Science China Life Sciences

, Volume 62, Issue 6, pp 791–806 | Cite as

Integrated analysis of gene expression and methylation profiles of novel pancreatic cancer cell lines with highly metastatic activity

  • Gang Yang
  • Huanyu Wang
  • Mengyu Feng
  • Lei You
  • Lianfang Zheng
  • Taiping Zhang
  • Lin CongEmail author
  • Yupei ZhaoEmail author
Research Paper


Pancreatic cancer is one of the most lethal human malignancies, partly because of its propensity for metastasis. However, highly metastatic human pancreatic cancer cell lines suitable for studies of metastasis are currently lacking. Here we established two highly metastatic human pancreatic cancer cell lines, MIA PaCa-2 In8 and Panc-1 In8, by Matrigel induction assay. The cell lines were further characterized both in vitro and in vivo. MIA PaCa-2 In8 and Panc-1 In8 cells demonstrated increased migration and invasion compared with their respective parental cells. Following injection into nude mice, MIA PaCa-2 In8 and Panc-1 In8 cells resulted in more pulmonary metastases compared with the parental cells. Furthermore, analyses of mRNA, long non-coding RNA, micro RNA, and methylation profiling revealed that these factors were aberrantly regulated in the highly metastatic cells, indicating that they probably affected metastasis. We thus established and characterized two highly metastatic human pancreatic cell lines that could be used as valuable tools for future investigations into the pathogenesis, metastasis, and potential treatment of human pancreatic cancer.


pancreatic cancer high metastatic activity gene expression methylation 



This work was supported by the CAMS Innovation Fund for Medical Sciences (CIFMS) (2016-12M-3-005 and 2016-I2M-1-001), PUMC Youth Fund and the Fundamental Research Funds for the Central Universities (2017320027), the National Natural Science Foundation of China (81772639), and the Non-profit Central Research Institute Fund of Chinese Academy of Medical Sciences (2018PT32014).

Supplementary material

11427_2018_9495_MOESM1_ESM.xls (3.4 mb)
Supplementary material, approximately 3.43 MB.
11427_2018_9495_MOESM2_ESM.xls (124 kb)
Supplementary material, approximately 124 KB.
11427_2018_9495_MOESM3_ESM.xls (36 kb)
Supplementary material, approximately 35.5 KB.
11427_2018_9495_MOESM4_ESM.xls (108 kb)
Supplementary material, approximately 108 KB.
11427_2018_9495_MOESM5_ESM.xls (282 kb)
Supplementary material, approximately 281 KB.
11427_2018_9495_MOESM6_ESM.xls (11 mb)
Supplementary material, approximately 10.9 MB.
11427_2018_9495_MOESM7_ESM.xls (3 mb)
Supplementary material, approximately 3.01 MB.


  1. Ahmad, I., Mui, E., Galbraith, L., Patel, R., Tan, E.H., Salji, M., Rust, A.G., Repiscak, P., Hedley, A., Markert, E., et al. (2016). Sleeping Beauty screen reveals Pparg activation in metastatic prostate cancer. Proc Natl Acad Sci USA 113, 8290–8295.CrossRefGoogle Scholar
  2. Bailey, P., Chang, D.K., Nones, K., Johns, A.L., Patch, A.M., Gingras, M. C., Miller, D.K., Christ, A.N., Bruxner, T.J.C., Quinn, M.C., et al. (2016). Genomic analyses identify molecular subtypes of pancreatic cancer. Nature 531, 47–52.CrossRefGoogle Scholar
  3. Chao, Y.C., Pan, S.H., Yang, S.C., Yu, S.L., Che, T.F., Lin, C.W., Tsai, M. S., Chang, G.C., Wu, C.H., Wu, Y.Y., et al. (2009). Claudin-1 is a metastasis suppressor and correlates with clinical outcome in lung adenocarcinoma. Am J Respir Crit Care Med 179, 123–133.CrossRefGoogle Scholar
  4. Du, Y., Liu, Z., You, L., Hou, P., Ren, X., Jiao, T., Zhao, W., Li, Z., Shu, H., Liu, C., et al. (2017). Pancreatic cancer progression relies upon mutant p53-induced oncogenic signaling mediated by NOP14. Cancer Res 77, 2661–2673.CrossRefGoogle Scholar
  5. Gilkes, D.M., Semenza, G.L., and Wirtz, D. (2014). Hypoxia and the extracellular matrix: drivers of tumour metastasis. Nat Rev Cancer 14, 430–439.CrossRefGoogle Scholar
  6. Giovannetti, E., van der Borden, C.L., Frampton, A.E., Ali, A., Firuzi, O., and Peters, G.J. (2017). Never let it go: stopping key mechanisms underlying metastasis to fight pancreatic cancer. Seminars Cancer Biol 44, 43–59.CrossRefGoogle Scholar
  7. Go, K.L., Delitto, D., Judge, S.M., Gerber, M.H., George Jr, T.J., Behrns, K.E., Hughes, S.J., Judge, A.R., and Trevino, J.G. (2017). Orthotopic patient-derived pancreatic cancer xenografts engraft into the pancreatic parenchyma, metastasize, and induce muscle wasting to recapitulate the human disease. Pancreas 46, 813–819.CrossRefGoogle Scholar
  8. Goldstein, J.T., Berger, A.C., Shih, J., Duke, F.F., Furst, L., Kwiatkowski, D.J., Cherniack, A.D., Meyerson, M., and Strathdee, C.A. (2017). Genomic activation of PPARG reveals a candidate therapeutic axis in bladder cancer. Cancer Res 77, 6987–6998.CrossRefGoogle Scholar
  9. Grenman, R., Burk, D., Virolainen, E., Buick, R.N., Church, J., Schwartz, D.R., and Carey, T.E. (1989). Clonogenic cell assay for anchorage-dependent squamous carcinoma cell lines using limiting dilution. Int J Cancer 44, 131–136.CrossRefGoogle Scholar
  10. Haskins, J.W., Nguyen, D.X., and Stern, D.F. (2014). Neuregulin 1-activated ERBB4 interacts with YAP to induce Hippo pathway target genes and promote cell migration. Sci Signal 7, ra116.Google Scholar
  11. Hatano, H., Kudo, Y., Ogawa, I., Tsunematsu, T., Kikuchi, A., Abiko, Y., and Takata, T. (2008). IFN-induced transmembrane protein 1 promotes invasion at early stage of head and neck cancer progression. Clin Cancer Res 14, 6097–6105.CrossRefGoogle Scholar
  12. Hsu, S.D., Tseng, Y.T., Shrestha, S., Lin, Y.L., Khaleel, A., Chou, C.H., Chu, C.F., Huang, H.Y., Lin, C.M., Ho, S.Y., et al. (2014). miRTarBase update 2014: an information resource for experimentally validated miRNA-target interactions. Nucl Acids Res 42, D78–D85.CrossRefGoogle Scholar
  13. Huang, J.S., Egger, M.E., Grizzle, W.E., and McNally, L.R. (2013). MicroRNA-100 regulates IGF1-receptor expression in metastatic pancreatic cancer cells. Biotech Histochem 88, 397–402.CrossRefGoogle Scholar
  14. Jeggari, A., Marks, D.S., and Larsson, E. (2012). miRcode: a map of putative microRNA target sites in the long non-coding transcriptome. Bioinformatics 28, 2062–2063.CrossRefGoogle Scholar
  15. Karreth, F.A., and Pandolfi, P.P. (2013). ceRNA cross-talk in cancer: when ce-bling rivalries go awry. Cancer Discov 3, 1113–1121.Google Scholar
  16. Kim, N.H., Sung, H.Y., Choi, E.N., Lyu, D., Choi, H.J., Ju, W., and Ahn, J. H. (2014). Aberrant DNA methylation in the IFITM1 promoter enhances the metastatic phenotype in an intraperitoneal xenograft model of human ovarian cancer. Oncol Rep 31, 2139–2146.CrossRefGoogle Scholar
  17. Kiuchi, T., Ortiz-Zapater, E., Monypenny, J., Matthews, D.R., Nguyen, L. K., Barbeau, J., Coban, O., Lawler, K., Burford, B., Rolfe, D.J., et al. (2014). The ErbB4 CYT2 variant protects EGFR from ligand-induced degradation to enhance cancer cell motility. Sci Signal 7, ra78.CrossRefGoogle Scholar
  18. Li, D., Peng, Z., Tang, H., Wei, P., Kong, X., Yan, D., Huang, F., Li, Q., Le, X., Li, Q., et al. (2011). KLF4-mediated negative regulation of IFITM3 expression plays a critical role in colon cancer pathogenesis. Clin Cancer Res 17, 3558–3568.CrossRefGoogle Scholar
  19. Makohon-Moore, A., and Iacobuzio-Donahue, C.A. (2016). Pancreatic cancer biology and genetics from an evolutionary perspective. Nat Rev Cancer 16, 553–565.CrossRefGoogle Scholar
  20. McDonald, O.G., Li, X., Saunders, T., Tryggvadottir, R., Mentch, S.J., Warmoes, M.O., Word, A.E., Carrer, A., Salz, T.H., Natsume, S., et al. (2017). Epigenomic reprogramming during pancreatic cancer progression links anabolic glucose metabolism to distant metastasis. Nat Genet 49, 367–376.CrossRefGoogle Scholar
  21. Nishimori, H., Yasoshima, T., Denno, R., Shishido, T., Hata, F., Honma, T., Ura, H., Yamaguchi, K., Yagihashi, A., Tanaka, H., et al. (2001). A new peritoneal dissemination model established from the human pancreatic cancer cell line. Pancreas 22, 348–356.CrossRefGoogle Scholar
  22. Nishimori, H., Yasoshima, T., Hata, F., Denno, R., Yanai, Y., Nomura, H., Tanaka, H., Kamiguchi, K., Sato, N., and Hirata, K. (2002). A novel nude mouse model of liver metastasis and peritoneal dissemination from the same human pancreatic cancer line. Pancreas 24, 242–250.CrossRefGoogle Scholar
  23. Notta, F., Chan-Seng-Yue, M., Lemire, M., Li, Y., Wilson, G.W., Connor, A.A., Denroche, R.E., Liang, S.B., Brown, A.M.K., Kim, J.C., et al. (2016). A renewed model of pancreatic cancer evolution based on genomic rearrangement patterns. Nature 538, 378–382.CrossRefGoogle Scholar
  24. Ottaviani, S., Stebbing, J., Frampton, A.E., Zagorac, S., Krell, J., de Giorgio, A., Trabulo, S.M., Nguyen, V.T.M., Magnani, L., Feng, H., et al. (2018). TGF-β induces miR-100 and miR-125b but blocks let-7a through LIN28B controlling PDAC progression. Nat Commun 9, 1845.CrossRefGoogle Scholar
  25. Pertea, M., Kim, D., Pertea, G.M., Leek, J.T., and Salzberg, S.L. (2016). Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nat Protoc 11, 1650–1667.CrossRefGoogle Scholar
  26. Pertea, M., Pertea, G.M., Antonescu, C.M., Chang, T.C., Mendell, J.T., and Salzberg, S.L. (2015). StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat Biotechnol 33, 290–295.CrossRefGoogle Scholar
  27. Rahib, L., Smith, B.D., Aizenberg, R., Rosenzweig, A.B., Fleshman, J.M., and Matrisian, L.M. (2014). Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res 74, 2913–2921.CrossRefGoogle Scholar
  28. Reticker-Flynn, N.E., Malta, D.F.B., Winslow, M.M., Lamar, J.M., Xu, M. J., Underhill, G.H., Hynes, R.O., Jacks, T.E., and Bhatia, S.N. (2012). A combinatorial extracellular matrix platform identifies cell-extracellular matrix interactions that correlate with metastasis. Nat Commun 3, 1122.CrossRefGoogle Scholar
  29. Salameh, A., Lee, A.K., Cardó-Vila, M., Nunes, D.N., Efstathiou, E., Staquicini, F.I., Dobroff, A.S., Marchiò, S., Navone, N.M., Hosoya, H., et al. (2015). PRUNE2 is a human prostate cancer suppressor regulated by the intronic long noncoding RNA PCA3. Proc Natl Acad Sci USA 112, 8403–8408.CrossRefGoogle Scholar
  30. Settleman, J., Lee, A. K., Cardo-Vila, M., Nunes, D. N., Efstathiou, E., Staquicini, F. I., Dobroff, A. S., Marchio, S., Navone, N. M., Hosoya, H., et al. (2009). A therapeutic opportunity in melanoma: ErbB4 makes a mark on skin. Cancer Cell 16, 278–279.CrossRefGoogle Scholar
  31. Shannon, P., Markiel, A., Ozier, O., Baliga, N.S., Wang, J.T., Ramage, D., Amin, N., Schwikowski, B., and Ideker, T. (2003). Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13, 2498–2504.CrossRefGoogle Scholar
  32. Siegel, R.L., Miller, K.D., and Jemal, A. (2018). Cancer statistics, 2018. CA-A Cancer J Clin 68, 7–30.CrossRefGoogle Scholar
  33. Srivastava, S.K., Arora, S., Singh, S., Bhardwaj, A., Averett, C., and Singh, A.P. (2014). MicroRNAs in pancreatic malignancy: progress and promises. Cancer Lett 347, 167–174.CrossRefGoogle Scholar
  34. Tahira, A.C., Kubrusly, M.S., Faria, M.F., Dazzani, B., Fonseca, R.S., Maracaja-Coutinho, V., Verjovski-Almeida, S., Machado, M.C.C., and Reis, E.M. (2011). Long noncoding intronic RNAs are differentially expressed in primary and metastatic pancreatic cancer. Mol Cancer 10, 141.CrossRefGoogle Scholar
  35. Wang, C., Zhang, W., Zhang, L., Chen, X., Liu, F., Zhang, J., Guan, S., Sun, Y., Chen, P., Wang, D., et al. (2016). miR-146a-5p mediates epithelial–mesenchymal transition of oesophageal squamous cell carcinoma via targeting Notch2. Br J Cancer 115, 1548–1554.Google Scholar
  36. Wang, P., Chen, L., Zhang, J., Chen, H., Fan, J., Wang, K., Luo, J., Chen, Z., Meng, Z., and Liu, L. (2014). Methylation-mediated silencing of the miR-124 genes facilitates pancreatic cancer progression and metastasis by targeting Rac1. Oncogene 33, 514–524.CrossRefGoogle Scholar
  37. Yang, Q., Wang, Y., Lu, X., Zhao, Z., Zhu, L., Chen, S., Wu, Q., Chen, C., and Wang, Z. (2015). MiR-125b regulates epithelial-mesenchymal transition via targeting Sema4C in paclitaxel-resistant breast cancer cells. Oncotarget 6, 3268–3279.Google Scholar
  38. Zhang, J.Y., Weng, M.Z., Song, F.B., Xu, Y.G., Liu, Q., Wu, J.Y., Qin, J., Jin, T., and Xu, J.M. (2016). Long noncoding RNA AFAP1-AS1 indicates a poor prognosis of hepatocellular carcinoma and promotes cell proliferation and invasion via upregulation of the RhoA/Rac2 signaling. Int J Oncol 48, 1590–1598.CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Gang Yang
    • 1
  • Huanyu Wang
    • 1
  • Mengyu Feng
    • 1
  • Lei You
    • 1
  • Lianfang Zheng
    • 2
  • Taiping Zhang
    • 1
    • 3
  • Lin Cong
    • 1
    Email author
  • Yupei Zhao
    • 1
    Email author
  1. 1.Department of General Surgery, Peking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
  2. 2.Department of Nuclear Medicine, Peking Union Medical HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
  3. 3.Clinical Immunology CenterChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina

Personalised recommendations