Advertisement

An alternative splicing variant of mineralocorticoid receptor discovered in preeclampsia tissues and its effect on endothelial dysfunction

  • Mengxi Guo
  • Chengliang Zhou
  • Gufeng Xu
  • Lin Tang
  • Yechun Ruan
  • Ying Yu
  • Xianhua Lin
  • Dandan Wu
  • Hao Chen
  • Priscilla Yu
  • Luyang Jin
  • Yinyu Wang
  • Yimei Wu
  • Kamran Ullah
  • Tanzil Ur Rahman
  • Xinmei Liu
  • Jianzhong Sheng
  • Hsiao-Chang ChanEmail author
  • Hefeng HuangEmail author
Research Paper

Abstract

The pathophysiology of preeclampsia (PE) remains unclear. PE spiral artery remodeling dysfunction and PE offspring cardiovascular future development has been a worldwide concern. We collected placental and umbilical artery samples from nor-motensive and PE pregnancies. Mineralocorticoid receptor (MR) and its alternative splicing variant (ASV) expression and their biological effects on PE were examined. An MR ASV was found to be highly expressed in all PE samples and slightly expressed in about half of the normotensive samples (umbilical artery, ~57.58%; placenta, ~36.84%). The MR ASV expression was positively associated with blood pressure in both groups. The MR ASV protein changed the aldosterone-induced expression pattern of MR target genes related to ion exchanges and cell signaling pathways. The MR ASV can also impair the proliferation, migration, and tube formation ability of endothelial cells. These findings indicate that MR ASV in PE placenta plays a pathogenic role in PE pathophysiology, especially in endothelial dysfunction, and the existence of the MR ASV in PE umbilical artery provides a new direction in the study of PE offspring with increased risk of cardiovascular diseases.

Keywords

preeclampsia mineralocorticoid receptor alternative splicing variant offspring endothelial dysfunction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

We thank the patients and the doctors and nurses who assisted with this study and lab colleagues who shared their opinions on this topic. This work was supported by the National Key Research and Development Program of China (2017YFC1001303), International Cooperation Project of China and Canada NSFC (81661128010), National Natural Science Foundation of China (31471405, 81671456, and 81671412), and the National Key Basic Research Program (2013CB967404).

Supplementary material

11427_2018_9535_MOESM1_ESM.docx (245 kb)
An alternative splicing variant of mineralocorticoid receptor discovered in preeclampsia tissues and its effect on endothelial dysfunction

References

  1. Ahmed, R., Dunford, J., Mehran, R., Robson, S., and Kunadian, V. (2014). Pre-eclampsia and future cardiovascular risk among women. J Am Coll Cardiol 63, 1815–1822.CrossRefGoogle Scholar
  2. Arnaoutova, I., and Kleinman, H.K. (2010). In vitro angiogenesis: endothelial cell tube formation on gelled basement membrane extract. Nat Protoc 5, 628–635.CrossRefGoogle Scholar
  3. Black, D.L. (2003). Mechanisms of alternative pre-messenger RNA splicing. Annu Rev Biochem 72, 291–336.CrossRefGoogle Scholar
  4. Bloem, L.J., Guo, C., and Pratt, J.H. (1995). Identification of a splice variant of the rat and human mineralocorticoid receptor genes. J Steroid Biochem Mol Biol 55, 159–162.CrossRefGoogle Scholar
  5. Cirillo, P.M., and Cohn, B.A. (2015). Pregnancy complications and cardiovascular disease death. Circulation 132, 1234–1242.CrossRefGoogle Scholar
  6. Davis, E.F., Lazdam, M., Lewandowski, A.J., Worton, S.A., Kelly, B., Kenworthy, Y., Adwani, S., Wilkinson, A.R., McCormick, K., Sargent, I., et al. (2012). Cardiovascular risk factors in children and young adults born to preeclamptic pregnancies: a systematic review. Pediatrics 129, e1552–e1561.CrossRefGoogle Scholar
  7. Fackenthal, J.D., and Godley, L.A. (2008). Aberrant RNA splicing and its functional consequences in cancer cells. Dis Model Mech 1, 37–42.CrossRefGoogle Scholar
  8. Feldman, A.T., and Wolfe, D. (2014). Tissue processing and hematoxylin and eosin staining. Methods Mol Biol 1180, 31–43.CrossRefGoogle Scholar
  9. Fraser, A., Nelson, S.M., Macdonald-Wallis, C., Sattar, N., and Lawlor, D. A. (2013). Hypertensive disorders of pregnancy and cardiometabolic health in adolescent offspring. Hypertension 62, 614–620.CrossRefGoogle Scholar
  10. Gennari-Moser, C., Khankin, E.V., Schüller, S., Escher, G., Frey, B.M., Portmann, C.B., Baumann, M.U., Lehmann, A.D., Surbek, D., Karumanchi, S.A., et al. (2011). Regulation of placental growth by aldosterone and cortisol. Endocrinology 152, 263–271.CrossRefGoogle Scholar
  11. Gennari-Moser, C., Khankin, E.V., Escher, G., Burkhard, F., Frey, B.M., Karumanchi, S.A., Frey, F.J., and Mohaupt, M.G. (2013). Vascular endothelial growth factor-A and aldosterone. Hypertension 61, 1111–1117.CrossRefGoogle Scholar
  12. Gennari-Moser, C., Escher, G., Kramer, S., Dick, B., Eisele, N., Baumann, M., Raio, L., Frey, F.J., Surbek, D., and Mohaupt, M.G. (2014). Normotensive blood pressure in pregnancy. Hypertension 63, 362–368.CrossRefGoogle Scholar
  13. Gifford, R.W., August, P.A., Cunningham, G., Green, L.A., Lindheimer, M. D., McNellis, D., Roberts, J.M., Sibai, B.M., Taler, S.J., and Pro, N.H. B.P.E. (2000). Report of the National High Blood Pressure Education Program Working Group on high blood pressure in pregnancy. Am J Obstet Gynecol 183, S1–S22.CrossRefGoogle Scholar
  14. Herrera-Garcia, G., and Contag, S. (2014). Maternal preeclampsia and risk for cardiovascular disease in offspring. Curr Hypertens Rep 16, 475.Google Scholar
  15. Jaisser, F., and Farman, N. (2016). Emerging roles of the mineralocorticoid receptor in pathology: toward new paradigms in clinical pharmacology. Pharmacol Rev 68, 49–75.CrossRefGoogle Scholar
  16. Kajantie, E., Eriksson, J.G., Osmond, C., Thornburg, K., and Barker, D.J.P. (2009). Pre-eclampsia is associated with increased risk of stroke in the adult offspring. Stroke 40, 1176–1180.CrossRefGoogle Scholar
  17. Komatsu, S. (2007). Extraction of nuclear proteins. Methods Mol Biol 355, 73–77.Google Scholar
  18. Lawlor, D.A., Macdonald-Wallis, C., Fraser, A., Nelson, S.M., Hingorani, A., Davey Smith, G., Sattar, N., and Deanfield, J. (2012). Cardiovascular biomarkers and vascular function during childhood in the offspring of mothers with hypertensive disorders of pregnancy: findings from the Avon Longitudinal Study of Parents and Children. Eur Heart J 33, 335–345.CrossRefGoogle Scholar
  19. Lazdam, M., de la Horra, A., Diesch, J., Kenworthy, Y., Davis, E., Lewandowski, A.J., Szmigielski, C., Shore, A., Mackillop, L., Kharbanda, R., et al. (2012). Unique blood pressure characteristics in mother and offspring after early onset preeclampsia. Hypertension 60, 1338–1345.CrossRefGoogle Scholar
  20. Levine, R.J., Maynard, S.E., Qian, C., Lim, K.H., England, L.J., Yu, K.F., Schisterman, E.F., Thadhani, R., Sachs, B.P., Epstein, F.H., et al. (2004). Circulating angiogenic factors and the risk of preeclampsia. N Engl J Med 350, 672–683.CrossRefGoogle Scholar
  21. McDonald, S.D., Malinowski, A., Zhou, Q., Yusuf, S., and Devereaux, P.J. (2008). Cardiovascular sequelae of preeclampsia/eclampsia: A systematic review and meta-analyses. Am Heart J 156, 918–930.CrossRefGoogle Scholar
  22. Mol, B.W.J., Roberts, C.T., Thangaratinam, S., Magee, L.A., de Groot, C.J. M., and Hofmeyr, G.J. (2016). Pre-eclampsia. Lancet 387, 999–1011.CrossRefGoogle Scholar
  23. Pan, H.T., Guo, M.X., Xiong, Y.M., Ren, J., Zhang, J.Y., Gao, Q., Ke, Z.H., Xu, G.F., Tan, Y.J., Sheng, J.Z., et al. (2015). Differential proteomic analysis of umbilical artery tissue from preeclampsia patients, using iTRAQ isobaric tags and 2D nano LC-MS/MS. J Proteomics 112, 262–273.CrossRefGoogle Scholar
  24. Redman, C.W., and Sargent, I.L. (2005). Latest advances in understanding preeclampsia. Science 308, 1592–1594.CrossRefGoogle Scholar
  25. Roberts, C.L., Ford, J.B., Algert, C.S., Antonsen, S., Chalmers, J., Cnattingius, S., Gokhale, M., Kotelchuck, M., Melve, K.K., Langridge, A., et al. (2011). Population-based trends in pregnancy hypertension and pre-eclampsia: an international comparative study. BMJ Open 1, e000101.Google Scholar
  26. Roberts, J.M., August, P.A., Bakris, G., Barton, J.R., Bernstein, I.M., Druzin, M., Gaiser, R.R., Granger, J.P., Jeyabalan, A., Johnson, D.D., et al. (2013). Hypertension in pregnancy report of the American College of Obstetricians and Gynecologists’ task force on hypertension in pregnancy. Obstet Gynecol 122, 1122–1131.CrossRefGoogle Scholar
  27. Siddiqui, A.H., Irani, R.A., Zhang, W., Wang, W., Blackwell, S.C., Kellems, R.E., and Xia, Y. (2013). Angiotensin receptor agonistic autoantibody-mediated soluble FMS-like tyrosine kinase-1 induction contributes to impaired adrenal vasculature and decreased aldosterone production in preeclampsia. Hypertension 61, 472–479.CrossRefGoogle Scholar
  28. Silver, H.M., Seebeck, M.A., and Carlson, R. (1998). Comparison of total blood volume in normal, preeclamptic, and nonproteinuric gestational hypertensive pregnancy by simultaneous measurement of red blood cell and plasma volumes. Am J Obstet Gynecol 179, 87–93.CrossRefGoogle Scholar
  29. Staley, J.R., Bradley, J., Silverwood, R.J., Howe, L.D., Tilling, K., Lawlor, D.A., and Macdonald-Wallis, C. (2015). Associations of blood pressure in pregnancy with offspring blood pressure trajectories during childhood and adolescence: findings from a prospective study. J Am Heart Assoc 4.Google Scholar
  30. Steegers, E.A., von Dadelszen, P., Duvekot, J.J., and Pijnenborg, R. (2010). Pre-eclampsia. Lancet 376, 631–644.CrossRefGoogle Scholar
  31. Sveen, A., Kilpinen, S., Ruusulehto, A., Lothe, R.A., and Skotheim, R.I. (2016). Aberrant RNA splicing in cancer; expression changes and driver mutations of splicing factor genes. Oncogene 35, 2413–2427.CrossRefGoogle Scholar
  32. Verdonk, K., Visser, W., Van Den Meiracker, A.H., and Danser, A.H.J. (2014). The renin-angiotensin-aldosterone system in pre-eclampsia: the delicate balance between good and bad. Clin Sci 126, 537–544.CrossRefGoogle Scholar
  33. Wang, F., Pan, J., Liu, Y., Meng, Q., Lv, P., Qu, F., Ding, G.L., Klausen, C., Leung, P.C.K., Chan, H.C., et al. (2015). Alternative splicing of the androgen receptor in polycystic ovary syndrome. Proc Natl Acad Sci USA 112, 4743–4748.CrossRefGoogle Scholar
  34. Zennaro, M.C., Souque, A., Viengchareun, S., Poisson, E., and Lombes, M. (2001). A new human MR splice variant is a ligand-independent transactivator modulating corticosteroid action. Mol Endocrinol 15, 1586–1598.CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Mengxi Guo
    • 1
    • 2
    • 4
  • Chengliang Zhou
    • 1
    • 2
    • 4
  • Gufeng Xu
    • 1
  • Lin Tang
    • 2
  • Yechun Ruan
    • 3
  • Ying Yu
    • 1
  • Xianhua Lin
    • 2
  • Dandan Wu
    • 2
  • Hao Chen
    • 3
  • Priscilla Yu
    • 3
  • Luyang Jin
    • 1
    • 4
  • Yinyu Wang
    • 2
  • Yimei Wu
    • 2
  • Kamran Ullah
    • 4
    • 5
  • Tanzil Ur Rahman
    • 4
    • 5
  • Xinmei Liu
    • 2
  • Jianzhong Sheng
    • 4
    • 5
  • Hsiao-Chang Chan
    • 3
    Email author
  • Hefeng Huang
    • 1
    • 2
    • 4
    • 6
    Email author
  1. 1.Women’s HospitalZhejiang University School of MedicineHangzhouChina
  2. 2.International Peace Maternal and Child Health HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
  3. 3.Epithelial Cell Biology Research Center, Faculty of Medicine, School of Biomedical SciencesThe Chinese University of Hong KongHong KongChina
  4. 4.Key Laboratory of Reproductive GeneticsMinistry of Education (Zhejiang University)HangzhouChina
  5. 5.Department of Pathology and PathophysiologyZhejiang University School of MedicineHangzhouChina
  6. 6.Shanghai Key Laboratory of Embryo Original DiseaseShanghaiChina

Personalised recommendations