Advertisement

Science China Life Sciences

, Volume 62, Issue 10, pp 1287–1295 | Cite as

Metal-dependent anaerobic methane oxidation in marine sediment: Insights from marine settings and other systems

  • Lewen Liang
  • Yinzhao Wang
  • Orit Sivan
  • Fengping WangEmail author
Review

Abstract

Anaerobic oxidation of methane (AOM) plays a crucial role in controlling global methane emission. This is a microbial process that relies on the reduction of external electron acceptors such as sulfate, nitrate/nitrite, and transient metal ions. In marine settings, the dominant electron acceptor for AOM is sulfate, while other known electron acceptors are transient metal ions such as iron and manganese oxides. Despite the AOM process coupled with sulfate reduction being relatively well characterized, researches on metal-dependent AOM process are few, and no microorganism has to date been identified as being responsible for this reaction in natural marine environments. In this review, geochemical evidences of metal-dependent AOM from sediment cores in various marine environments are summarized. Studies have showed that iron and manganese are reduced in accordance with methane oxidation in seeps or diffusive profiles below the methanogenesis zone. The potential biochemical basis and mechanisms for metal-dependent AOM processes are here presented and discussed. Future research will shed light on the microbes involved in this process and also on the molecular basis of the electron transfer between these microbes and metals in natural marine environments.

Keywords

anaerobic methane oxidation metal-AOM marine sediment archaea electron transfer 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors would like to thank Wenyue Liang, Minyang Niu, Zeyu Jia and Yunru Chen from Shanghai Jiao Tong University for providing help either on figure visualization or suggestions. This work was supported by the National Natural Science Foundation of China (91751205, 41525011), the National Key R&D project of China (2018YFC0310800), China Postdoctoral Science Foundation Grant (2018T110390), and the joint Israel Science Foundation-National Natural Science Foundation of China (ISF-NSFC) (31661143022 (FW), 2561/16 (OS)).

Compliance and ethics The author(s) declare that they have no conflict of interest.

References

  1. Norði, K., and Thamdrup, B. (2014). Nitrate-dependent anaerobic methane oxidation in a freshwater sediment. Geochim Cosmochim Acta 132, 141–150.Google Scholar
  2. Bar-Or, I., Elvert, M., Eckert, W., Kushmaro, A., Vigderovich, H., Zhu, Q., Ben-Dov, E., and Sivan, O. (2017). Iron-coupled anaerobic oxidation of methane performed by a mixed bacterial-archaeal community based on poorly-reactive minerals. Environ Sci Technol 51, 12293–12301.PubMedGoogle Scholar
  3. Beal, E.J., House, C.H., and Orphan, V.J. (2009). Manganese- and iron-dependent marine methane oxidation. Science 325, 184–187.Google Scholar
  4. Berghuis, B.A., Yu, F.B., Schulz, F., Blainey, P.C., Woyke, T., and Quake, S.R. (2019). Hydrogenotrophic methanogenesis in archaeal phylum Verstraetearchaeota reveals the shared ancestry of all methanogens. Proc Natl Acad Sci USA 116, 5037–5044.PubMedGoogle Scholar
  5. Boetius, A., Ravenschlag, K., Schubert, C.J., Rickert, D., Widdel, F., Gieseke, A., Amann, R., Jørgensen, B.B., Witte, U., and Pfannkuche, O. (2000). A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407, 623–626.PubMedGoogle Scholar
  6. Borrel, G., Adam, P.S., McKay, L.J., Chen, L.X., Sierra-García, I.N., Sieber, C.M.K., Letourneur, Q., Ghozlane, A., Andersen, G.L., Li, W.J., et al. (2019). Wide diversity of methane and short-chain alkane metabolisms in uncultured archaea. Nat Microbiol 4, 603–613.PubMedPubMedCentralGoogle Scholar
  7. Boyd, J.A., Jungbluth, S.P., Leu, A.O., Evans, P.N., Woodcroft, B.J., Chadwick, G.L., Orphan, V.J., Amend, J.P., Rappé, M.S., and Tyson, G. W. (2019). Divergent methyl-coenzyme M reductase genes in a deep-subseafloor Archaeoglobi. ISME J 13, 1269–1279.PubMedPubMedCentralGoogle Scholar
  8. Cai, C., Leu, A.O., Xie, G.J., Guo, J., Feng, Y., Zhao, J.X., Tyson, G.W., Yuan, Z., and Hu, S. (2018). A methanotrophic archaeon couples anaerobic oxidation of methane to Fe(III) reduction. ISME J 12, 1929–1939.PubMedPubMedCentralGoogle Scholar
  9. Caldwell, S.L., Laidler, J.R., Brewer, E.A., Eberly, J.O., Sandborgh, S.C., and Colwell, F.S. (2008). Anaerobic oxidation of methane: mechanisms, bioenergetics, and the ecology of associated microorganisms. Environ Sci Technol 42, 6791–6799.PubMedGoogle Scholar
  10. Canfield, D.E. (1989). Reactive iron in marine sediments. Geochim Cosmochim Acta 53, 619–632.PubMedGoogle Scholar
  11. Canfield, D.E., Raiswell, R., and Bottrell, S.H. (1992). The reactivity of sedimentary iron minerals toward sulfide. Am J Sci 292, 659–683.Google Scholar
  12. (a) Canfield, D.E., Rosing, M.T., and Bjerrum, C. (2006). Early anaerobic metabolisms. Philos Trans R Soc B-Biol Sci 361, 1819–1836.; (b) discussion 1835–1816.Google Scholar
  13. Chen, Y., Feng, X., He, Y., and Wang, F. (2016). Genome analysis of a Limnobacter sp. identified in an anaerobic methane-consuming cell consortium. Front Mar Sci 3, 257.Google Scholar
  14. Chen, Y., Li, Y.L., Zhou, G.T., Li, H., Lin, Y.T., Xiao, X., and Wang, F.P. (2014). Biomineralization mediated by anaerobic methane-consuming cell consortia. Sci Rep 4, 5696.PubMedPubMedCentralGoogle Scholar
  15. Ciais, P., Sabine, C., Bala, G., Bopp, L., Brovkin, V., Canadell, J., Chhabra, A., DeFries, R., Galloway, J., and Heimann, M. (2014). Carbon and other biogeochemical cycles. In Climate change 2013: the physical science basis Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press), pp. 465–570.Google Scholar
  16. Colman, D.R., Lindsay, M.R., and Boyd, E.S. (2019). Mixing of meteoric and geothermal fluids supports hyperdiverse chemosynthetic hydrothermal communities. Nat Commun 10, 681.PubMedPubMedCentralGoogle Scholar
  17. Crowe, S.A., Katsev, S., Leslie, K., Sturm, A., Magen, C., Nomosatryo, S., Pack, M.A., Kessler, J.D., Reeburgh, W.S., Roberts, J.A., et al. (2011). The methane cycle in ferruginous Lake Matano. Geobiology 9, 61–78.PubMedGoogle Scholar
  18. D’Hondt, S., Jørgensen, B.B., Miller, D.J., Batzke, A., Blake, R., Cragg, B.A., Cypionka, H., Dickens, G.R., Ferdelman, T., Hinrichs, K.U., et al. (2004). Distributions of microbial activities in deep subseafloor sediments. Science 306, 2216–2221.PubMedGoogle Scholar
  19. Egger, M., Hagens, M., Sapart, C.J., Dijkstra, N., van Helmond, N.A.G.M., Mogollón, J.M., Risgaard-Petersen, N., van der Veen, C., Kasten, S., Riedinger, N., et al. (2017). Iron oxide reduction in methane-rich deep Baltic Sea sediments. Geochim Cosmochim Acta 207, 256–276.Google Scholar
  20. Egger, M., Kraal, P., Jilbert, T., Sulu-Gambari, F., Sapart, C.J., Röckmann, T., and Slomp, C.P. (2016). Anaerobic oxidation of methane alters sediment records of sulfur, iron and phosphorus in the Black Sea. Biogeosciences 13, 5333–5355.Google Scholar
  21. Egger, M., Rasigraf, O., Sapart, C.J., Jilbert, T., Jetten, M.S.M., Röckmann, T., van der Veen, C., Bândă, N., Kartal, B., Ettwig, K.F., et al. (2015). Iron-mediated anaerobic oxidation of methane in brackish coastal sediments. Environ Sci Technol 49, 277–283.PubMedGoogle Scholar
  22. Emerson, S., and Hedges, J. (2003). Sediment diagenesis and benthic flux. Treatise on geochemistry 6, 625.Google Scholar
  23. Ettwig, K.F., Butler, M.K., Le Paslier, D., Pelletier, E., Mangenot, S., Kuypers, M.M.M., Schreiber, F., Dutilh, B.E., Zedelius, J., de Beer, D., et al. (2010). Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature 464, 543–548.PubMedGoogle Scholar
  24. Ettwig, K.F., Zhu, B., Speth, D., Keltjens, J.T., Jetten, M.S.M., and Kartal, B. (2016). Archaea catalyze iron-dependent anaerobic oxidation of methane. Proc Natl Acad Sci USA 113, 12792–12796.PubMedGoogle Scholar
  25. Evans, P.N., Parks, D.H., Chadwick, G.L., Robbins, S.J., Orphan, V.J., Golding, S.D., and Tyson, G.W. (2015). Methane metabolism in the archaeal phylum Bathyarchaeota revealed by genome-centric metagenomics. Science 350, 434–438.PubMedGoogle Scholar
  26. Hallam, S.J., Putnam, N., Preston, C.M., Detter, J.C., Rokhsar, D., Richardson, P.M., and DeLong, E.F. (2004). Reverse methanogenesis: testing the hypothesis with environmental genomics. Science 305, 1457–1462.PubMedGoogle Scholar
  27. Han, X.Q., Yang, K.H., and Huang, Y.Y. (2013). Origin and nature of cold seep in northeastern Dongsha area, South China Sea: Evidence from chimney-like seep carbonates. Chin Sci Bull 58, 3689–3697.Google Scholar
  28. Haroon, M.F., Hu, S., Shi, Y., Imelfort, M., Keller, J., Hugenholtz, P., Yuan, Z., and Tyson, G.W. (2013). Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage. Nature 500, 567–570.PubMedGoogle Scholar
  29. He, Z., Zhang, Q., Feng, Y., Luo, H., Pan, X., and Gadd, G.M. (2018). Microbiological and environmental significance of metal-dependent anaerobic oxidation of methane. Sci Total Environ 610–611, 759–768.PubMedGoogle Scholar
  30. Hinrichs, K.U., Hayes, J.M., Sylva, S.P., Brewer, P.G., and DeLong, E.F. (1999). Methane-consuming archaebacteria in marine sediments. Nature 398, 802–805.Google Scholar
  31. Hoehler, T.M., Alperin, M.J., Albert, D.B., and Martens, C.S. (1994). Field and laboratory studies of methane oxidation in an anoxic marine sediment: Evidence for a methanogen-sulfate reducer consortium. Global Biogeochem Cycl 8, 451–463.Google Scholar
  32. Holmkvist, L., Ferdelman, T.G., and Jørgensen, B.B. (2011). A cryptic sulfur cycle driven by iron in the methane zone of marine sediment (Aarhus Bay, Denmark). Geochim Cosmochim Acta 75, 3581–3599.Google Scholar
  33. Hu, S., Zeng, R.J., Burow, L.C., Lant, P., Keller, J., and Yuan, Z. (2009). Enrichment of denitrifying anaerobic methane oxidizing microorganisms. Environ MicroBiol Rep 1, 377–384.PubMedGoogle Scholar
  34. Iversen, N., and Jorgensen, B.B. (1985). Anaerobic methane oxidation rates at the sulfate-methane transition in marine sediments from Kattegat and Skagerrak (Denmark)1. Limnol Oceanogr 30, 944–955.Google Scholar
  35. Jickells, T.D., An, Z.S., Andersen, K.K., Baker, A.R., Bergametti, G., Brooks, N., Cao, J.J., Boyd, P.W., Duce, R.A., Hunter, K.A., et al. (2005). Global iron connections between desert dust, ocean biogeochemistry, and climate. Science 308, 67–71.Google Scholar
  36. Knab, N.J., Dale, A.W., Lettmann, K., Fossing, H., and Jørgensen, B.B. (2008). Thermodynamic and kinetic control on anaerobic oxidation of methane in marine sediments. Geochim Cosmochim Acta 72, 3746–3757.Google Scholar
  37. Knittel, K., and Boetius, A. (2009). Anaerobic oxidation of methane: progress with an unknown process. Annu Rev Microbiol 63, 311–334.PubMedGoogle Scholar
  38. Laso-Pérez, R., Wegener, G., Knittel, K., Widdel, F., Harding, K.J., Krukenberg, V., Meier, D.V., Richter, M., Tegetmeyer, H.E., Riedel, D., et al. (2016). Thermophilic archaea activate butane via alkyl-coenzyme M formation. Nature 539, 396–401.PubMedGoogle Scholar
  39. Lu, Y.Z., Fu, L., Ding, J., Ding, Z.W., Li, N., and Zeng, R.J. (2016). Cr(VI) reduction coupled with anaerobic oxidation of methane in a laboratory reactor. Water Res 102, 445–452.PubMedGoogle Scholar
  40. McGlynn, S.E. (2017). Energy metabolism during anaerobic methane oxidation in ANME archaea. Microbes Environ 32, 5–13.PubMedPubMedCentralGoogle Scholar
  41. McGlynn, S.E., Chadwick, G.L., Kempes, C.P., and Orphan, V.J. (2015). Single cell activity reveals direct electron transfer in methanotrophic consortia. Nature 526, 531–535.PubMedPubMedCentralGoogle Scholar
  42. McKay, L.J., Dlakić, M., Fields, M.W., Delmont, T.O., Eren, A.M., Jay, Z.J., Klingelsmith, K.B., Rusch, D.B., and Inskeep, W.P. (2019). Co-occurring genomic capacity for anaerobic methane and dissimilatory sulfur metabolisms discovered in the Korarchaeota. Nat Microbiol 4, 614–622.PubMedGoogle Scholar
  43. Mehta, T., Coppi, M.V., Childers, S.E., and Lovley, D.R. (2005). Outer membrane c-type cytochromes required for Fe(III) and Mn(IV) oxide reduction in Geobacter sulfurreducens. Appl Environ MicroBiol 71, 8634–8641.PubMedPubMedCentralGoogle Scholar
  44. Meng, J., Xu, J., Qin, D., He, Y., Xiao, X., and Wang, F. (2014). Genetic and functional properties of uncultivated MCG archaea assessed by metagenome and gene expression analyses. ISME J 8, 650–659.PubMedPubMedCentralGoogle Scholar
  45. Merinero, R., Ruiz-Bermejo, M., Menor-Salván, C., Lunar, R., and Martínez-Frías, J. (2012). Tracing organic compounds in aerobically altered methane-derived carbonate pipes (Gulf of Cadiz, SW Iberia). SedimentaryGeol 263–264, 174–182.Google Scholar
  46. Niu, M., Fan, X., Zhuang, G., Liang, Q., and Wang, F. (2017). Methane-metabolizing microbial communities in sediments of the Haima cold seep area, northwest slope of the South China Sea. FEMS Microbiol Ecol 93.Google Scholar
  47. Oni, O., Miyatake, T., Kasten, S., Richter-Heitmann, T., Fischer, D., Wagenknecht, L., Kulkarni, A., Blumers, M., Shylin, S.I., Ksenofontov, V., et al. (2015). Distinct microbial populations are tightly linked to the profile of dissolved iron in the methanic sediments of the Helgoland mud area, North Sea. Front Microbiol 6, 365.PubMedPubMedCentralGoogle Scholar
  48. Orphan, V.J., House, C.H., Hinrichs, K.U., McKeegan, K.D., and DeLong, E.F. (2001). Methane-consuming archaea revealed by directly coupled isotopic and phylogenetic analysis. Science 293, 484–487.PubMedGoogle Scholar
  49. Pellerin, A., Antler, G., Røy, H., Findlay, A., Beulig, F., Scholze, C., Turchyn, A.V., and Jørgensen, B.B. (2018). The sulfur cycle below the sulfate-methane transition of marine sediments. Geochim Cosmochim Acta 239, 74–89.Google Scholar
  50. Peng, X., Guo, Z., Chen, S., Sun, Z., Xu, H., Ta, K., Zhang, J., Zhang, L., Li, J., and Du, M. (2017). Formation of carbonate pipes in the northern Okinawa Trough linked to strong sulfate exhaustion and iron supply. Geochim Cosmochim Acta 205, 1–13.Google Scholar
  51. Pernthaler, A., Dekas, A.E., Titus Brown, C., Goffredi, S.K., Embaye, T., and Orphan, V.J. (2008). Diverse syntrophic partnerships from deep-sea methane vents revealed by direct cell capture and metagenomics. Proc Natl Acad Sci USA 105, 7052–7057.PubMedGoogle Scholar
  52. Poulton, S.W., and Raiswell, R. (2000). Solid phase associations, oceanic fluxes and the anthropogenic perturbation of transition metals in world river particulates. Mar Chem 72, 17–31.Google Scholar
  53. Raghoebarsing, A.A., Pol, A., van de Pas-Schoonen, K.T., Smolders, A.J.P., Ettwig, K.F., Rijpstra, W.I.C., Schouten, S., Damsté, J.S.S., Opden Camp, H.J.M., Jetten, M.S.M., et al. (2006). A microbial consortium couples anaerobic methane oxidation to denitrification. Nature 440, 918–921.PubMedGoogle Scholar
  54. Reeburgh, W.S. (1976). Methane consumption in Cariaco Trench waters and sediments. Earth Planet Sci Lett 28, 337344.Google Scholar
  55. Reeburgh, W.S. (2007). Oceanic methane biogeochemistry. Chem Rev 107, 486–513.PubMedGoogle Scholar
  56. Reitner, J., Peckmann, J., Blumenberg, M., Michaelis, W., Reimer, A., and Thiel, V. (2005a). Concretionary methane-seep carbonates and associated microbial communities in Black Sea sediments. Palaeogeogr Palaeoclimatol Palaeoecol 227, 18–30.Google Scholar
  57. Reitner, J., Peckmann, J., Reimer, A., Schumann, G., and Thiel, V. (2005b). Methane-derived carbonate build-ups and associated microbial communities at cold seeps on the lower Crimean shelf (Black Sea). Facies 51, 66–79.Google Scholar
  58. Riedinger, N., Formolo, M.J., Lyons, T.W., Henkel, S., Beck, A., and Kasten, S. (2014). An inorganic geochemical argument for coupled anaerobic oxidation of methane and iron reduction in marine sediments. Geobiology 12, 172–181.PubMedGoogle Scholar
  59. Rooze, J., Egger, M., Tsandev, I., and Slomp, C.P. (2016). Iron-dependent anaerobic oxidation of methane in coastal surface sediments: Potential controls and impact. Limnol Oceanogr 61, S267–S282.Google Scholar
  60. Scheller, S., Goenrich, M., Boecher, R., Thauer, R.K., and Jaun, B. (2010). The key nickel enzyme of methanogenesis catalyses the anaerobic oxidation of methane. Nature 465, 606–608.PubMedGoogle Scholar
  61. Scheller, S., Yu, H., Chadwick, G.L., McGlynn, S.E., and Orphan, V.J. (2016). Artificial electron acceptors decouple archaeal methane oxidation from sulfate reduction. Science 351, 703–707.PubMedPubMedCentralGoogle Scholar
  62. Segarra, K.E.A., Comerford, C., Slaughter, J., and Joye, S.B. (2013). Impact of electron acceptor availability on the anaerobic oxidation of methane in coastal freshwater and brackish wetland sediments. Geochim Cosmochim Acta 115, 15–30.Google Scholar
  63. Seitz, K.W., Dombrowski, N., Eme, L., Spang, A., Lombard, J., Sieber, J.R., Teske, A.P., Ettema, T.J.G., and Baker, B.J. (2019). Asgard archaea capable of anaerobic hydrocarbon cycling. Nat Commun 10, 1822.PubMedPubMedCentralGoogle Scholar
  64. Shen, L.D., Hu, B.L., Liu, S., Chai, X.P., He, Z.F., Ren, H.X., Liu, Y., Geng, S., Wang, W., Tang, J.L., et al. (2016). Anaerobic methane oxidation coupled to nitrite reduction can be a potential methane sink in coastal environments. Appl Microbiol Biotechnol 100, 7171–7180.PubMedGoogle Scholar
  65. Sivan, O., Antler, G., Turchyn, A.V., Marlow, J.J., and Orphan, V.J. (2014). Iron oxides stimulate sulfate-driven anaerobic methane oxidation in seeps. Proc Natl Acad Sci USA 111, E4139–E4147.PubMedGoogle Scholar
  66. Sivan, O., Schrag, D.P., and Murray, R.W. (2007). Rates of methanogenesis and methanotrophy in deep-sea sediments. Geobiology 5, 141–151.Google Scholar
  67. Slomp, C.P., Mort, H.P., Jilbert, T., Reed, D.C., Gustafsson, B.G., and Wolthers, M. (2013). Coupled dynamics of iron and phosphorus in sediments of an oligotrophic coastal basin and the impact of anaerobic oxidation of methane. PLoS ONE 8, e62386.PubMedPubMedCentralGoogle Scholar
  68. Sun, Z., Wei, H., Zhang, X., Shang, L., Yin, X., Sun, Y., Xu, L., Huang, W., and Zhang, X. (2015). A unique Fe-rich carbonate chimney associated with cold seeps in the Northern Okinawa Trough, East China Sea. Deep Sea Res Part I-Oceanographic Res Papers 95, 37–53.Google Scholar
  69. Timmers, P.H.A., Welte, C.U., Koehorst, J.J., Plugge, C.M., Jetten, M.S.M., and Stams, A.J.M. (2017). Reverse methanogenesis and respiration in methanotrophic archaea. Archaea 2017(17), 1–22.Google Scholar
  70. Tong, H., Feng, D., Cheng, H., Yang, S., Wang, H., Min, A.G., Edwards, R.L., Chen, Z., and Chen, D. (2013). Authigenic carbonates from seeps on the northern continental slope of the South China Sea: new insights into fluid sources and geochronology. Mar Pet Geol 43, 260–271.Google Scholar
  71. Treude, T., Krause, S., Maltby, J., Dale, A.W., Coffin, R., and Hamdan, L.J. (2014). Sulfate reduction and methane oxidation activity below the sulfate-methane transition zone in Alaskan Beaufort Sea continental margin sediments: Implications for deep sulfur cycling. Geochim Cosmochim Acta 144, 217–237.Google Scholar
  72. Vanwonterghem, I., Evans, P.N., Parks, D.H., Jensen, P.D., Woodcroft, B.J., Hugenholtz, P., and Tyson, G.W. (2016). Methylotrophic methanogenesis discovered in the archaeal phylum Verstraetearchaeota. Nat Microbiol 1, 16170.PubMedGoogle Scholar
  73. Vigderovich, H., Liang, L., Herut, B., Wang, F., Wurgaft, E., Rubin-Blum, M., and Sivan, O. (2019). Evidence for microbial iron reduction in the methanogenic sediments of the oligotrophic SE Mediterranean continental shelf. Biogeosci Discuss 16, 1–25.Google Scholar
  74. Wang, F.P., Zhang, Y., Chen, Y., He, Y., Qi, J., Hinrichs, K.U., Zhang, X.X., Xiao, X., and Boon, N. (2014). Methanotrophic archaea possessing diverging methane-oxidizing and electron-transporting pathways. ISME J 8, 1069–1078.PubMedGoogle Scholar
  75. Wang, Y., Feng, X., Natarajan, V.P., Xiao, X., and Wang, F. (2019a). Diverse anaerobic methane- and multi-carbon alkane-metabolizing archaea coexist and show activity in Guaymas Basin hydrothermal sediment. Environ Microbiol 21, 1344–1355.PubMedGoogle Scholar
  76. Wang, Y., Wegener, G., Hou, J., Wang, F., and Xiao, X. (2019b). Expanding anaerobic alkane metabolism in the domain of Archaea. Nat Microbiol 4, 595–602.PubMedGoogle Scholar
  77. Wegener, G., Krukenberg, V., Riedel, D., Tegetmeyer, H.E., and Boetius, A. (2015). Intercellular wiring enables electron transfer between methanotrophic archaea and bacteria. Nature 526, 587–590.Google Scholar
  78. Yan, Z., Joshi, P., Gorski, C.A., and Ferry, J.G. (2018). A biochemical framework for anaerobic oxidation of methane driven by Fe(III)-dependent respiration. Nat Commun 9, 1642.PubMedPubMedCentralGoogle Scholar
  79. Zehnder, A.J., and Brock, T.D. (1980). Anaerobic methane oxidation: occurrence and ecology. Appl Environ Microbiol 39, 194–204.PubMedPubMedCentralGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Lewen Liang
    • 1
    • 2
  • Yinzhao Wang
    • 1
    • 2
  • Orit Sivan
    • 3
  • Fengping Wang
    • 1
    • 2
    Email author
  1. 1.State Key Laboratory of Microbial Metabolism, School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
  2. 2.Joint International Research Laboratory of Metabolic & Developmental SciencesShanghai Jiao Tong UniversityShanghaiChina
  3. 3.Department of Geological and Environmental SciencesBen-Gurion University of the NegevBeer-ShevaIsrael

Personalised recommendations