, B. (2012). SEC23B is required for the maintenance of murine professional secretory tissues. Proc Natl Acad Sci USA 109, E2001–E2009.CrossRefPubMedPubMedCentralGoogle Scholar
  376. Temel, R.E., Tang, W., Ma, Y., Rudel, L.L., Willingham, M.C., Ioannou, Y. A., Davies, J.P., Nilsson, L.M., and Yu, L. (2007). Hepatic Niemann-Pick C1-like 1 regulates biliary cholesterol concentration and is a target of ezetimibe. J Clin Invest 117, 1968–1978.CrossRefPubMedPubMedCentralGoogle Scholar
  377. Teslovich, T.M., Musunuru, K., Smith, A.V., Edmondson, A.C., Stylianou, I.M., Koseki, M., Pirruccello, J.P., Ripatti, S., Chasman, D.I., Willer, C. J., et al. (2010). Biological, clinical and population relevance of 95 loci for blood lipids. Nature 466, 707–713.CrossRefPubMedPubMedCentralGoogle Scholar
  378. Tian, Y., Bi, J., Shui, G., Liu, Z., Xiang, Y., Liu, Y., Wenk, M.R., Yang, H., and Huang, X. (2011). Tissue-autonomous function of Drosophila seipin in preventing ectopic lipid droplet formation. PLoS Genet 7, e1001364.CrossRefPubMedPubMedCentralGoogle Scholar
  379. Tikhanovich, I., Cox, J., and Weinman, S.A. (2013). Forkhead box class O transcription factors in liver function and disease. J Gastroenterol Hepatol 28, 125–131.CrossRefPubMedPubMedCentralGoogle Scholar
  380. Ulirsch, J.C., Nandakumar, S.K., Wang, L., Giani, F.C., Zhang, X., Rogov, P., Melnikov, A., McDonel, P., Do, R., Mikkelsen, T.S., et al. (2016). Systematic functional dissection of common genetic variation affecting red blood cell traits. Cell 165, 1530–1545.CrossRefPubMedPubMedCentralGoogle Scholar
  381. Usifo, E., Leigh, S.E.A., Whittall, R.A., Lench, N., Taylor, A., Yeats, C., Orengo, C.A., Martin, A.C.R., Celli, J., and Humphries, S.E. (2012). Low-density lipoprotein receptor gene familial hypercholesterolemia variant database: update and pathological assessment. Ann Hum Genet 76, 387–401.CrossRefPubMedPubMedCentralGoogle Scholar
  382. van Poelje, P.D., Potter, S.C., Chandramouli, V.C., Landau, B.R., Dang, Q., and Erion, M.D. (2006). Inhibition of fructose 1,6-bisphosphatase reduces excessive endogenous glucose production and attenuates hyperglycemia in Zucker diabetic fatty rats. Diabetes 55, 1747–1754.CrossRefPubMedPubMedCentralGoogle Scholar
  383. Vanier, M.T. (2010). Niemann-Pick disease type C. Orphanet J Rare Dis 5, 16.CrossRefPubMedPubMedCentralGoogle Scholar
  384. Vazquez-Chantada, M., Gonzalez-Lahera, A., Martinez-Arranz, I., Garcia-Monzon, C., Regueiro, M.M., Garcia-Rodriguez, J.L., Schlangen, K.A., Mendibil, I., Rodriguez-Ezpeleta, N., Lozano, J.J., et al. (2013). Solute carrier family 2 member 1 is involved in the development of nonalcoholic fatty liver disease. Hepatology 57, 505–514.CrossRefPubMedPubMedCentralGoogle Scholar
  385. Veglia, F., Tyurin, V.A., Blasi, M., De Leo, A., Kossenkov, A.V., Donthireddy, L., To, T.K.J., Schug, Z., Basu, S., Wang, F., et al. (2019). Fatty acid transport protein 2 reprograms neutrophils in cancer. Nature 569, 73–78.CrossRefPubMedPubMedCentralGoogle Scholar
  386. Vite, C.H., Bagel, J.H., Swain, G.P., Prociuk, M., Sikora, T.U., Stein, V.M., O’Donnell, P., Ruane, T., Ward, S., Crooks, A., et al. (2015). Intracisternal cyclodextrin prevents cerebellar dysfunction and Purkinje cell death in feline Niemann-Pick type C1 disease. Sci Transl Med 7, 276ra26.CrossRefPubMedPubMedCentralGoogle Scholar
  387. Vrins, C., Vink, E., Vandenberghe, K.E., Frijters, R., Seppen, J., and Groen, A.K. (2007). The sterol transporting heterodimer ABCG5/ABCG8 requires bile salts to mediate cholesterol efflux. FEBS Lett 581, 4616–4620.CrossRefPubMedPubMedCentralGoogle Scholar
  388. Wagschal, A., Najafi-Shoushtari, S.H., Wang, L., Goedeke, L., Sinha, S., deLemos, A.S., Black, J.C., Ramirez, C.M., Li, Y., Tewhey, R., et al. (2015). Genome-wide identification of microRNAs regulating cholesterol and triglyceride homeostasis. Nat Med 21, 1290–1297.CrossRefPubMedPubMedCentralGoogle Scholar
  389. Wallace, C., Newhouse, S.J., Braund, P., Zhang, F., Tobin, M., Falchi, M., Ahmadi, K., Dobson, R.J., Marçano, A.C.B., Hajat, C., et al. (2008). Genome-wide association study identifies genes for biomarkers of cardiovascular disease: serum urate and dyslipidemia. Am J Hum Genet 82, 139–149.CrossRefPubMedPubMedCentralGoogle Scholar
  390. Walther, T.C., Chung, J., and Farese Jr., R.V. (2017). Lipid droplet biogenesis. Annu Rev Cell Dev Biol 33, 491–510.CrossRefPubMedPubMedCentralGoogle Scholar
  391. Wang, B., Rong, X., Palladino, E.N.D., Wang, J., Fogelman, A.M., Martín, M.G., Alrefai, W.A., Ford, D.A., and Tontonoz, P. (2018a). Phospholipid remodeling and cholesterol availability regulate intestinal stemness and tumorigenesis. Cell Stem Cell 22, 206–220.e4.CrossRefPubMedPubMedCentralGoogle Scholar
  392. Wang, D.Q.H. (2007). Regulation of intestinal cholesterol absorption. Annu Rev Physiol 69, 221–248.CrossRefPubMedPubMedCentralGoogle Scholar
  393. Wang, H., Airola, M.V., and Reue, K. (2017a). How lipid droplets “TAG” along: glycerolipid synthetic enzymes and lipid storage. Biochim Biophys Acta Mol Cell Biol Lipids 1862, 1131–1145.CrossRefPubMedPubMedCentralGoogle Scholar
  394. Wang, H., Ma, Q., Qi, Y., Dong, J., Du, X., Rae, J., Wang, J., Wu, W.F., Brown, A.J., Parton, R.G., et al. (2019). ORP2 delivers cholesterol to the plasma membrane in exchange for phosphatidylinositol 4, 5-bisphosphate (PI(4,5)P2). Mol Cell 73, 458–473.e7.CrossRefPubMedPubMedCentralGoogle Scholar
  395. Wang, H., Becuwe, M., Housden, B.E., Chitraju, C., Porras, A.J., Graham, M.M., Liu, X.N., Thiam, A.R., Savage, D.B., Agarwal, A.K., et al. (2016a). Seipin is required for converting nascent to mature lipid droplets. eLife 5, e16582.CrossRefPubMedPubMedCentralGoogle Scholar
  396. Wang, L.J., and Song, B.L. (2012). Niemann-Pick C1-Like 1 and cholesterol uptake. Biochim Biophys Acta Mol Cell Biol Lipids 1821, 964–972.CrossRefGoogle Scholar
  397. Wang, L.J., Wang, J., Li, N., Ge, L., Li, B.L., and Song, B.L. (2011). Molecular characterization of the NPC1L1 variants identified from cholesterol low absorbers. J Biol Chem 286, 7397–7408.CrossRefPubMedPubMedCentralGoogle Scholar
  398. Wang, M.L., Motamed, M., Infante, R.E., Abi-Mosleh, L., Kwon, H.J., Brown, M.S., and Goldstein, J.L. (2010a). Identification of surface residues on Niemann-Pick C2 essential for hydrophobic handoff of cholesterol to NPC1 in lysosomes. Cell Metab 12, 166–173.CrossRefPubMedPubMedCentralGoogle Scholar
  399. Wang, S., Tsun, Z.Y., Wolfson, R.L., Shen, K., Wyant, G.A., Plovanich, M. E., Yuan, E.D., Jones, T.D., Chantranupong, L., Comb, W., et al. (2015). Lysosomal amino acid transporter SLC38A9 signals arginine sufficiency to mTORC1. Science 347, 188–194.CrossRefPubMedPubMedCentralGoogle Scholar
  400. Wang, S., Idrissi, F.Z., Hermansson, M., Grippa, A., Ejsing, C.S., and Carvalho, P. (2018b). Seipin and the membrane-shaping protein Pex30 cooperate in organelle budding from the endoplasmic reticulum. Nat Commun 9, 2939.CrossRefPubMedPubMedCentralGoogle Scholar
  401. Wang, Y., Inoue, H., Ravnskjaer, K., Viste, K., Miller, N., Liu, Y., Hedrick, S., Vera, L., and Montminy, M. (2010b). Targeted disruption of the CREB coactivator Crtc2 increases insulin sensitivity. Proc Natl Acad Sci USA 107, 3087–3092.CrossRefPubMedPubMedCentralGoogle Scholar
  402. Wang, Y., Li, G., Goode, J., Paz, J.C., Ouyang, K., Screaton, R., Fischer, W. H., Chen, J., Tabas, I., and Montminy, M. (2012). Inositol-1,4,5-trisphosphate receptor regulates hepatic gluconeogenesis in fasting and diabetes. Nature 485, 128–132.CrossRefPubMedPubMedCentralGoogle Scholar
  403. Wang, Y., Liu, L., Zhang, H., Fan, J., Zhang, F., Yu, M., Shi, L., Yang, L., Lam, S.M., Wang, H., et al. (2016b). Mea6 controls VLDL transport through the coordinated regulation of COPII assembly. Cell Res 26, 787–804.CrossRefPubMedPubMedCentralGoogle Scholar
  404. Wang, Y., Vera, L., Fischer, W.H., and Montminy, M. (2009). The CREB coactivator CRTC2 links hepatic ER stress and fasting gluconeogenesis. Nature 460, 534–537.CrossRefPubMedPubMedCentralGoogle Scholar
  405. Wang, Y., Zhou, Y., and Graves, D.T. (2014). FOXO transcription factors: their clinical significance and regulation. Biomed Res Int 2014(3), 1–13.Google Scholar
  406. Wang, Y.J., Bian, Y., Luo, J., Lu, M., Xiong, Y., Guo, S.Y., Yin, H.Y., Lin, X., Li, Q., Chang, C.C.Y., et al. (2017b). Cholesterol and fatty acids regulate cysteine ubiquitylation of ACAT2 through competitive oxidation. Nat Cell Biol 19, 808–819.CrossRefPubMedPubMedCentralGoogle Scholar
  407. Wang, Y., Han, Y., Zhu, T., Li, W., and Zhang, H. (2018c). A prospective study (SCOPE) comparing the cardiometabolic and respiratory effects of air pollution exposure on healthy and pre-diabetic individuals. Sci China Life Sci 61, 46–56.CrossRefPubMedPubMedCentralGoogle Scholar
  408. Warren, C.R., O’Sullivan, J.F., Friesen, M., Becker, C.E., Zhang, X., Liu, P., Wakabayashi, Y., Morningstar, J.E., Shi, X., Choi, J., et al. (2017). Induced pluripotent stem cell differentiation enables functional validation of GWAS variants in metabolic disease. Cell Stem Cell 20, 547–557.e7.CrossRefPubMedPubMedCentralGoogle Scholar
  409. Wassif, C.A., Maslen, C., Kachilele-Linjewile, S., Lin, D., Linck, L.M., Connor, W.E., Steiner, R.D., and Porter, F.D. (1998). Mutations in the Human Sterol Δ7-Reductase Gene at 11q12-13 Cause Smith-Lemli-Opitz syndrome. Am J Hum Genet 63, 55–62.CrossRefPubMedPubMedCentralGoogle Scholar
  410. Waterham, H.R., Wijburg, F.A., Hennekam, R.C.M., Vreken, P., Poll-The, B.T., Dorland, L., Duran, M., Jira, P.E., Smeitink, J.A.M., Wevers, R.A., et al. (1998). Smith-Lemli-Opitz syndrome is caused by mutations in the 7-dehydrocholesterol reductase gene. Am J Hum Genet 63, 329–338.CrossRefPubMedPubMedCentralGoogle Scholar
  411. Weber, G., Singhal, R.L., Stamm, N.B., Fisher, E.A., and Mentendiek, M. A. (1964). Regulation of enzymes involved in gluconeogenesis. Adv Enzyme Regul 2, 1–38.CrossRefPubMedPubMedCentralGoogle Scholar
  412. Wei, J., Fu, Z.Y., Li, P.S., Miao, H.H., Li, B.L., Ma, Y.T., and Song, B.L. (2014). The Clathrin adaptor proteins ARH, Dab2, and Numb play distinct roles in Niemann-Pick C1-like 1 versus low density lipoprotein receptor-mediated cholesterol uptake. J Biol Chem 289, 33689–33700.CrossRefPubMedPubMedCentralGoogle Scholar
  413. Weiss, J.S., Kruth, H.S., Kuivaniemi, H., Tromp, G., White, P.S., Winters, R.S., Lisch, W., Henn, W., Denninger, E., Krause, M., et al. (2007). Mutations in the UBIAD1 gene on chromosome Short Arm 1, Region 36, cause Schnyder crystalline corneal dystrophy. Invest Ophthalmol Vis Sci 48, 5007–5012.CrossRefPubMedPubMedCentralGoogle Scholar
  414. Weiss, L.A., Pan, L., Abney, M., and Ober, C. (2006). The sex-specific genetic architecture of quantitative traits in humans. Nat Genet 38, 218–222.CrossRefPubMedPubMedCentralGoogle Scholar
  415. Welte, M.A., Cermelli, S., Griner, J., Viera, A., Guo, Y., Kim, D.H., Gindhart, J.G., and Gross, S.P. (2005). Regulation of lipid-droplet transport by the perilipin homolog LSD2. Curr Biol 15, 1266–1275.CrossRefPubMedPubMedCentralGoogle Scholar
  416. Wetterau, J.R., Gregg, R.E., Harrity, T.W., Arbeeny, C., Cap, M., Connolly, F., Chu, C.H., George, R.J., Gordon, D.A., Jamil, H., et al. (1998). An MTP inhibitor that normalizes atherogenic lipoprotein levels in WHHL rabbits. Science 282, 751–754.CrossRefPubMedPubMedCentralGoogle Scholar
  417. Widenmaier, S.B., Snyder, N.A., Nguyen, T.B., Arduini, A., Lee, G.Y., Arruda, A.P., Saksi, J., Bartelt, A., and Hotamisligil, G.S. (2017). NRF1 is an ER membrane sensor that is central to cholesterol homeostasis. Cell 171, 1094–1109.e15.CrossRefPubMedPubMedCentralGoogle Scholar
  418. Wilfling, F., Wang, H., Haas, J.T., Krahmer, N., Gould, T.J., Uchida, A., Cheng, J.X., Graham, M., Christiano, R., Fröhlich, F., et al. (2013). Triacylglycerol synthesis enzymes mediate lipid droplet growth by relocalizing from the ER to lipid droplets. Dev Cell 24, 384–399.CrossRefPubMedPubMedCentralGoogle Scholar
  419. Willer, C.J., Sanna, S., Jackson, A.U., Scuteri, A., Bonnycastle, L.L., Clarke, R., Heath, S.C., Timpson, N.J., Najjar, S.S., Stringham, H.M., et al. (2008). Newly identified loci that influence lipid concentrations and risk of coronary artery disease. Nat Genet 40, 161–169.CrossRefPubMedPubMedCentralGoogle Scholar
  420. Willer, C.J., Schmidt, E.M., Sengupta, S., Peloso, G.M., Gustafsson, S., Kanoni, S., Ganna, A., Chen, J., Buchkovich, M.L., Mora, S., et al. (2013). Discovery and refinement of loci associated with lipid levels. Nat Genet 45, 1274–1283.CrossRefPubMedPubMedCentralGoogle Scholar
  421. Williams, A.L., Jacobs, S.B.R., Moreno-Macias, H., Huerta-Chagoya, A., Churchhouse, C., Márquez-Luna, C., García-Ortíz, H., Gómez-Vázquez, M.J., Burtt, N.P., et al. (2014). Sequence variants in SLC16A11 are a common risk factor for type 2 diabetes in Mexico. Nature 506, 97–101.CrossRefPubMedPubMedCentralGoogle Scholar
  422. Wu, C., Okar, D.A., Newgard, C.B., and Lange, A.J. (2001). Overexpression of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase in mouse liver lowers blood glucose by suppressing hepatic glucose production. J Clin Invest 107, 91–98.CrossRefPubMedPubMedCentralGoogle Scholar
  423. Wu, C., Okar, D.A., Newgard, C.B., and Lange, A.J. (2002). Increasing fructose 2,6-bisphosphate overcomes hepatic insulin resistance of type 2 diabetes. Am J Physiol Endocrinol Metab 282, E38–E45.CrossRefPubMedPubMedCentralGoogle Scholar
  424. Wyant, G.A., Abu-Remaileh, M., Wolfson, R.L., Chen, W.W., Freinkman, E., Danai, L.V., Vander Heiden, M.G., and Sabatini, D.M. (2017). mTORC1 activator SLC38A9 is required to efflux essential amino acids from lysosomes and use protein as a nutrient. Cell 171, 642–654.e12.CrossRefPubMedPubMedCentralGoogle Scholar
  425. Xiao, X., Tang, J.J., Peng, C., Wang, Y., Fu, L., Qiu, Z.P., Xiong, Y., Yang, L.F., Cui, H.W., He, X.L., et al. (2017). Cholesterol modification of smoothened is required for hedgehog signaling. Mol Cell 66, 154–162. e10.CrossRefPubMedPubMedCentralGoogle Scholar
  426. Xie, C., Chu, B., Miao, H., Li, B., Shi, X., and Song, B.L. (2019). Cholesterol transport through the peroxisome-ER membrane contacts tethered by PI (4,5)P2 and extended synaptotagmins. Sci China Life Sci 62, 1117–1135.CrossRefPubMedPubMedCentralGoogle Scholar
  427. Xie, C., Li, N., Chen, Z.J., Li, B.L., and Song, B.L. (2011). The small GTPase Cdc42 interacts with Niemann-Pick C1-like 1 (NPC1L1) and controls its movement from endocytic recycling compartment to plasma membrane in a cholesterol-dependent manner. J Biol Chem 286, 35933–35942.CrossRefPubMedPubMedCentralGoogle Scholar
  428. Xie, C., Zhou, Z.S., Li, N., Bian, Y., Wang, Y.J., Wang, L.J., Li, B.L., and Song, B.L. (2012). Ezetimibe blocks the internalization of NPC1L1 and cholesterol in mouse small intestine. J Lipid Res 53, 2092–2101.CrossRefPubMedPubMedCentralGoogle Scholar
  429. Xie, C., Gong, X.M., Luo, J., Li, B.L., and Song, B.L. (2017). AAV9-NPC1 significantly ameliorates Purkinje cell death and behavioral abnormalities in mouse NPC disease. J Lipid Res 58, 512–518.CrossRefPubMedPubMedCentralGoogle Scholar
  430. Xiong, Y., Guo, J., Candelore, M.R., Liang, R., Miller, C., Dallas-Yang, Q., Jiang, G., McCann, P.E., Qureshi, S.A., Tong, X., et al. (2012). Discovery of a novel glucagon receptor antagonist N-[(4-{(1S)-1-[3-(3,5-dichlorophenyl)-5-(6-methoxynaphthalen-2-yl)-1H-pyrazol-1-yl] ethyl}phenyl)carbonyl]-β-alanine (MK-0893) for the treatment of type II diabetes. J Med Chem 55, 6137–6148.CrossRefPubMedPubMedCentralGoogle Scholar
  431. Xu, D., Li, Y., Wu, L., Li, Y., Zhao, D., Yu, J., Huang, T., Ferguson, C., Parton, R.G., Yang, H., et al. (2018). Rab18 promotes lipid droplet (LD) growth by tethering the ER to LDs through SNARE and NRZ interactions. J Cell Biol 217, 975–995.CrossRefPubMedPubMedCentralGoogle Scholar
  432. Xu, S., Benoff, B., Liou, H.L., Lobel, P., and Stock, A.M. (2007). Structural basis of sterol binding by NPC2, a lysosomal protein deficient in Niemann-Pick type C2 disease. J Biol Chem 282, 23525–23531.CrossRefPubMedPubMedCentralGoogle Scholar
  433. Yan, R., Qian, H., Lukmantara, I., Gao, M., Du, X., Yan, N., and Yang, H. (2018). Human SEIPIN binds anionic phospholipids. Dev Cell 47, 248–256.e4.CrossRefPubMedPubMedCentralGoogle Scholar
  434. Yang, H. (2019). Extended synaptotagmins, peroxisome-endoplasmic reticulum contact and cholesterol transport. Sci China Life Sci 62, 1266–1269.CrossRefPubMedPubMedCentralGoogle Scholar
  435. Yang, X., Lu, X., Lombès, M., Rha, G.B., Chi, Y.I., Guerin, T.M., Smart, E. J., and Liu, J. (2010). The G0/G1 switch gene 2 regulates adipose lipolysis through association with adipose triglyceride lipase. Cell Metab 11, 194–205.CrossRefPubMedPubMedCentralGoogle Scholar
  436. Yoo, E.G. (2016). Sitosterolemia: a review and update of pathophysiology, clinical spectrum, diagnosis, and management. Ann Pediatr Endocrinol Metab 21, 7.CrossRefPubMedPubMedCentralGoogle Scholar
  437. Young, S.G. (1990). Recent progress in understanding apolipoprotein B. Circulation 82, 1574–1594.CrossRefPubMedPubMedCentralGoogle Scholar
  438. Young, S.G., and Fong, L.G. (2012). Lowering plasma cholesterol by raising LDL receptors—revisited. N Engl J Med 366, 1154–1155.CrossRefPubMedPubMedCentralGoogle Scholar
  439. Yu, J., and Li, P. (2017). The size matters: regulation of lipid storage by lipid droplet dynamics. Sci China Life Sci 60, 46–56.CrossRefPubMedPubMedCentralGoogle Scholar
  440. Yue, S., Li, J., Lee, S.Y., Lee, H.J., Shao, T., Song, B., Cheng, L., Masterson, T.A., Liu, X., Ratliff, T.L., et al. (2014). Cholesteryl ester accumulation induced by PTEN loss and PI3K/AKT activation underlies human prostate cancer aggressiveness. Cell Metab 19, 393–406.CrossRefPubMedPubMedCentralGoogle Scholar
  441. Zanetti, G., Pahuja, K.B., Studer, S., Shim, S., and Schekman, R. (2011). COPII and the regulation of protein sorting in mammals. Nat Cell Biol 14, 20–28.CrossRefPubMedPubMedCentralGoogle Scholar
  442. Zanoni, P., Velagapudi, S., Yalcinkaya, M., Rohrer, L., and von Eckardstein, A. (2018). Endocytosis of lipoproteins. Atherosclerosis 275, 273–295.CrossRefPubMedPubMedCentralGoogle Scholar
  443. Zechner, R., Madeo, F., and Kratky, D. (2017). Cytosolic lipolysis and lipophagy: two sides of the same coin. Nat Rev Mol Cell Biol 18, 671–684.CrossRefPubMedPubMedCentralGoogle Scholar
  444. Zhang, C., and Liu, P. (2019). The new face of the lipid droplet: lipid droplet proteins. Proteomics 19, 1700223.CrossRefGoogle Scholar
  445. Zhang, D.W., Garuti, R., Tang, W.J., Cohen, J.C., and Hobbs, H.H. (2008). Structural requirements for PCSK9-mediated degradation of the low-density lipoprotein receptor. Proc Natl Acad Sci USA 105, 13045–13050.CrossRefPubMedPubMedCentralGoogle Scholar
  446. Zhang, J.H., Ge, L., Qi, W., Zhang, L., Miao, H.H., Li, B.L., Yang, M., and Song, B.L. (2011). The N-terminal domain of NPC1L1 protein binds cholesterol and plays essential roles in cholesterol uptake. J Biol Chem 286, 25088–25097.CrossRefPubMedPubMedCentralGoogle Scholar
  447. Zhang, L.N., Zhou, H.Y., Fu, Y.Y., Li, Y.Y., Wu, F., Gu, M., Wu, L.Y., Xia, C.M., Dong, T.C., Li, J.Y., et al. (2013). Novel small-molecule PGC-1α transcriptional regulator with beneficial effects on diabetic db/db mice. Diabetes 62, 1297–1307.CrossRefPubMedPubMedCentralGoogle Scholar
  448. Zhang, X., Saarinen, A.M., Hitosugi, T., Wang, Z., Wang, L., Ho, T.H., and Liu, J. (2017). Inhibition of intracellular lipolysis promotes human cancer cell adaptation to hypoxia. eLife 6, e31132.CrossRefPubMedPubMedCentralGoogle Scholar
  449. Zhang, Y., Xu, L., Liu, X., and Wang, Y. (2018a). Evaluation of insulin sensitivity by hyperinsulinemic-euglycemic clamps using stable isotope-labeled glucose. Cell Discov 4, 17.CrossRefPubMedPubMedCentralGoogle Scholar
  450. Zhang, Y., Zhang, Y., Sun, K., Meng, Z., and Chen, L. (2019). The SLC transporter in nutrient and metabolic sensing, regulation, and drug development. J Mol Cell Biol 11, 1–13.CrossRefPubMedPubMedCentralGoogle Scholar
  451. Zhang, Y.Y., Fu, Z.Y., Wei, J., Qi, W., Baituola, G., Luo, J., Meng, Y.J., Guo, S.Y., Yin, H., Jiang, S.Y., et al. (2018b). A LIMA1 variant promotes low plasma LDL cholesterol and decreases intestinal cholesterol absorption. Science 360, 1087–1092.CrossRefPubMedPubMedCentralGoogle Scholar
  452. Zhao, Y., Feng, Z., Zhang, Y., Sun, Y., Chen, Y., Liu, X., Li, S., Zhou, T., Chen, L., Wei, Y., et al. (2019). Gain-of-function mutations of SLC16A11 contribute to the pathogenesis of type 2 diabetes. Cell Rep 26, 884–892.e4.CrossRefPubMedPubMedCentralGoogle Scholar
  453. Zhou, G., Myers, R., Li, Y., Chen, Y., Shen, X., Fenyk-Melody, J., Wu, M., Ventre, J., Doebber, T., Fujii, N., et al. (2001). Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest 108, 1167–1174.CrossRefPubMedPubMedCentralGoogle Scholar
  454. Zhu, X.G., Nicholson Puthenveedu, S., Shen, Y., La, K., Ozlu, C., Wang, T., Klompstra, D., Gultekin, Y., Chi, J., Fidelin, J., et al. (2019). CHP1 regulates compartmentalized glycerolipid synthesis by activating GPAT4. Mol Cell 74, 45–58.e7.CrossRefPubMedPubMedCentralGoogle Scholar
  455. Zimmermann, R., Strauss, J.G., Haemmerle, G., Schoiswohl, G., Birner-Gruenberger, R., Riederer, M., Lass, A., Neuberger, G., Eisenhaber, F., Hermetter, A., et al. (2004). Fat mobilization in adipose tissue is promoted by adipose triglyceride lipase. Science 306, 1383–1386.CrossRefPubMedPubMedCentralGoogle Scholar
  456. Zinker, B., Mika, A., Nguyen, P., Wilcox, D., Ohman, L., von Geldern, T. W., Opgenorth, T., and Jacobson, P. (2007). Liver-selective glucocorticoid receptor antagonism decreases glucose production and increases glucose disposal, ameliorating insulin resistance. Metabolism 56, 380–387.CrossRefPubMedPubMedCentralGoogle Scholar
  457. Zuliani, G., Arca, M., Signore, A., Bader, G., Fazio, S., Chianelli, M., Bellosta, S., Campagna, F., Montali, A., Maioli, M., et al. (1999). Characterization of a new form of inherited hypercholesterolemia. Arterioscler Thromb Vasc Biol 19, 802–809.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Pharmaceutical Sciences, Beijing Advanced Innovation Center for Structural BiologyKey Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua UniversityBeijingChina
  2. 2.State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, Peking-Tsinghua Center for Life SciencesPeking UniversityBeijingChina
  3. 3.State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
  4. 4.Hubei Key Laboratory of Cell Homeostasis, College of Life SciencesWuhan UniversityWuhanChina
  5. 5.MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Joint Center for Life Sciences, School of Life SciencesTsinghua UniversityBeijingChina

Personalised recommendations