Advertisement

Science China Life Sciences

, Volume 62, Issue 10, pp 1396–1399 | Cite as

Artificial intelligence in computer-aided diagnosis of abdomen diseases

  • Fei Gao
  • Yi ZhuEmail author
  • Jue Zhang
Insight
  • 33 Downloads

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Compliance and ethics The author(s) declare that they have no conflict of interest.

References

  1. Bahrami, K., Shi, F., Rekik, I., and Shen, D. (2016). Convolutional neural network for reconstruction of 7T-like images from 3T MRI using appearance and anatomical features. In Deep Learning and Data Labeling for Medical Applications. G. Carneiro, D. Mateus, L. Peter, A. Bradley, J.M.R. Tavares, V. Belagiannis, J.P. Papa, J.C. Nascimento, M. Loog, Z. Lu, J.S. Cardoso, and J. Cornebise, ed. (Athens, Greece), pp. 39–47.Google Scholar
  2. Ben-Cohen, A., Diamant, I., Klang, E., Amitai, M., and Greenspan, H. (2016). Fully convolutional network for liver segmentation and lesions detection. In Deep Learning and Data Labeling for Medical Applications. G. Carneiro, D. Mateus, L. Peter, A. Bradley, J.M.R. Tavares, V. Belagiannis, J.P. Papa, J.C. Nascimento, M. Loog, Z. Lu, J.S. Cardoso, and J. Cornebise, ed. (Athens, Greece), pp. 77–85.Google Scholar
  3. Christ, P.F., Elshaer, M.E.A., Ettlinger, F., Tatavarty, S., Bickel, M., Bilic, P., Rempfler, M., Armbruster, M., Hofmann, F., D’Anastasi, M., et al. (2016). Automatic liver and lesion segmentation in CT using cascaded fully convolutional neural networks and 3D conditional random fields. In International Conference on Medical Image Computing and Computer-Assisted Intervention, S. Ourselin, L. Joskowicz, M.R. Sabuncu, G. Unal, and W. Wells, ed. (Athens, Greece), pp. 415–423.Google Scholar
  4. Dhawan, A.P. (2011). Medical Image Analysis (Hoboken: John Wiley & Sons).CrossRefGoogle Scholar
  5. Gao, G., Wang, C., Zhang, X., Hu, J., Yang, X., Wang, H., Zhang, J., and Wang, X. (2017). Quantitative analysis of diffusion-weighted magnetic resonance images: differentiation between prostate cancer and normal tissue based on a computer-aided diagnosis system. Sci China Life Sci 60, 37–43.CrossRefGoogle Scholar
  6. Krishnan, K.R., Midhila, M., and Sudhakar, R. (2018). Tensor flow based analysis and classification of liver disorders from ultrasonography images. In Computational Vision and Bio Inspired Computing, D.J. Hemanth and S. Smys, ed. (Tamil Nadu, India), pp. 734–743.CrossRefGoogle Scholar
  7. Litjens, G., Kooi, T., Bejnordi, B.E., Setio, A.A.A., Ciompi, F., Ghafoorian, M., van der Laak, J.A.W.M., van Ginneken, B., and Sánchez, C.I. (2017). A survey on deep learning in medical image analysis. Med Image Anal 42, 60–88.CrossRefGoogle Scholar
  8. Long, J., Shelhamer, E., and Darrell, T. (2015). Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition, (Boston, USA), pp. 3331–3440.Google Scholar
  9. McAuliffe, M.J., Lalonde, F.M., McGarry, D., Gandler, W., Csaky, K., and Trus, B.L. (2001). Medical image processing, analysis and visualization in clinical research. In Proceedings of the 14th IEEE Symposium on Computer-Based Medical Systems, A. Jacobs, ed. (Bethesda, Maryland, USA), pp. 381–386.Google Scholar
  10. Qin, C., Schlemper, J., Caballero, J., Price, A.N., Hajnal, J.V., and Rueckert, D. (2018). Convolutional recurrent neural networks for dynamic MR image reconstruction. IEEE Trans Med Imag 38, 280–290.CrossRefGoogle Scholar
  11. Ronneberger, O., Fischer, P., and Brox, T. (2015). U-net: Convolutional networks for biomedical image segmentation. In International Conference on Medical Image Computing and Computer-Assisted Intervention, N. Navab, J. Hornegger, W.M. Wells, and A.F. Frangi, ed. (Munich, Germany), pp. 234–241.Google Scholar
  12. Su, Q., Bi, S., and Yang, X. (2017). Prioritization of liver MRI for distinguishing focal lesions. Sci China Life Sci 60, 28–36.CrossRefGoogle Scholar
  13. Summers, R.M., Beaulieu, C.F., Pusanik, L.M., Malley, J.D., Jeffrey Jr, R. B., Glazer, D.I., and Napel, S. (2000). Automated polyp detector for CT colonography: feasibility study. Radiology 216, 284–290.CrossRefGoogle Scholar
  14. Tajbakhsh, N., Gurudu, S.R., and Liang, J. (2015). A comprehensive computer-aided polyp detection system for colonoscopy videos. In International Conference on Information Processing in Medical Imaging, S. Ourselin, D.C. Alexander, C.F. Westin, and M.J. Cardoso, ed. (Isle of Skye, UK), pp. 327–338.Google Scholar
  15. Wang, S., Su, Z., Ying, L., Peng, X., Zhu, S., Liang, F., Feng, D., and Liang, D. (2016). Accelerating magnetic resonance imaging via deep learning. In 2016 IEEE 13th International Symposium on Biomedical Imaging, (Prague, Czech Republic), pp. 514–517.Google Scholar
  16. Wang, X., and Zhou, X.J. (2017). Magnetic resonance imaging in personalized medicine. Sci China Life Sci 60, 1–4.PubMedGoogle Scholar
  17. Wang, X., Zhang, X., Ma, L., and Li, S. (2018). Simultaneous quantification of hepatic MRI-PDFF and R2* in a rabbit model with nonalcoholic fatty liver disease. Sci China Life Sci 61, 1107–1114.CrossRefGoogle Scholar
  18. Yang, D., Zhang, J., Han, D., Jin, E., and Yang, Z. (2017). The role of apparent diffusion coefficient values in characterization of solid focal liver lesions: a prospective and comparative clinical study. Sci China Life Sci 60, 16–22.CrossRefGoogle Scholar
  19. Zhu, Y., Wei, R., Gao, G., Ding, L., Zhang, X., Wang, X., and Zhang, J. (2019). Fully automatic segmentation on prostate MR images based on cascaded fully convolution network. J Magn Reson Imag 49, 1149–1156.CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of EngineeringPeking UniversityBeijingChina
  2. 2.Academy for Advanced Interdisciplinary StudiesPeking UniversityBeijingChina

Personalised recommendations